[go: up one dir, main page]

JPH07113144A - Nonmagnetic stainless steel excellent in surface property and production thereof - Google Patents

Nonmagnetic stainless steel excellent in surface property and production thereof

Info

Publication number
JPH07113144A
JPH07113144A JP25989693A JP25989693A JPH07113144A JP H07113144 A JPH07113144 A JP H07113144A JP 25989693 A JP25989693 A JP 25989693A JP 25989693 A JP25989693 A JP 25989693A JP H07113144 A JPH07113144 A JP H07113144A
Authority
JP
Japan
Prior art keywords
less
stainless steel
weight
magnetic
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25989693A
Other languages
Japanese (ja)
Inventor
Katsuhisa Miyakusu
克久 宮楠
Sadao Hirotsu
貞雄 廣津
Shigeto Hayashi
茂人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25989693A priority Critical patent/JPH07113144A/en
Publication of JPH07113144A publication Critical patent/JPH07113144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To develop a nonmagnetic stainless steel in which the occurrence of cracking is prevented at the time of hot working and excellent in strength, toughness and surface properties by reducing the content of S in an Ni-Cr based nonmagnetic stainless steel and controlling the conditions in cold rolling. CONSTITUTION:An austenitic stainless steel having a compsn. contg. by weight, <0.08% C, <3.0% Si, <2.0% Mn, <0.003% S, 9.5 to 11.5% Ni, 16.0 to 20.0% Cr and 0.1 to 0.25% N or furthermore contg. one or >= two kinds among <1.0% Cu, <3.0% Mo, <0.010% B, <0.10%Al, <0.050% Ca, <0.050% rare earth elements and <0.030% Y and having 14.5 to 19.0 nonmagnetic property stability index expressed by the formula I is subjected to cold rolling at 40 to 70% draft while the hot sheet is held to 40 to 180 deg.C. Next, it is subjected to aging treatment of holding to <=600 deg.C for <=1hr. The nonmagnetic stainless steel sheet free from the occurrence of cracking at the time of hot rolling, excellent in surface properties and having >380 hardness HV and <1.05 permeability mucan be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強力な磁場中で使用さ
れるバネ部品等の材料として好適な非磁性ステンレス鋼
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic stainless steel suitable as a material for spring parts used in a strong magnetic field and a method for producing the same.

【0002】[0002]

【従来の技術】超電導マグネットによる磁気浮上を利用
したリニアモータカーの実用研究が盛んに行われてい
る。リニアモータカーは、コンクリートパネル及びリニ
アモータカーにそれぞれ取り付けられた超電導コイルの
反発力を推進力として移動する。超電導コイルは、非磁
性のボルト・ナットを使用しコンクリートパネルに取り
付けられる。ボルトは、車両通過時の衝撃,コイルの熱
膨張等によって緩まないように、皿バネ及び座金を介し
て固定される。
2. Description of the Related Art Practical research on a linear motor car utilizing magnetic levitation by a superconducting magnet has been actively conducted. The linear motor car moves by using the repulsive force of the superconducting coils attached to the concrete panel and the linear motor car as propulsive force. Superconducting coils are attached to concrete panels using non-magnetic bolts and nuts. The bolts are fixed via disc springs and washers so that they will not loosen due to impact when the vehicle passes, thermal expansion of the coils, and the like.

【0003】使用される皿バネや座金の材質には、ボル
トが緩まないように締付けトルクを大きく設計すること
から高強度であること、超電導コイルで発生する磁場に
影響を与えないように非磁性であること、更に耐食性に
優れていること等が要求される。また、通常の電力装置
の電源トランス内等においても、強い磁場が発生してい
る。この種の機器で使用されるバネ部品についても、非
磁性化することにより発熱等に起因した電力損失を低減
することができる。このような要求特性をもつ材料とし
て、SUS304,SUS316等のオーステナイト系
ステンレス鋼が従来から使用されていた。また、近年で
はSUS304N1,SUS304N2等の高Nオース
テナイト系ステンレス鋼も使用されるようになってきて
いる。
The disc springs and washers used are of high strength because they are designed to have a large tightening torque so that the bolts will not loosen, and are non-magnetic so as not to affect the magnetic field generated by the superconducting coil. In addition, it is required to have excellent corrosion resistance. In addition, a strong magnetic field is generated even in the power transformer of a normal power device. The spring components used in this type of device can also be made non-magnetic to reduce power loss due to heat generation and the like. Austenitic stainless steels such as SUS304 and SUS316 have been conventionally used as materials having such required characteristics. Further, in recent years, high N austenitic stainless steels such as SUS304N1 and SUS304N2 have come to be used.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のオース
テナイト系ステンレス鋼は、強磁場での使用に要求され
る種々の特性を十分に満足する材料とは言えない。たと
えば、SUS304では、加工率が約20%以上の冷間
加工を施すと加工誘起マルテンサイト相が生成する。そ
の結果、磁性を帯び、透磁率μが1.05を超えるよう
になる。SUS316は、冷間加工後においても低い透
磁率が維持されるが、高強度を確保できない。また、合
金成分としてNi,Moの含有量が高いことから高価な
材料である。SUS304N1,SUS304N2等の
オーステナイト系ステンレス鋼は、熱間圧延時に山形状
の表面欠陥が発生し易い。発生した表面欠陥は、熱延後
の鋼板表面をグラインー等で研削しても、除去されずに
残留することが多く、製品加工後のバレル研磨程度では
除去されない。残存した表面疵は、耐食性等の製品特性
に悪影響を及ぼすことから、製品歩留りを低下させる原
因となる。
However, the conventional austenitic stainless steel cannot be said to be a material sufficiently satisfying various characteristics required for use in a strong magnetic field. For example, in SUS304, a work-induced martensite phase is generated when cold working with a work ratio of about 20% or more is performed. As a result, it becomes magnetized and the magnetic permeability μ exceeds 1.05. SUS316 maintains low magnetic permeability even after cold working, but cannot secure high strength. Further, since the contents of Ni and Mo as alloy components are high, it is an expensive material. Austenitic stainless steels such as SUS304N1 and SUS304N2 are likely to have mountain-shaped surface defects during hot rolling. The generated surface defects often remain without being removed even if the surface of the steel sheet after hot rolling is ground with a grinder or the like, and are not removed by barrel polishing after product processing. The remaining surface flaws adversely affect the product characteristics such as corrosion resistance and thus cause a reduction in product yield.

【0005】熱延後の表面疵を防止するため、種々の方
法が提案されている。たとえば、特開昭57−1615
3号公報では、δcal =3(Cr+Mo+1.5×Si
+0.5×Nb)−2.8(Ni+0.5×Mn+0.
5×Cu)−84(C+N)−19.8で提示されるδ
フェライトの計算値を4.0以下にしている。δcal
4.0によって熱間加工性にある程度の改善はみられる
ものの、機械的性質や耐食性等を考慮してステンレス鋼
を成分設計していることを考慮したとき、多くの鋼種に
ついてδcal を4.0以下の一定値に合せることは困難
である。ステンレス鋼の溶製時においても、目標設定成
分に対し高い的中精度を得ることが難しい。特開昭57
−127506号公報では、連鋳時における溶鋼の過熱
温度ΔT(スーパーヒート)とN含有量との積に応じて
熱延時の加熱温度を調節することにより、表面疵の発生
を抑制している。しかし、過熱温度ΔT及びN含有量
は、連鋳時に種々変化する。また、同時に複数のスラブ
を加熱する実ラインにおける加熱炉操業を考慮すると、
全スラブを対象として熱延時の加熱温度を制御すること
は困難になる。
Various methods have been proposed in order to prevent surface defects after hot rolling. For example, JP-A-57-1615
In the publication No. 3, δ cal = 3 (Cr + Mo + 1.5 × Si
+ 0.5 × Nb) -2.8 (Ni + 0.5 × Mn + 0.
5 × Cu) −84 (C + N) −19.8 presented δ
The calculated value of ferrite is set to 4.0 or less. δ cal
Although 4.0 has some improvement in hot workability, δ cal for many types of steel is taken into consideration when considering that stainless steel is designed as a component in consideration of mechanical properties and corrosion resistance. It is difficult to adjust to a constant value of 0 or less. Even when stainless steel is melted, it is difficult to obtain high accuracy with respect to target setting components. JP-A-57
In Japanese Patent Publication No. 127506, the occurrence of surface defects is suppressed by adjusting the heating temperature during hot rolling according to the product of the superheat temperature ΔT (superheat) of molten steel during continuous casting and the N content. However, the superheat temperature ΔT and the N content change variously during continuous casting. In addition, considering the heating furnace operation in an actual line that simultaneously heats multiple slabs,
It becomes difficult to control the heating temperature during hot rolling for all slabs.

【0006】Ti等の特殊成分を添加することにより、
表面疵の発生を防止することも一部で行われている。し
かし、Ti等を添加すると介在物が増加し、ストリンガ
ー疵が増加する欠点が現れる。しかも、特殊な添加元素
は一般的に高価であるため、鋼材のコストを上昇させる
原因ともなる。本発明は、このような問題を解消すべく
案出されたものであり、冷間圧延の条件制御によって強
度及び靭性を満足させ、特定された成分系においてS含
有量を低減することにより熱延時の割れ発生を防止し、
表面性状の良好な非磁性ステンレス鋼を提供することを
目的とする。
By adding a special component such as Ti,
The prevention of surface defects is also partly done. However, when Ti or the like is added, inclusions increase, and a drawback that stringer flaws increase appears. Moreover, since the special additive element is generally expensive, it also causes an increase in the cost of the steel material. The present invention has been devised to solve such a problem, and satisfies the strength and toughness by controlling the conditions of cold rolling and reduces the S content in the specified component system to reduce the hot rolling time. To prevent cracking
An object is to provide a non-magnetic stainless steel having a good surface property.

【0007】[0007]

【課題を解決するための手段】本発明の非磁性ステンレ
ス鋼は、その目的を達成するため、C:0.08重量%
以下,Si:3.0重量%以下,Mn:2.0重量%以
下,S:0.003重量%未満,Ni:9.5〜11.
5重量%,Cr:16.0〜20.0重量%及びN:
0.1〜0.25重量%を含み、式(1)で定義される
非磁性安定指数Xが14.5〜19.0の範囲にあり、
且つ透磁率μが1.05以下であることを特徴とする。
この非磁性ステンレス鋼は、更にCu:1.0重量%以
下,Mo:3.0重量%以下,B:0.010重量%以
下,Al:0.10重量%以下,Ca:0.050重量
%以下,希土類元素:0.050重量%以下及びY:
0.030重量%以下のうちの1種又は2種以上を含む
ことができる。 X=Ni+0.60×Mn+9.69×(C+N) +0.18×Cr−0.11Si2 ・・・・(1) 本発明の非磁性ステンレス鋼は、前記の成分・組成を持
つステンレス鋼に、材料温度を40〜180℃の範囲に
維持しながら圧延率40〜70%の冷間圧延を施すこと
により製造される。冷間圧延後、更に600℃以下の温
度に1時間以内保持する時効処理を施しても良い。
The non-magnetic stainless steel of the present invention has a C: 0.08% by weight in order to achieve its object.
Hereinafter, Si: 3.0 wt% or less, Mn: 2.0 wt% or less, S: less than 0.003 wt%, Ni: 9.5 to 11.
5% by weight, Cr: 16.0 to 20.0% by weight and N:
0.1 to 0.25% by weight, the nonmagnetic stability index X defined by the formula (1) is in the range of 14.5 to 19.0,
In addition, the magnetic permeability μ is 1.05 or less.
This non-magnetic stainless steel further has Cu: 1.0 wt% or less, Mo: 3.0 wt% or less, B: 0.010 wt% or less, Al: 0.10 wt% or less, Ca: 0.050 wt%. % Or less, rare earth element: 0.050% by weight or less and Y:
One or more of 0.030% by weight or less can be contained. X = Ni + 0.60 × Mn + 9.69 × (C + N) + 0.18 × Cr-0.11Si 2 (1) The non-magnetic stainless steel of the present invention is a stainless steel having the above-mentioned components and composition, It is manufactured by performing cold rolling at a rolling rate of 40 to 70% while maintaining the material temperature in the range of 40 to 180 ° C. After cold rolling, an aging treatment may be performed in which the temperature is kept at 600 ° C. or lower for 1 hour or less.

【0008】[0008]

【作用】本発明者等は、Cr−Ni系オーステナイトス
テンレス鋼のバネ特性に及ぼす合金元素,冷間圧延及び
熱処理の影響を広範な観点から調査・研究した。その結
果、合金元素及びその含有量が特定されたステンレス鋼
に施す冷間圧延の圧延温度及び圧延率を制御するとき、
目標とする強度及び靭性が維持されることを見い出し
た。また、熱延時に発生した割れが熱延後のコイルにお
いて山形状の表面欠陥になることを突き止め、割れ発生
とスラブ中のS量との間に密接な相関関係があることを
見い出した。その結果、成分系が特定されたステンレス
鋼においてS含有量を低減することにより、表面性状が
改善されることが判った。以下、本発明の非磁性ステン
レス鋼に含まれる合金元素及びその含有量を説明する。 C:0.08重量%以下 マトリックスに固溶して材質を硬化させる作用が強く、
オーステナイト相を安定化し、且つバネ特性を向上させ
る上で、有効な合金元素である。しかし、0.08重量
%を超えて多量のCが含まれると、耐食性が低下する。
The present inventors investigated and studied the influence of alloying elements, cold rolling and heat treatment on the spring characteristics of Cr-Ni austenitic stainless steel from a wide range of viewpoints. As a result, when controlling the rolling temperature and rolling rate of cold rolling to be applied to the stainless steel in which the alloying elements and their contents are specified,
It has been found that the target strength and toughness are maintained. Further, it was found that cracks generated during hot rolling become mountain-shaped surface defects in the coil after hot rolling, and it was found that there is a close correlation between the occurrence of cracks and the amount of S in the slab. As a result, it has been found that the surface texture is improved by reducing the S content in the stainless steel whose component system is specified. Hereinafter, alloying elements contained in the non-magnetic stainless steel of the present invention and their contents will be described. C: 0.08% by weight or less Strongly acts as a solid solution in the matrix to cure the material,
It is an effective alloying element for stabilizing the austenite phase and improving the spring characteristics. However, when a large amount of C is contained in excess of 0.08% by weight, the corrosion resistance decreases.

【0009】Si:3.0重量%以下 高強度を得る上で、有効な合金元素である。しかし、S
i含有量の増加に伴って、冷間加工後の透磁率が急激に
上昇する。その結果、非磁性を維持できなくなる。この
点で、Si含有量の上限を3.0重量%に設定した。 Mn:2.0重量%以下 Niと同様にオーステナイト相を安定化させる作用を呈
し、冷間加工による透磁率の上昇を抑制する。しかし、
2.0重量%を超える多量のMnを含有させると、製鋼
段階における製造性等が劣化し、生産コストが上昇す
る。
Si: 3.0 wt% or less It is an effective alloying element for obtaining high strength. But S
As the i content increases, the magnetic permeability after cold working sharply increases. As a result, non-magnetism cannot be maintained. At this point, the upper limit of the Si content was set to 3.0% by weight. Mn: 2.0 wt% or less Similar to Ni, it exhibits an action of stabilizing the austenite phase and suppresses an increase in magnetic permeability due to cold working. But,
When a large amount of Mn exceeding 2.0% by weight is contained, the manufacturability and the like in the steelmaking stage deteriorates and the production cost rises.

【0010】S:0.003重量%以下 熱間加工性を低下させ、熱間圧延中のスラブ表面に微小
な割れを発生させる有害元素である。発生した微小な割
れは、熱間圧延後のコイル表面に山形状の疵やヘゲ状の
表面疵となって現れる。これらの表面疵は、γ粒界にS
が偏析し、粒界の割れ感受性を高めることによって発生
するものと考えられる。たとえば、C:0.02〜0.
08重量%,Si:0.5〜3.0重量%,Mn:0.
5〜2.0重量%,S:0.0005〜0.009重量
%,Ni:8.5〜12.0重量%及びN:0.1〜
0.25重量%の範囲で合金成分を含む種々の鋼を12
30℃に加熱した後、熱間圧延し、ホットコイルに発生
したヘゲ疵の個数をS含有量との関係でみると、図1に
示した関係が成立していた。図1に示すように、S含有
量の低減に応じてヘゲ疵が減少する。このことから、S
含有量は低いほど好ましいが、経済的な理由からS含有
量の上限を0.003重量%未満、好ましくは0.00
2重量%に設定した。
S: 0.003% by weight or less This is a harmful element that deteriorates hot workability and causes minute cracks on the surface of the slab during hot rolling. The generated minute cracks appear as mountain-shaped flaws or whisker-like surface flaws on the coil surface after hot rolling. These surface defects are S in the γ grain boundary.
Is considered to be generated by segregation and increase the crack susceptibility of grain boundaries. For example, C: 0.02 to 0.
08% by weight, Si: 0.5 to 3.0% by weight, Mn: 0.
5 to 2.0 wt%, S: 0.0005 to 0.009 wt%, Ni: 8.5 to 12.0 wt% and N: 0.1
12 various steels containing alloying components in the range of 0.25% by weight
After heating to 30 ° C. and hot rolling, the number of bald spots generated in the hot coil was compared with the S content, and the relationship shown in FIG. 1 was established. As shown in FIG. 1, the bald defects are reduced as the S content is reduced. From this, S
The lower the content, the better, but for economic reasons, the upper limit of the S content is less than 0.003% by weight, preferably 0.00
It was set to 2% by weight.

【0011】Ni:9.5〜11.5重量% オーステナイト相を安定化させる上で、必須の合金成分
である。冷間加工後に透磁率μ1.05以下の非磁性を
確保するためには、9.5重量%以上のNiを含有させ
ることが必要である。しかし、11.5重量%を超えて
高価なNiを多量に含有させることは、コストの上昇を
招き、安価なオーステナイト系ステンレス鋼を提供でき
なくなる。 Cr:16.0〜20.0重量% ステンレス鋼の基本成分であり、優れた耐食性を得る上
で16.0重量%以上のCr含有が必要である。しか
し、20.0重量%を超える多量のCrが含有される
と、多量のδフェライトが生成し、非磁性が確保できな
くなる。
Ni: 9.5 to 11.5% by weight It is an essential alloying component for stabilizing the austenite phase. In order to ensure non-magnetism with a magnetic permeability of μ1.05 or less after cold working, it is necessary to contain 9.5 wt% or more of Ni. However, containing a large amount of expensive Ni in excess of 11.5% by weight causes an increase in cost and makes it impossible to provide an inexpensive austenitic stainless steel. Cr: 16.0 to 20.0% by weight It is a basic component of stainless steel, and in order to obtain excellent corrosion resistance, it is necessary to contain 16.0% by weight or more of Cr. However, when a large amount of Cr exceeding 20.0% by weight is contained, a large amount of δ ferrite is generated, and it becomes impossible to secure non-magnetism.

【0012】N:0.1〜0.25重量% オーステナイト系ステンレス鋼の硬度及び強度を向上さ
せる作用を呈すると共に、オーステナイト相を安定化さ
せる合金元素である。これらの作用は、0.10重量%
以上のN含有量で顕著に現れる。しかし、0.25重量
%を超える多量のNが含まれると、ブローホールが発生
し易くなり、健全な鋼塊が得られ難くなる。本発明の非
磁性ステンレス鋼は、更にCu,Mo,B,Al,C
a,希土類元素及びYのうちの1種又は2種以上を必要
に応じて含むことができる。これら任意成分の作用は、
次の通りである。 Cu:1.0重量%以下 オーステナイト相の安定化に寄与し、冷間加工後の非磁
性を維持する。しかし、1.0重量%を超える多量のC
uを含有すると、溶接時の高温割れ感受性が高くなる。
N: 0.1 to 0.25% by weight It is an alloying element which has an effect of improving the hardness and strength of austenitic stainless steel and stabilizes the austenitic phase. These effects are 0.10% by weight
The above N content remarkably appears. However, when a large amount of N exceeding 0.25% by weight is contained, blowholes are likely to occur and it becomes difficult to obtain a sound steel ingot. The non-magnetic stainless steel of the present invention further comprises Cu, Mo, B, Al and C.
One or two or more of a, a rare earth element, and Y can be contained if necessary. The action of these optional components is
It is as follows. Cu: 1.0 wt% or less Contributes to the stabilization of the austenite phase and maintains non-magnetic properties after cold working. However, a large amount of C exceeding 1.0% by weight
When u is contained, the hot cracking susceptibility during welding becomes high.

【0013】Mo:3.0重量%以下 時効処理後の硬さを著しく高め、耐食性の改善にも有効
に働く。しかし、3.0重量%を超える多量のMoが含
まれると、δフェライトの生成量が多くなり、非磁性を
維持できなくなる。 B:0.010重量%以下 靭性を向上させると共に、熱間加工性の改善に顕著な効
果を発揮する。しかし、0.010重量%を超えるB含
有は、多量の析出物が生成する原因となり、靭性を劣化
させる。 Al:0.10重量%以下 脱酸剤として有効な元素である。しかし、鋼中に多量に
残存するほど添加すると、介在物を形成し、疲労強度を
著しく低下させる。この点で、Al含有量の上限を0.
10重量%に設定した。
Mo: 3.0% by weight or less The hardness after aging treatment is remarkably increased, and it also works effectively for improving the corrosion resistance. However, if a large amount of Mo exceeding 3.0% by weight is contained, the amount of δ ferrite produced increases, and it becomes impossible to maintain non-magnetism. B: 0.010 wt% or less Not only does it improve toughness, but also exerts a remarkable effect in improving hot workability. However, if the content of B exceeds 0.010% by weight, a large amount of precipitates are generated and the toughness deteriorates. Al: 0.10 wt% or less It is an element effective as a deoxidizing agent. However, if it is added so as to remain in the steel in a large amount, inclusions are formed and the fatigue strength is significantly reduced. In this respect, the upper limit of the Al content is set to 0.
It was set to 10% by weight.

【0014】Ca:0.050重量%以下 靭性を向上させると共に、熱間加工性の改善に顕著な効
果を発揮する。しかし、0.050重量%を超えるCa
含有は、多量の析出物が生成する原因となり、靭性を劣
化させる。 希土類元素:0.050重量%以下 靭性を向上させると共に、熱間加工性の改善に顕著な効
果を発揮する。しかし、0.050重量%を超えて希土
類元素を含有させると、多量の析出物が生成する原因と
なり、靭性を劣化させる。 Y:0.030重量%以下 希土類元素と同様に靭性を向上させると共に、熱間加工
性の改善に顕著な効果を発揮する。しかし、0.030
重量%を超えて希土類元素を含有させると、多量の析出
物が生成する原因となり、靭性を劣化させる。
Ca: 0.050 wt% or less Not only does it improve the toughness, but also exerts a remarkable effect in improving the hot workability. However, Ca exceeding 0.050% by weight
The inclusion causes the formation of a large amount of precipitates and deteriorates the toughness. Rare earth element: 0.050 wt% or less Not only does it improve toughness, but also exerts a remarkable effect in improving hot workability. However, if the rare earth element is contained in an amount of more than 0.050% by weight, a large amount of precipitates will be generated and the toughness will be deteriorated. Y: 0.030% by weight or less Not only does the toughness be improved as in the case of the rare earth element, but also exhibits a remarkable effect in improving the hot workability. But 0.030
If the rare earth element is contained in an amount of more than wt%, a large amount of precipitates will be generated, and the toughness will be deteriorated.

【0015】X:14.5〜19.0 式(1)で定義される非磁性安定指数Xは、本発明者等
による実験結果から導き出された指標である。本発明が
対象とするSi,N及びMnを含有させて成分調整した
オーステナイト系ステンレス鋼は、冷間加工し、或いは
更に熱処理を施すことにより、高硬度、すなわち高強度
が得られると共に、透磁率が上昇する。非磁性安定指数
Xは、このような材料の硬さと透磁率の指標として使用
される。非磁性安定指数Xが大きいほど、冷間加工後で
得られる鋼材の透磁率及びビッカース硬度が低くなる。
HV380以上の硬さをもつ比較的安価なオーステナイ
ト系ステンレス鋼を得る上からNi含有量が制限されて
いる本発明の成分系においては、X≦19.0が必要と
なる。しかし、非磁性安定指数Xが14.5未満になる
と、δフェライトが生成し易くなり、冷間圧延後に透磁
率μ1.05以下の非磁性が安定して得られ難くなる。
X: 14.5 to 19.0 The nonmagnetic stability index X defined by the equation (1) is an index derived from the experimental results by the present inventors. The austenitic stainless steel whose composition is adjusted by containing Si, N, and Mn, which is the object of the present invention, can obtain high hardness, that is, high strength, as well as permeability by cold working or further heat treatment. Rises. The nonmagnetic stability index X is used as an index of hardness and magnetic permeability of such a material. The larger the non-magnetic stability index X, the lower the magnetic permeability and Vickers hardness of the steel material obtained after cold working.
In order to obtain a relatively inexpensive austenitic stainless steel having a hardness of HV 380 or higher, X ≦ 19.0 is required in the component system of the present invention in which the Ni content is limited. However, if the non-magnetic stability index X is less than 14.5, δ ferrite is likely to be generated, and it becomes difficult to stably obtain non-magnetism having a magnetic permeability of μ1.05 or less after cold rolling.

【0016】冷間圧延の圧延率:40〜70% 仕上げ焼鈍材に施す冷間圧延は、ビッカース硬さでHV
380以上を得るために、40〜70%の圧延率で行わ
れる。圧延率が40%未満では、必要とする強度が得ら
れない。逆に70%を超える圧延率では、圧延率の上昇
に見合った硬度の上昇がほとんどみられず、却って冷間
圧延後の形状及び成形性が劣化する傾向が現れる。 冷間圧延時の材料温度:40〜180℃ オーステナイト相が安定で、冷間圧延を施しても非磁性
が得られる成分系のステンレス鋼を冷間圧延するとき、
圧延中に材料温度が上昇することに起因して必要とする
強度が得られないことがある。本発明においては、圧延
中の材料温度を40〜180℃の範囲に維持することに
より、安定して高い強度を得ている。特に、高強度を発
現させるためには、冷間圧延率が低いほど材料温度を低
く設定する。
Cold rolling reduction rate: 40 to 70% The cold rolling applied to the finish annealed material is HV with Vickers hardness.
In order to obtain 380 or more, the rolling rate is 40 to 70%. If the rolling ratio is less than 40%, the required strength cannot be obtained. On the other hand, when the rolling ratio exceeds 70%, the hardness hardly increases in proportion to the increase in the rolling ratio, and rather, the shape and formability after cold rolling tend to deteriorate. Material temperature during cold rolling: 40 to 180 ° C. When austenite phase is stable and cold-rolled component stainless steel that is non-magnetic even if cold rolled is obtained,
The required strength may not be obtained due to an increase in material temperature during rolling. In the present invention, by maintaining the material temperature during rolling within the range of 40 to 180 ° C, stable and high strength is obtained. In particular, in order to develop high strength, the lower the cold rolling rate, the lower the material temperature is set.

【0017】時効処理:冷間圧延されたステンレス鋼に
1時間以内の時効処理を施すと、より高い強度が得られ
る。しかし、時効処理温度が600℃を超えると、強度
が低下する傾向がみられる。時効処理温度の下限は、特
に規定されるものではない。しかし、硬度を必要レベル
まで上昇させるためには、低温ほど長時間の熱処理が必
要とされる。したがって、実操業面では、300〜60
0℃の範囲で時効処理を行うことが好ましい。
Aging treatment: When cold-rolled stainless steel is subjected to an aging treatment within 1 hour, higher strength can be obtained. However, when the aging temperature exceeds 600 ° C, the strength tends to decrease. The lower limit of the aging treatment temperature is not particularly specified. However, in order to raise the hardness to the required level, a lower temperature requires a longer heat treatment. Therefore, in actual operation, 300 to 60
Aging treatment is preferably performed in the range of 0 ° C.

【0018】[0018]

【実施例】本実施例で使用したステンレス鋼の成分を、
表1に示す。表1において、Bグループが本発明で規定
した要件を満足するステンレス鋼である。Aグループは
従来の材料であり、A1がSUS304,A2がSUS
316である。Cグループは、個々の合金成分及び含有
量に関しては本発明で規定した要件を満足するものの、
非磁性安定指数Xが本発明範囲を外れる鋼である。
EXAMPLES The components of the stainless steel used in this example are
It shows in Table 1. In Table 1, Group B is a stainless steel that satisfies the requirements specified in the present invention. Group A is a conventional material, A1 is SUS304, A2 is SUS304
316. Although the group C satisfies the requirements stipulated in the present invention with respect to individual alloy components and contents,
A steel having a non-magnetic stability index X outside the range of the present invention.

【0019】[0019]

【表1】 [Table 1]

【0020】各ステンレス鋼を30kg高周波誘導溶解
炉で溶製し、熱間圧延により板厚10mm及び板幅10
0mmの熱延板とした。熱延板に1050℃に5分間保
持する均熱処理を施した後、圧延率0〜80%で冷間圧
延した。一部の鋼については、実ラインで熱間圧延及び
冷間圧延した。また、一部の供試材については、時効処
理を施した。このときの冷間圧延及び熱処理の条件を表
2に示す。なお、表2における製造法Dは本発明法、同
Eは比較法を示す。
Each stainless steel was melted in a high-frequency induction melting furnace of 30 kg, and hot rolled to obtain a plate thickness of 10 mm and a plate width of 10 mm.
It was a 0 mm hot rolled plate. The hot-rolled sheet was soaked at 1050 ° C. for 5 minutes, and then cold-rolled at a rolling rate of 0 to 80%. Some steels were hot-rolled and cold-rolled in a real line. Also, some of the test materials were subjected to an aging treatment. Table 2 shows the conditions of cold rolling and heat treatment at this time. In Table 2, the production method D is the method of the present invention, and the production method E is the comparison method.

【0021】[0021]

【表2】 [Table 2]

【0022】焼鈍・酸洗後の冷延板についてヘゲ疵の発
生状況を調査した。ヘゲ疵が多発したものを1,ヘゲ疵
が発生したものを2,ヘゲ疵が僅かに発生したものを
3,ヘゲ疵が発生しなかったものを4として、表面性状
を4段階評価した。また、得られた冷延板から試験片を
切り出し、ビッカース硬さ(HV)を測定した。更に、
磁気天秤を使用し1000エルステッドの磁場の下で、
各試験片の透磁率を測定した。これらの調査結果を表3
に示す。
Occurrence of bald spots was investigated on the cold-rolled sheet after annealing and pickling. There are 4 levels of surface texture, with 1 having frequent bald defects, 2 having blistering defects, 3 having slight blistering defects, and 4 having no blistering defects. evaluated. Further, a test piece was cut out from the obtained cold-rolled sheet and the Vickers hardness (HV) was measured. Furthermore,
Using a magnetic balance, under a magnetic field of 1000 Oersted,
The magnetic permeability of each test piece was measured. Table 3 shows the results of these surveys.
Shown in.

【0023】[0023]

【表3】 [Table 3]

【0024】表3から明らかなように、従来鋼であるA
1及びA2に本発明法を適用して製造した従来鋼A1
は、冷間圧延によって透磁率が急激に上昇し、非磁性鋼
として使用できなかった。同じく従来鋼A2は、圧延率
70%で冷間圧延しても非磁性鋼としての透磁率が確保
されているものの、得られる硬さがHV380を満たさ
なかった。これに対し、本発明法に従って製造されたB
グループの本発明鋼は、冷間圧延後も透磁率が1.05
以下となっており、冷間圧延後のオーステナイト相は安
定であった。また、冷間圧延後のビッカース硬さは、H
V380以上であり、非磁性及び強度の双方に優れてい
ることが判った。ヘゲ疵についてみると、S含有量が本
発明範囲を外れる比較鋼C1及びC2では、冷間圧延後
のコイル表面にヘゲ疵が発生しており、歩留り低下の原
因となった。他方、S含有量が0.003重量%未満に
規制されたBグループの本発明鋼では、ヘゲ疵の発生傾
向が著しく改善されていた。なかでも、S含有量が0.
002重量%以下であるB6〜B11の鋼は、ヘゲ疵の
発生が皆無であった。また、B,希土類元素,Ca,Y
等を添加した鋼は、S含有量が0.002〜0.002
9重量%の範囲にあっても、S含有量0.002重量%
以下の鋼と同様にヘゲ疵の発生がみられなかった。
As is clear from Table 3, the conventional steel A
Conventional steel A1 manufactured by applying the method of the present invention to A1 and A2
The magnetic permeability rapidly increased due to cold rolling and could not be used as non-magnetic steel. Similarly, in the conventional steel A2, although the magnetic permeability as a non-magnetic steel was secured even when cold-rolled at a rolling rate of 70%, the obtained hardness did not satisfy HV380. In contrast, B produced according to the method of the present invention
The invention steels of the group have a magnetic permeability of 1.05 even after cold rolling.
Below, the austenite phase after cold rolling was stable. The Vickers hardness after cold rolling is H
It was V380 or more, and it was found that both the non-magnetic property and the strength were excellent. Regarding bald defects, comparative steels C1 and C2 having an S content outside the range of the present invention had bald defects on the coil surface after cold rolling, which caused a decrease in yield. On the other hand, in the B group steels of the present invention in which the S content was regulated to less than 0.003% by weight, the tendency of occurrence of bald defects was remarkably improved. Among them, the S content is 0.
The steels of B6 to B11 with 002% by weight or less did not have any bald defects. Also, B, rare earth elements, Ca, Y
The steel containing S and the like has an S content of 0.002 to 0.002.
S content of 0.002% by weight even within the range of 9% by weight
As with the following steels, no bald spots were observed.

【0025】成分的に本発明範囲を満足する鋼であって
も、表2及び図2の比較法にみられるように、圧延率が
70%を超える冷間圧延を本発明鋼B1に施した場合、
透磁率が1.05を超えていた。逆に圧延率30%未満
の冷間圧延では、550℃に30分間加熱する熱処理を
施しても、ビッカース硬さがHV340程度に過ぎず、
目標とするHV380を大きく下回っていた。冷間圧延
時の材料温度は、図3に示すように、冷間圧延した鋼材
に時効処理を施した後の硬さに影響を与えた。目標とす
るビッカース硬さHV380以上を得るためには、冷間
圧延時の材料温度を40〜180℃に維持し、圧延率4
0%以上で冷間圧延する必要があることが図3から判
る。更に、本発明鋼B2に本発明範囲の冷間圧延を付与
しても、本発明範囲を外れる700℃×1時間の熱処理
を冷間圧延後に施したものでは、ビッカース硬さがHV
362と著しく低下し、目標値HV380に達しなかっ
た。
Even if the steel compositionally satisfies the scope of the present invention, the steel B1 of the present invention was cold-rolled at a rolling ratio of more than 70% as shown in the comparison method of Table 2 and FIG. If
The magnetic permeability exceeded 1.05. On the contrary, in cold rolling with a rolling ratio of less than 30%, even if the heat treatment of heating at 550 ° C. for 30 minutes is performed, the Vickers hardness is only about HV340,
It was well below the target HV380. As shown in FIG. 3, the material temperature during cold rolling affected the hardness after aging treatment of the cold rolled steel material. In order to obtain the target Vickers hardness HV380 or higher, the material temperature during cold rolling is maintained at 40 to 180 ° C., and the rolling ratio is 4
It can be seen from FIG. 3 that cold rolling needs to be performed at 0% or more. Further, even if the present invention steel B2 is subjected to cold rolling within the range of the present invention, the Vickers hardness of HV is HV when subjected to heat treatment of 700 ° C. × 1 hour outside the range of the present invention after cold rolling.
It fell significantly to 362 and did not reach the target value HV380.

【0026】非磁性安定指数Xが本発明範囲を下回る比
較鋼C1では、低い透磁率が期待できる下限値40%の
圧延率及び上限値180℃の材料温度で冷間圧延した場
合でも、冷間圧延後の透磁率が1.05を超えていた。
また、非磁性安定指数Xが本発明範囲を超える比較鋼C
2では、硬さの上昇が期待できる上限値70%の圧延率
及び下限値40℃の材料温度で冷間圧延し、500℃に
1時間加熱する熱処理を施しても、熱処理後の硬さはH
V380に満たなかった。以上の対比から明らかなよう
に、成分的に本発明で規定した範囲を満足する鋼に対
し、本発明範囲の冷間圧延及び時効処理を施したもので
は、ビッカース硬さHV380以上及び透磁率μ1.0
5以下の非磁性ステンレス鋼を安定して得ることができ
た。
In the comparative steel C1 having the non-magnetic stability index X below the range of the present invention, even when cold rolling was performed at a rolling rate of 40% lower limit and a material temperature of 180 ° C. upper limit, which can be expected to have low magnetic permeability, cold rolling was performed. The magnetic permeability after rolling exceeded 1.05.
Comparative steel C having a non-magnetic stability index X exceeding the range of the present invention
In No. 2, even if the material is cold-rolled at a rolling rate of 70% with an upper limit of 40% and a material temperature of 40 ° C as a lower limit, which is expected to increase in hardness, and the heat treatment of heating at 500 ° C for 1 hour is performed, the hardness after the heat treatment is H
It was less than V380. As is clear from the above comparison, in the case where the steel compositionally satisfying the range specified in the present invention is subjected to cold rolling and aging treatment within the range of the present invention, Vickers hardness HV380 or more and magnetic permeability μ1 .0
A non-magnetic stainless steel of 5 or less could be stably obtained.

【0027】[0027]

【発明の効果】以上に説明したように、本発明において
は、合金成分を特定した条件下で組み合わせ、更に冷間
圧延条件及び時効処理条件を制御することにより、ビッ
カース硬さHV380以上及び透磁率μ1.05以下の
非磁性ステンレス鋼が安定して得られる。この非磁性ス
テンレス鋼は、表面性状に優れた安価で高強度の材料で
あり、特に強磁場中で皿バネ,座金等として使用され
る。
As described above, in the present invention, the alloy components are combined under the specified conditions, and the cold rolling condition and the aging treatment condition are controlled, whereby the Vickers hardness HV380 or more and the magnetic permeability are obtained. A non-magnetic stainless steel having a μ of 1.05 or less can be stably obtained. This non-magnetic stainless steel is an inexpensive and high-strength material having excellent surface properties, and is used as a disc spring, a washer, etc., especially in a strong magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】 S含有量とヘゲ疵の関係を示すグラフFIG. 1 is a graph showing the relationship between S content and bald spots.

【図2】 冷間圧延の圧延率が透磁率に与える影響を示
したグラフ
FIG. 2 is a graph showing the effect of cold rolling reduction on magnetic permeability.

【図3】 冷間圧延時の圧延率及び材料温度が時効処理
後の硬さに与える影響を示したグラフ
FIG. 3 is a graph showing the influence of the rolling ratio and material temperature during cold rolling on the hardness after aging treatment.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 C:0.08重量%以下,Si:3.0
重量%以下,Mn:2.0重量%以下,S:0.003
重量%未満,Ni:9.5〜11.5重量%,Cr:1
6.0〜20.0重量%及びN:0.1〜0.25重量
%を含み、式(1)で定義される非磁性安定指数Xが1
4.5〜19.0の範囲にあり、且つ透磁率μが1.0
5以下である表面性状に優れた非磁性ステンレス鋼。 X=Ni+0.60×Mn+9.69×(C+N) +0.18×Cr−0.11Si2 ・・・・(1)
1. C: 0.08 wt% or less, Si: 3.0
Wt% or less, Mn: 2.0 wt% or less, S: 0.003
Less than wt%, Ni: 9.5 to 11.5 wt%, Cr: 1
The nonmagnetic stability index X defined by the formula (1) is 1 including 6.0 to 20.0% by weight and N: 0.1 to 0.25% by weight.
It is in the range of 4.5 to 19.0 and the magnetic permeability μ is 1.0.
A non-magnetic stainless steel with excellent surface properties of 5 or less. X = Ni + 0.60 × Mn + 9.69 × (C + N) + 0.18 × Cr-0.11Si 2 ···· (1)
【請求項2】 C:0.08重量%以下,Si:3.0
重量%以下,Mn:2.0重量%以下,S:0.003
重量%未満,Ni:9.5〜11.5重量%,Cr:1
6.0〜20.0重量%及びN:0.1〜0.25重量
%を含み、更にCu:1.0重量%以下,Mo:3.0
重量%以下,B:0.010重量%以下,Al:0.1
0重量%以下,Ca:0.050重量%以下,希土類元
素:0.050重量%以下及びY:0.030重量%以
下のうちの1種又は2種以上を含み、式(1)で定義さ
れる非磁性安定指数Xが14.5〜19.0の範囲にあ
り、且つ透磁率μが1.05以下である表面性状に優れ
た非磁性ステンレス鋼。 X=Ni+0.60×Mn+9.69×(C+N) +0.18×Cr−0.11Si2 ・・・・(1)
2. C: 0.08 wt% or less, Si: 3.0
Wt% or less, Mn: 2.0 wt% or less, S: 0.003
Less than wt%, Ni: 9.5 to 11.5 wt%, Cr: 1
6.0 to 20.0 wt% and N: 0.1 to 0.25 wt%, further Cu: 1.0 wt% or less, Mo: 3.0
Wt% or less, B: 0.010 wt% or less, Al: 0.1
0% by weight or less, Ca: 0.050% by weight or less, rare earth element: 0.050% by weight or less, and Y: 0.030% by weight or less, including one or more types and defined by the formula (1). A non-magnetic stainless steel having an excellent non-magnetic stability index X in the range of 14.5 to 19.0 and a magnetic permeability μ of 1.05 or less. X = Ni + 0.60 × Mn + 9.69 × (C + N) + 0.18 × Cr-0.11Si 2 ···· (1)
【請求項3】 C:0.08重量%以下,Si:3.0
重量%以下,Mn:2.0重量%以下,S:0.003
重量%未満,Ni:9.5〜11.5重量%,Cr:1
6.0〜20.0重量%及びN:0.1〜0.25重量
%を含み、式(1)で定義される非磁性安定指数Xが1
4.5〜19.0の範囲にあるステンレス鋼に、材料温
度を40〜180℃の範囲に維持しながら圧延率40〜
70%の冷間圧延を施すことを特徴とする硬度HV38
0以上で透磁率μ1.05以下の表面性状に優れた非磁
性ステンレス鋼の製造方法。 X=Ni+0.60×Mn+9.69×(C+N) +0.18×Cr−0.11Si2 ・・・・(1)
3. C: 0.08 wt% or less, Si: 3.0
Wt% or less, Mn: 2.0 wt% or less, S: 0.003
Less than wt%, Ni: 9.5 to 11.5 wt%, Cr: 1
The nonmagnetic stability index X defined by the formula (1) is 1 including 6.0 to 20.0% by weight and N: 0.1 to 0.25% by weight.
For stainless steel in the range of 4.5 to 19.0, rolling rate 40 to 40 while maintaining the material temperature in the range of 40 to 180 ° C.
Hardness HV38 characterized by 70% cold rolling
A method for producing non-magnetic stainless steel having a surface property of 0 or more and a permeability of μ1.05 or less. X = Ni + 0.60 × Mn + 9.69 × (C + N) + 0.18 × Cr-0.11Si 2 ···· (1)
【請求項4】 請求項3記載の冷間圧延後に、600℃
以下の温度に1時間以内保持する時効処理を施す非磁性
ステンレス鋼の製造方法。
4. After the cold rolling according to claim 3, 600 ° C.
A method for producing a non-magnetic stainless steel, which is subjected to an aging treatment in which the temperature is maintained at the temperature below for 1 hour.
【請求項5】 C:0.08重量%以下,Si:3.0
重量%以下,Mn:2.0重量%以下,S:0.003
重量%未満,Ni:9.5〜11.5重量%,Cr:1
6.0〜20.0重量%及びN:0.1〜0.25重量
%を含み、更にCu:1.0重量%以下,Mo:3.0
重量%以下,B:0.010重量%以下,Al:0.1
0重量%以下,Ca:0.050重量%以下,希土類元
素:0.050重量%以下及びY:0.030重量%以
下のうちの1種又は2種以上を含み、式(1)で定義さ
れる非磁性安定指数Xが14.5〜19.0の範囲にあ
るステンレス鋼に、材料温度を40〜180℃の範囲に
維持しながら圧延率40〜70%の冷間圧延を施すこと
を特徴とする硬度HV380以上で透磁率μ1.05以
下の表面性状に優れた非磁性ステンレス鋼の製造方法。 X=Ni+0.60×Mn+9.69×(C+N) +0.18×Cr−0.11Si2 ・・・・(1)
5. C: 0.08 wt% or less, Si: 3.0
Wt% or less, Mn: 2.0 wt% or less, S: 0.003
Less than wt%, Ni: 9.5 to 11.5 wt%, Cr: 1
6.0 to 20.0 wt% and N: 0.1 to 0.25 wt%, further Cu: 1.0 wt% or less, Mo: 3.0
Wt% or less, B: 0.010 wt% or less, Al: 0.1
0% by weight or less, Ca: 0.050% by weight or less, rare earth element: 0.050% by weight or less, and Y: 0.030% by weight or less, including one or more types and defined by the formula (1). The non-magnetic stability index X is subjected to cold rolling at a rolling rate of 40 to 70% while maintaining the material temperature in the range of 40 to 180 ° C. A method for producing a non-magnetic stainless steel having a hardness HV of 380 or more and a magnetic permeability of μ1.05 or less and having excellent surface properties. X = Ni + 0.60 × Mn + 9.69 × (C + N) + 0.18 × Cr-0.11Si 2 ···· (1)
【請求項6】 請求項5記載の冷間圧延後に、600℃
以下の温度に1時間以内保持する時効処理を施す非磁性
ステンレス鋼の製造方法。
6. After the cold rolling according to claim 5, 600 ° C.
A method for producing a non-magnetic stainless steel, which is subjected to an aging treatment in which the temperature is maintained at the temperature below for 1 hour.
JP25989693A 1993-10-18 1993-10-18 Nonmagnetic stainless steel excellent in surface property and production thereof Pending JPH07113144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25989693A JPH07113144A (en) 1993-10-18 1993-10-18 Nonmagnetic stainless steel excellent in surface property and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25989693A JPH07113144A (en) 1993-10-18 1993-10-18 Nonmagnetic stainless steel excellent in surface property and production thereof

Publications (1)

Publication Number Publication Date
JPH07113144A true JPH07113144A (en) 1995-05-02

Family

ID=17340447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25989693A Pending JPH07113144A (en) 1993-10-18 1993-10-18 Nonmagnetic stainless steel excellent in surface property and production thereof

Country Status (1)

Country Link
JP (1) JPH07113144A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469093A1 (en) * 2002-01-24 2004-10-20 Sumitomo Electric Industries, Ltd. Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring
FR2864108A1 (en) * 2003-12-22 2005-06-24 Ugine Et Alz France Stainless steel with high mechanical strength and good elongation with an austenitic microstructure and limited martensite pockets for the fabrication of motor vehicle structural components
JP2012211348A (en) * 2011-03-18 2012-11-01 Sumitomo Metal Ind Ltd Cold-rolled stainless steel sheet excellent in high temperature settling resistance, and manufacturing method therefor
WO2019112144A1 (en) * 2017-12-06 2019-06-13 주식회사 포스코 Non-magnetic austenitic stainless steel having excellent corrosion resistance and manufacturing method therefor
KR20200054779A (en) * 2018-11-12 2020-05-20 주식회사 포스코 Non-magnetic austenitic stainless steel and manufacturing method thereof
KR20200055605A (en) * 2018-11-13 2020-05-21 주식회사 포스코 High strength non-magnetic austenitic stainless steel and manufacturing method thereof
WO2021045358A1 (en) * 2019-09-06 2021-03-11 주식회사 포스코 High-strength non-magnetic austenitic stainless steel
KR20220089276A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same
WO2022145539A1 (en) * 2020-12-30 2022-07-07 주식회사 포스코 Nonmagnetic austenitic stainless steel
CN115125378A (en) * 2022-06-20 2022-09-30 江苏康瑞新材料科技股份有限公司 Method for processing high-strength low-magnetic-permeability bar
CN116096934A (en) * 2020-08-31 2023-05-09 浦项股份有限公司 Austenitic stainless steel with improved deep drawability
EP4249623A4 (en) * 2020-11-23 2024-10-16 POSCO Co., Ltd HIGH STRENGTH AUSTENITIC STAINLESS STEEL WITH EXCELLENT HOT WORKABILITY

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469093A1 (en) * 2002-01-24 2004-10-20 Sumitomo Electric Industries, Ltd. Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring
EP1469093A4 (en) * 2002-01-24 2005-03-23 Sumitomo Electric Industries STEEL WIRE FOR THERMOR-RESISTANT SPRINGS, HEAT-RESTORING SPRINGS, AND METHOD FOR PRODUCING HEAT-RESISTANT SPRINGS
US7404865B2 (en) 2002-01-24 2008-07-29 Sumitomo Electric Industries, Ltd. Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring
FR2864108A1 (en) * 2003-12-22 2005-06-24 Ugine Et Alz France Stainless steel with high mechanical strength and good elongation with an austenitic microstructure and limited martensite pockets for the fabrication of motor vehicle structural components
JP2012211348A (en) * 2011-03-18 2012-11-01 Sumitomo Metal Ind Ltd Cold-rolled stainless steel sheet excellent in high temperature settling resistance, and manufacturing method therefor
WO2019112144A1 (en) * 2017-12-06 2019-06-13 주식회사 포스코 Non-magnetic austenitic stainless steel having excellent corrosion resistance and manufacturing method therefor
KR20190066737A (en) * 2017-12-06 2019-06-14 주식회사 포스코 Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof
CN111373067A (en) * 2017-12-06 2020-07-03 株式会社Posco Nonmagnetic austenitic stainless steel having excellent corrosion resistance and method for manufacturing same
KR20200054779A (en) * 2018-11-12 2020-05-20 주식회사 포스코 Non-magnetic austenitic stainless steel and manufacturing method thereof
WO2020101227A1 (en) * 2018-11-12 2020-05-22 주식회사 포스코 Nonmagnetic austenitic stainless steel and manufacturing method therefor
EP3865601A4 (en) * 2018-11-12 2022-03-02 Posco Nonmagnetic austenitic stainless steel and manufacturing method therefor
CN113015817A (en) * 2018-11-12 2021-06-22 株式会社Posco Nonmagnetic austenitic stainless steel and method for producing same
US20220010392A1 (en) * 2018-11-12 2022-01-13 Posco Nonmagnetic austenitic stainless steel and manufacturing method therefor
JP2022507339A (en) * 2018-11-12 2022-01-18 ポスコ Non-magnetic austenitic stainless steel and its manufacturing method
KR20200055605A (en) * 2018-11-13 2020-05-21 주식회사 포스코 High strength non-magnetic austenitic stainless steel and manufacturing method thereof
WO2020101226A1 (en) * 2018-11-13 2020-05-22 주식회사 포스코 High-strength nonmagnetic austenitic stainless steel and manufacturing method therefor
US20220018006A1 (en) * 2018-11-13 2022-01-20 Posco High-strength nonmagnetic austenitic stainless steel and manufacturing method therefor
WO2021045358A1 (en) * 2019-09-06 2021-03-11 주식회사 포스코 High-strength non-magnetic austenitic stainless steel
CN116096934A (en) * 2020-08-31 2023-05-09 浦项股份有限公司 Austenitic stainless steel with improved deep drawability
EP4177368A4 (en) * 2020-08-31 2024-04-17 POSCO Co., Ltd Austenitic stainless steel with improved deep drawability
EP4249623A4 (en) * 2020-11-23 2024-10-16 POSCO Co., Ltd HIGH STRENGTH AUSTENITIC STAINLESS STEEL WITH EXCELLENT HOT WORKABILITY
KR20220089276A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same
WO2022139275A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing same
WO2022145539A1 (en) * 2020-12-30 2022-07-07 주식회사 포스코 Nonmagnetic austenitic stainless steel
EP4050119A4 (en) * 2020-12-30 2022-08-31 Posco Nonmagnetic austenitic stainless steel
JP2023517158A (en) * 2020-12-30 2023-04-24 ポスコ カンパニー リミテッド Non-magnetic austenitic stainless steel
CN115125378A (en) * 2022-06-20 2022-09-30 江苏康瑞新材料科技股份有限公司 Method for processing high-strength low-magnetic-permeability bar

Similar Documents

Publication Publication Date Title
KR101177161B1 (en) High-strength electromagnetic steel sheet and process for producing the same
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
EP3034642B1 (en) Martensitic stainless steel having excellent wear resistance and corrosion resistance, and method for producing same
JP2022507339A (en) Non-magnetic austenitic stainless steel and its manufacturing method
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JPH07113144A (en) Nonmagnetic stainless steel excellent in surface property and production thereof
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
KR101979477B1 (en) High-carbon hot rolled steel sheet with excellent hardenability and small in-plane anisotropy and method for manufacturing the same
JP3602201B2 (en) Method for producing high-strength duplex stainless steel strip or steel sheet
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JPH0542493B2 (en)
JP3411767B2 (en) High-strength, high-ductility ferrite single-phase Cr-containing steel sheet and method for producing the same
JP2583694B2 (en) Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance
EP3978643A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
JP3384890B2 (en) Method for producing austenitic stainless steel with excellent surface properties
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP2748843B2 (en) High manganese non-magnetic casting
JP3031816B2 (en) Low decarburized spring steel
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JPH09302445A (en) Ni-containing steel for low temperature and method for producing the same
JP3271791B2 (en) Manufacturing method of non-magnetic stainless steel thick plate
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001