[go: up one dir, main page]

JPH0710233B2 - Immobilized enzyme and method for producing the same - Google Patents

Immobilized enzyme and method for producing the same

Info

Publication number
JPH0710233B2
JPH0710233B2 JP62047400A JP4740087A JPH0710233B2 JP H0710233 B2 JPH0710233 B2 JP H0710233B2 JP 62047400 A JP62047400 A JP 62047400A JP 4740087 A JP4740087 A JP 4740087A JP H0710233 B2 JPH0710233 B2 JP H0710233B2
Authority
JP
Japan
Prior art keywords
lipase
immobilized enzyme
phospholipid
reaction
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62047400A
Other languages
Japanese (ja)
Other versions
JPS63214184A (en
Inventor
秀季 横道
毅 安増
和広 中村
義治 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP62047400A priority Critical patent/JPH0710233B2/en
Publication of JPS63214184A publication Critical patent/JPS63214184A/en
Publication of JPH0710233B2 publication Critical patent/JPH0710233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固定化酵素およびその製造方法に関するもの
である。更に詳しくは、リパーゼによるエステル交換及
びエステル合成反応に適した固定化リパーゼと、その製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to an immobilized enzyme and a method for producing the same. More specifically, it relates to an immobilized lipase suitable for transesterification by lipase and an ester synthesis reaction, and a method for producing the same.

油脂類のエステル交換反応は、マーガリン・ショートニ
ング等の食用加工油脂の改質等に水素添加と並ぶ重要な
技術である。
The transesterification reaction of oils and fats is an important technology along with hydrogenation for reforming edible oils and fats such as margarine and shortening.

エステル類の合成反応は、アルコールと脂肪酸からアル
コール脂肪酸エステルの合成、モノグリセリド、ポリグ
リセリン脂肪酸エステル、糖エステルといった多価アル
コール脂肪酸エステルの合成、ゲラニルブチレイトとい
った香料の製造方法として重要な技術である。
The synthetic reaction of esters is an important technique as a method for synthesizing alcohol fatty acid ester from alcohol and fatty acid, synthesizing polyhydric alcohol fatty acid ester such as monoglyceride, polyglycerin fatty acid ester and sugar ester, and a method for producing fragrance such as geranyl butyrate.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

油脂類およびエステル類のエステル交換およびエステル
合成反応はリパーゼが穏和な条件下で反応する事、位置
選択性、アルキル選択性等の特徴を持つ事を利用してい
る。しかし、これらの反応はリパーゼ本来の加水分解反
応と異なり、水分の限定された系でのみ進みうる反応で
ある。
The transesterification and ester synthesis reactions of oils and fats and esters utilize the fact that lipase has characteristics such as reaction under mild conditions, regioselectivity and alkyl selectivity. However, these reactions are different from the lipase's original hydrolysis reaction and can proceed only in a system with limited water content.

一方、リパーゼのエステル交換およびエステル合成活性
を増大せしめるためには、酵素としてある程度の水分を
必要とする。特開昭55−71797号公報に開示された低水
分系のエステル交換反応では、充分な反応速度が得られ
ず、また反応速度を増大させるために必要以上の水分を
与えると、エステルの分解反応が優先的に進行するとい
う問題点がある。また特開昭60−19495号公報及び特開
昭60−203196号公報に開示されたエステル交換反応を多
水分系の分解工程と、水分を除去する合成工程の二段階
に分けて行う方法の提案もあるが後者の合成反応速度は
通常のエステル交換速度に比して充分であるとは言え
ず、工程操作の複雑化も避けられない。
On the other hand, a certain amount of water is required as an enzyme in order to increase the transesterification and ester synthesis activities of lipase. In the low-moisture-type transesterification reaction disclosed in JP-A-55-71797, a sufficient reaction rate cannot be obtained, and when water is added more than necessary to increase the reaction rate, ester decomposition reaction occurs. However, there is a problem in that Further, a proposal of a method in which the transesterification reaction disclosed in JP-A-60-19495 and JP-A-60-203196 is carried out in two steps, that is, a multi-moisture decomposition step and a synthesis step for removing water However, the latter synthetic reaction rate cannot be said to be sufficient as compared with the usual transesterification rate, and intricate process operation cannot be avoided.

リパーゼによるグリセリドおよびエステル類の合成反応
については、岩井、辻坂らの研究(M.Iwai,Y.Tsujisak
a,J.Fukumoto,J.Gen.Appl.Microbiol.,10,13(1964))
および日本特許第831834号、第1056738号等により知ら
れているが、加水分解作用と合成作用の平衡関係は反応
系内の水分により支配され、水の存在下では大きく分解
に偏り合成率はおのずと小さくなる。この点を解決する
手段として、特開昭57−8787号公報に開示された反応を
可及的に乾燥した系で行い、かつ反応により生成する水
分を系外に排出させるという方法の提案もあるが、低水
分下では酵素の合成活性は極めて小さく、合成率の低下
および反応の長時間化は避けられない。
Regarding the synthesis reaction of glycerides and esters by lipase, Iwai, Tsujisaka et al. (M.Iwai, Y. Tsujisak
a, J.Fukumoto, J.Gen.Appl.Microbiol., 10 , 13 (1964))
And known from Japanese Patent No. 831834, No. 1056738, etc., the equilibrium relationship between the hydrolysis action and the synthesis action is governed by the water content in the reaction system, the synthesis rate biased to the decomposition in the presence of water naturally naturally. Get smaller. As a means for solving this point, there is a proposal of a method disclosed in JP-A-57-8787, in which the reaction is carried out in a system as dry as possible and the water produced by the reaction is discharged to the outside of the system. However, the synthesis activity of the enzyme is extremely low under low water content, and the reduction of the synthesis rate and the long reaction time cannot be avoided.

以上の問題点を解決し、かつリパーゼを効率的に使用す
る目的で、リパーゼを固定化する試みが行われてきた。
リパーゼの固定化により期待される利点は次の通りであ
る。従来、リパーゼを水溶液の状態で使用すると油中に
均一に混合・分散することが困難であったが、リパーゼ
を不溶性担体表面に固定化する事により油中に容易に分
散可能となり、かつ担体に適当量の水分を保持できるた
め、低水分下でのエステル交換および合成反応が容易と
なる。また触媒としてなお高価格であるリパーゼの回収
再使用が容易となり、エステル交換またはエステル合成
反応の工業的実施においても反応装置の連続化等が容易
となる点等である。
For the purpose of solving the above problems and efficiently using lipase, attempts have been made to immobilize lipase.
The advantages expected by immobilization of lipase are as follows. Conventionally, it was difficult to mix and disperse uniformly in oil when using lipase in the form of an aqueous solution, but by immobilizing lipase on the surface of an insoluble carrier, it becomes possible to disperse easily in oil, and to the carrier. Since an appropriate amount of water can be retained, transesterification and synthesis reaction under low water becomes easy. Further, it is easy to recover and reuse lipase, which is still expensive as a catalyst, and it is easy to make the reaction device continuous even in the industrial implementation of transesterification or ester synthesis reaction.

しかし、以上のような利点を有する固定化酵素において
も、リパーゼの合成活性増大のために必要な水分量を保
持する事と、逆反応である加水分解の抑制とを両立する
には至っていない。例えば、Journal of American Oil
Chemist's Soc.,第60巻291-294(1983)にも微量な水分
を与えた場合、加水分解反応が進行することが指摘され
ている。
However, even the immobilized enzyme having the above advantages has not been able to maintain both the amount of water necessary for increasing the lipase synthesis activity and the suppression of hydrolysis, which is a reverse reaction. For example, Journal of American Oil
Chemist's Soc., Volume 60, 291-294 (1983) has also been pointed out that the hydrolysis reaction proceeds when a small amount of water is given.

また、水に代えてグリセリンのような多価アルコールを
添加した場合では加水分解反応はある程度抑制される
が、エステル交換およびエステル合成反応は遅くなる。
また特開昭59-213390号公報に開示された、酵素水分の
保持を狙い、多孔質担体、高吸水性樹脂をキトサンで包
括固定化後、粉砕した担体を用いる方法によってもエス
テル化反応ではなお20時間以上を要し、合成速度は十分
であるとは言えない。
Further, when a polyhydric alcohol such as glycerin is added instead of water, the hydrolysis reaction is suppressed to some extent, but the transesterification and ester synthesis reactions are delayed.
Further, even in the esterification reaction, a method disclosed in JP-A-59-213390 discloses a method in which a porous carrier and a superabsorbent resin are entrapped and immobilized with chitosan for the purpose of retaining enzymatic moisture, and then a crushed carrier is used. It takes more than 20 hours and the synthesis rate is not sufficient.

以上のようにリパーゼによる油脂類のエステル交換およ
びエステル合成反応は、前述の化学的な方法に比べ特徴
的かつ有利な点を持つ反面、未だ解決しなければならな
い多くの問題点があり、工業的に実施するにはこれらの
問題点を解決する必要がある。
As described above, the transesterification of oils and fats by lipase and the ester synthesis reaction have characteristic and advantageous points as compared with the above-mentioned chemical method, but on the other hand, there are many problems to be solved, It is necessary to solve these problems in order to implement.

上記のようにエステル交換反応およびエステル合成反応
においては、固定化酵素の水分を確実にコントロールす
るか、またはよりエステル交換およびエステル合成活性
の高い固定化酵素の開発が望まれる。
In the transesterification reaction and the ester synthesis reaction as described above, it is desired to reliably control the water content of the immobilized enzyme or to develop an immobilized enzyme having a higher transesterification and ester synthesis activity.

エステル交換反応についてみると、水分コントロールに
ついては先に述べた二段階反応(特開昭60−203196号公
報)においても行われているが、装置的に煩雑であるこ
と、また第1段の分解工程において1,2−ジグリセリド
を選択的、高収率で得ることと、更に第2段で1,2−ジ
グリセリドから1,3−ジグリセリドへ転移させることな
く、選択的に目的のトリグリセリドを合成することは難
しい。特に温度が高くなるほどこの転移の悪影響を抑え
る事は難しくなる。
Regarding the transesterification reaction, water control is also carried out in the two-step reaction described above (JP-A-60-203196), but it is complicated in terms of equipment and the first-stage decomposition is carried out. In the process, 1,2-diglyceride is selectively obtained in high yield, and the target triglyceride is selectively synthesized in the second step without transferring from 1,2-diglyceride to 1,3-diglyceride. It's difficult. In particular, it becomes more difficult to suppress the adverse effect of this transition as the temperature rises.

またエステル合成反応についてみると、従来の方法では
ほとんどの例がリパーゼを水溶液として使用しており、
分解と合成の平衡関係が大きく分解にかたよっており、
目的とするエステルの収量は低いものにとどまってい
る。しかし固定化酵素によって反応を行えば、より低水
分条件下においてもエステル合成が行われ、酵素の回収
も容易であるが、この場合においても通常の化学的方法
と同等の反応速度を得るためには、より高活性な固定化
酵素の開発が望まれる。
Regarding the ester synthesis reaction, most of the conventional methods use lipase as an aqueous solution,
The equilibrium relationship between decomposition and synthesis largely depends on decomposition,
The yield of the target ester is low. However, if the reaction is carried out with an immobilized enzyme, ester synthesis is performed even under lower water conditions, and the enzyme can be easily recovered, but even in this case, in order to obtain a reaction rate equivalent to that of a normal chemical method. It is desired to develop a more active immobilized enzyme.

以上のような問題点を解決するため、固定化リパーゼの
エステル合成活性及びエステル交換活性を増加させる方
法が種々検討されてきた。しかし現在迄に、特開昭60−
25188号公報に開示されたリパーゼに油脂を加え加水分
解反応をさせながら固定化を行う方法以外に何も見つか
っていない。
In order to solve the above problems, various methods for increasing the ester synthesis activity and transesterification activity of immobilized lipase have been studied. However, to date
Nothing has been found other than the method disclosed in Japanese Patent No. 25188, in which fats and oils are added to the lipase to carry out a hydrolysis reaction and immobilization.

一方、固定化リパーゼを加水分解に用いた系でも、安定
化効果も含めて僅かにCa塩の添加が知られているにすぎ
ない(J.Am.Oil Chemist's Soc.,61,776-781(198
4))。また、酵素水溶液の状態では、加水分解反応系
として、Ca塩、胆汁酸、各種界面活性剤などを添加する
と活性化作用があることが知られているが、エステル交
換およびエステル合成反応の系については、ほとんど知
られていないのが実状である。
On the other hand, even in a system using immobilized lipase for hydrolysis, addition of a slight amount of Ca salt is also known including a stabilizing effect (J. Am. Oil Chemist's Soc., 61 , 776-781 ( 198
Four)). In addition, it is known that the addition of Ca salt, bile acid, various surfactants, etc. as a hydrolysis reaction system in the state of the aqueous enzyme solution has an activating effect. The fact is that little is known.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者らはリパーゼのエステル交換活性およ
びエステル合成活性を増大させる因子について鋭意研究
を重ねた結果、リパーゼにリン脂質が接触・結合した状
態で、著しいエステル交換およびエステル合成活性の増
大が見られる事を発見した。更に本発明者らはこの事実
をもとに、リン脂質を結合させたリパーゼを種々の不溶
性担体上に固定化する事に応用する事により本発明の完
成に至った。
Therefore, as a result of intensive studies on the factors that increase the transesterification activity and ester synthesis activity of lipase, the present inventors have found that transesterification and ester synthesis activity are significantly increased when phospholipids are in contact with and bound to lipase. I found that I could see it. Based on this fact, the present inventors have completed the present invention by applying the lipase to which phospholipid is bound to various insoluble carriers.

従来、リパーゼとリン脂質との関係については、岩井ら
により1969年の日本化学会において報告がなされて以
来、多くの報告がなされたが、いずれも加水分解反応で
の基質特異性の変化についてか、または発酵生産の安定
化方法についてのみであり、エステル交換およびエステ
ル合成反応での活性化についての報告は見られない。
There have been many reports on the relationship between lipases and phospholipids since Iwai et al. Reported at the Chemical Society of Japan in 1969. , Or only the method for stabilizing the fermentation production, and no report on activation in transesterification and ester synthesis reaction.

また門田則昭らにより1986年4月の日本農芸化学会で報
告された、リン脂質によるミセル内へ酵素を取り込み反
応させる方法がある。さらにこの方法の応用としてのリ
パーゼをW/O(Wは水相、0は油相を意味する。)エマ
ルジョン内へ取り込み、その後このエマルジョンをW/O/
Wのエマルジョンとして固定化し、多価アルコール脂肪
酸エステルの製造を行ったという報告がある。この方法
は一旦W/Oエマルジョンを作り、しかもそのエマルジョ
ン内に酵素を取り込ませ、次いでそのエマルジョンを油
相中で壊れないようにW/O/Wにする。しかも、そのエマ
ルジョン固定化酵素が物理的に不安定なため、光架橋性
樹脂で取り囲むという非常に煩雑な工程を必要とする。
There is also a method reported by Noriaki Kadota et al. At the Japan Society for Agricultural Chemistry in April 1986, in which an enzyme is incorporated into a micelle by a phospholipid to cause a reaction. Further, as an application of this method, lipase is incorporated into a W / O (W means an aqueous phase, 0 means an oil phase) emulsion, and then this emulsion is subjected to W / O /
There is a report that a polyhydric alcohol fatty acid ester was produced by immobilizing it as a W emulsion. This method first creates a W / O emulsion, incorporates the enzyme into the emulsion, and then makes the emulsion W / O / W so that it does not break in the oil phase. In addition, since the emulsion-immobilized enzyme is physically unstable, a very complicated process of surrounding it with a photocrosslinkable resin is required.

これに対し本発明は、リパーゼにリン脂質を水相中で接
触・結合させた状態でこれを不溶性担体と結合させるだ
けでよく、W/Oエマルジョンといった油相中に分散させ
る必要もない。具体的にはリン脂質とリパーゼを含有す
る溶液中に不溶性担体を添加し、該担体上にリパーゼと
リン脂質を固定化した後にろ過するだけで良い。
On the other hand, according to the present invention, lipase may be bound to an insoluble carrier in a state where phospholipid is brought into contact with and bound in an aqueous phase, and it is not necessary to disperse it in an oil phase such as a W / O emulsion. Specifically, it suffices to add an insoluble carrier to a solution containing phospholipid and lipase, immobilize the lipase and phospholipid on the carrier, and then filter.

即ち、本発明は、リパーゼとリン脂質を接触・結合させ
た状態で不溶性担体に固定化してなる、エステル交換及
びエステル合成に適した固定化酵素に関するものであ
る。
That is, the present invention relates to an immobilized enzyme suitable for transesterification and ester synthesis, which is obtained by immobilizing a lipase and a phospholipid in contact with and binding to an insoluble carrier.

また、本発明は、リパーゼを不溶性担体に固定化する前
または固定化時にリン脂質を添加する事によりリパーゼ
のエステル交換活性およびエステル合成活性を増大させ
て固定化することを特徴とする固定化酵素の製造方法に
関するものである。
Further, the present invention is an immobilized enzyme characterized by increasing the transesterification activity and ester synthesis activity of lipase by immobilizing lipase before or during immobilization of lipase on an insoluble carrier and immobilizing it. The present invention relates to a manufacturing method of.

本発明は具体的には次のようである。即ち、リパーゼ溶
液もしくはリパーゼを含む発酵培養液に不溶性担体を加
えリパーゼを固定化するにあたり、固定化する前にリパ
ーゼ溶液もしくはリパーゼを含む発酵培養液に対しリン
脂質又は、リン脂質を分散もしくは溶解させた溶液を添
加することにより、リパーゼとリン脂質を接触・結合せ
しめる。あるいはリン脂質を懸濁もしくは溶解させた水
又は緩衝液中に市販リパーゼを溶解してもよい。次に該
溶液中に不溶性担体を添加し1分〜20時間、好ましくは
30分〜2時間接触させ、次いで、該溶液より不溶性担体
をろ過し水により洗浄する。こうして得られた固定化リ
パーゼを乾燥させ本発明の固定化リパーゼを得る。さら
に好ましくは、リパーゼ溶液もしくはリパーゼを含む発
酵培養液に、リン脂質と油脂類または脂肪酸類を溶解し
たアルコール溶液(好ましくは炭素数8以下の脂肪族1
価アルコール)を添加し撹拌した後、そこへ不溶性担体
を添加し5分ないし20時間、好ましくは30分ないし2時
間接触させ、次いで該溶液より不溶性担体をろ過し、水
により洗浄する。こうして得られた固定化リパーゼを乾
燥させ本発明の固定化リパーゼを得る。
The present invention is specifically as follows. That is, in immobilizing a lipase by adding an insoluble carrier to a lipase solution or a fermentation culture solution containing lipase, a phospholipid or a phospholipid is dispersed or dissolved in the lipase solution or the fermentation culture solution containing lipase before immobilization. The lipase and the phospholipid are brought into contact with and bound to each other by adding the above solution. Alternatively, a commercially available lipase may be dissolved in water or a buffer solution in which phospholipids are suspended or dissolved. Next, an insoluble carrier is added to the solution, and 1 minute to 20 hours, preferably
The solution is contacted for 30 minutes to 2 hours, then the insoluble carrier is filtered from the solution and washed with water. The immobilized lipase thus obtained is dried to obtain the immobilized lipase of the present invention. More preferably, a lipase solution or a fermentation broth containing lipase is dissolved in a phospholipid and an oil or fat or fatty acid alcohol solution (preferably an aliphatic 1 having 8 or less carbon atoms).
After adding (hydric alcohol) and stirring, the insoluble carrier is added thereto and contacted for 5 minutes to 20 hours, preferably 30 minutes to 2 hours, and then the insoluble carrier is filtered from the solution and washed with water. The immobilized lipase thus obtained is dried to obtain the immobilized lipase of the present invention.

本発明に用いる固定化リパーゼ用のリパーゼとしては、
位置選択性に優れたリゾプス(Rhizopus)属、アスペル
ギルス(Aspergillus)属、クロモバクテリウム(Chrom
obacterium)属、ムコール(Mucor)属、シュードモナ
ス(Pseudomonas)属、ペニシリウム(Penicillium)
属、脂肪酸特異性を有するジオトリケム(Geotrichum)
属、特異性を示さないキャンディダ(Candida)属等の
微生物起源のリパーゼ及びすい臓リパーゼ等の動物リパ
ーゼが挙げられる。これらのうち、特に合成活性の高い
微生物起源のリパーゼとして、キャンディダ・シリンド
ラッセ(Candida cylindracea)、リゾプス・ジャポニ
カス(Rhizopus japonicus)、ムコール・ミーハイ(Mu
cor miehei)、クロモバクテリウム・ビスカス(Chromo
bacterium viscoum)起源のリパーゼが一層好ましい。
As the lipase for immobilized lipase used in the present invention,
Rhizopus, Aspergillus, and Chromobacter with excellent regioselectivity
obacterium genus, Mucor genus, Pseudomonas genus, Penicillium
Genus, Geotrichum with fatty acid specificity
Examples include genus and lipases of microbial origin such as Candida that do not show specificity and animal lipases such as pancreatic lipase. Among these, Candida cylindracea, Rhizopus japonicus, and Mucor mehi (Mu) are particularly useful as lipases of microbial origin with high synthetic activity.
cor miehei), Chromobacterium viscous (Chromo)
More preferred is a lipase of bacterium viscoum) origin.

固定化に用いる担体としては、水、アルコール、各種有
機溶剤、油脂類のいずれにも不溶性の担体なら良く、セ
ライト、ケイソウ土、カオリナイト、シリカゲル、パー
ライト、モレキュラーシーブ、多孔質ガラス、活性炭、
炭酸カルシウム等の無機担体、及びセルロースパウダ
ー、ポリビニルアルコール、キトサン、イオン交換樹
脂、吸着樹脂等の有機高分子の様な、リパーゼ活性に影
響を与えず、操作上から物理的・化学的に安定なもので
あれば何れも使用できる。また担体の形状としては、粉
末状、果粒状、繊維状、スポンジ状等、種々あるが、そ
のいずれでも使用できる。特に工程操作上の面からは40
0〜1000μmの粒径を有し、細孔径100〜1500Åの多孔性
の担体を用いることが良い。特にこの種の固定化担体と
しては、マクロ多孔性フェノールホルムアルデヒド系の
吸着樹脂及びイオン交換樹脂があげられる。
As the carrier used for immobilization, water, alcohol, various organic solvents, any insoluble carrier of oils and fats may be used, Celite, diatomaceous earth, kaolinite, silica gel, perlite, molecular sieves, porous glass, activated carbon,
Inorganic carriers such as calcium carbonate and organic polymers such as cellulose powder, polyvinyl alcohol, chitosan, ion exchange resins and adsorption resins do not affect the lipase activity and are physically and chemically stable from the operational point of view. Any material can be used. The carrier may have various shapes such as powder, fruit, fibrous, sponge, etc., and any of them may be used. 40 especially from the aspect of process operation
It is preferable to use a porous carrier having a particle size of 0 to 1000 μm and a pore size of 100 to 1500Å. In particular, examples of this type of immobilization carrier include macroporous phenol formaldehyde-based adsorption resin and ion exchange resin.

本発明で用いるリン脂質としては、天然に産出する大豆
レシチン、卵黄レシチン等の粗製及び又は精製混合レシ
チン等を用いてもよく、またこれらを分画して得たホス
ファチジルコリン、ホスファチジルセリン、ホスファチ
ジルエタノールアミン、ホスファチジルイノシトール、
ホスファチジルグリセロール、カルジオリピン、ホスフ
ァチジン酸等を単独又は混合して用いても良い。また各
種合成法により得た合成リン脂質及びこれらの誘導体も
用いることができる。操作上低融点のリン脂質としてア
ルキル基が短鎖または不飽和であるものが扱い易いがこ
れに限定されるものではない。
As the phospholipid used in the present invention, naturally occurring soybean lecithin, crude and / or purified mixed lecithin such as egg yolk lecithin may be used, and phosphatidylcholine obtained by fractionating these, phosphatidylserine, phosphatidylethanolamine. , Phosphatidylinositol,
Phosphatidyl glycerol, cardiolipin, phosphatidic acid and the like may be used alone or in combination. Further, synthetic phospholipids obtained by various synthetic methods and their derivatives can also be used. It is easy to handle a phospholipid having an alkyl group of a short chain or unsaturated as a phospholipid having a low melting point in operation, but the phospholipid is not limited thereto.

リン脂質とリパーゼの接触方法としては、リパーゼ水溶
液に前記リン脂質をそのまま加えても良いが、リン脂質
の水中への分散性を良くするためリパーゼの活性に影響
を与えない溶剤にリン脂質を一旦分散もしくは溶解させ
た後に加えることが一層効果的である。溶剤としては脂
肪族1価アルコール、クロロホルム、n−ヘキサン等が
あげられるが、水との相溶性の点から炭素数8以下の脂
肪族1価アルコールが好適である。
As a method for contacting the phospholipid with the lipase, the phospholipid may be added as it is to the lipase aqueous solution, but the phospholipid is once added to a solvent that does not affect the activity of the lipase in order to improve the dispersibility of the phospholipid in water. It is more effective to add after dispersing or dissolving. Examples of the solvent include aliphatic monohydric alcohols, chloroform, n-hexane, and the like, and aliphatic monohydric alcohols having 8 or less carbon atoms are preferable from the viewpoint of compatibility with water.

またリパーゼとリン脂質を接触させるにあたり、基質と
しての脂肪酸、油脂類等を共存させることにより更に高
活性の固定化酵素を得ることができる。脂肪酸の種類と
しては炭素数2〜24の直鎖で通常自然界に存在するも
の、例としてはパルミチン酸、ステアリン酸等の飽和脂
肪酸、あるいはオレイン酸、リノール酸等の不飽和の脂
肪酸を用いることができる。また油脂類としては、一般
的な植物性油脂、動物性油脂もしくは加工油脂、あるい
はこれらの混合油脂があげられる。またこれらの油脂及
び/又は脂肪酸とグリセリンより誘導して得たジグリセ
リド、モノグリセリドを用いても同等の効果が得られ
る。
Further, when the lipase and the phospholipid are brought into contact with each other, coexistence of fatty acids, oils and fats, etc. as a substrate makes it possible to obtain an immobilized enzyme having higher activity. As the type of fatty acid, a straight chain having 2 to 24 carbon atoms and usually existing in nature, for example, saturated fatty acid such as palmitic acid and stearic acid, or unsaturated fatty acid such as oleic acid and linoleic acid may be used. it can. Examples of fats and oils include general vegetable fats and oils, animal fats and oils or processed fats and oils, or mixed fats and oils thereof. The same effect can be obtained by using diglyceride or monoglyceride obtained by deriving these oils and / or fatty acids and glycerin.

本発明において固定化を行う温度としては、リパーゼの
活性を損なわない温度であればよく、0〜60℃好ましく
は20〜40℃がよい。またリパーゼ溶液のpHはリパーゼの
変性が起きないような範囲であればよく、pH3〜9の範
囲が好ましい。特に至適pHが酸性とされているリパーゼ
を用いる場合に最大の活性を得るには、pH4〜6とする
ことがよい。またリパーゼ溶液に用いる緩衝液の種類は
特に規定しないが、一般的な酢酸緩衝液、リン酸緩衝
液、トリス塩酸緩衝液等を用いることができる。
In the present invention, the temperature for immobilization may be a temperature that does not impair the activity of lipase, and is preferably 0 to 60 ° C, preferably 20 to 40 ° C. The pH of the lipase solution may be in the range that does not cause denaturation of the lipase, and is preferably in the range of pH 3-9. In particular, in the case of using a lipase whose optimum pH is acidic, the pH is preferably set to 4 to 6 in order to obtain the maximum activity. Further, the kind of the buffer solution used for the lipase solution is not particularly limited, but a common acetate buffer solution, phosphate buffer solution, Tris-HCl buffer solution or the like can be used.

本発明における固定化方法において、水溶液中のリパー
ゼ濃度は特に規定しないが、固定化効率の点から前記リ
パーゼの溶解度以下でかつ充分な濃度であることが望ま
しい。また必要に応じて不溶部を遠心分離により除去
し、上澄を使用しても良い。また、リパーゼとリン脂質
とはリパーゼ1重量部に対しリン脂質0.01〜1重量部の
割合で接触・結合させるのが好ましい。更に、リパーゼ
と固定化担体の使用割合(重量比)としては、固定化担
体1重量部に対しリパーゼ0.01〜1重量部が好ましい
が、特にこれに限定されるものではない。
In the immobilization method of the present invention, the concentration of lipase in the aqueous solution is not particularly specified, but from the viewpoint of immobilization efficiency, it is desirable that the concentration is not more than the solubility of the lipase and sufficient. If desired, the insoluble portion may be removed by centrifugation and the supernatant may be used. Further, it is preferable that the lipase and the phospholipid are contacted and bonded at a ratio of 0.01 to 1 part by weight of the phospholipid to 1 part by weight of the lipase. Further, the use ratio (weight ratio) of lipase and immobilization carrier is preferably 0.01 to 1 part by weight of lipase per 1 part by weight of immobilization carrier, but is not particularly limited thereto.

本発明において、固定化前の担体及び/又は固定化終了
後、酵素溶液を分離して得たリパーゼの結合した担体
に、多官能性架橋剤を用いて架橋することにより、固定
化酵素の繰り返し使用における耐久性向上をはかること
ができる。多官能性の架橋剤としては、グリオキザー
ル、グルタルアルデヒド、マロンアルデヒド、スクシニ
ルアルデヒドなどのポリアルデヒド類が好ましく、ヘキ
サメチレンジチオイソシアネート、N,N′−エチレンビ
スマレイミドなども使用可能である。また多官能性架橋
剤による架橋は前記の固定化操作中に同時に行ってもよ
い。
In the present invention, the carrier before immobilization and / or after the immobilization is completed, the carrier to which the lipase is bound obtained by separating the enzyme solution is crosslinked with a polyfunctional crosslinking agent, thereby repeating the immobilized enzyme. The durability in use can be improved. As the polyfunctional crosslinking agent, polyaldehydes such as glyoxal, glutaraldehyde, malonaldehyde, and succinylaldehyde are preferable, and hexamethylenedithioisocyanate and N, N′-ethylenebismaleimide can also be used. Further, the crosslinking with the polyfunctional crosslinking agent may be carried out at the same time during the above-mentioned immobilization operation.

〔発明の効果〕〔The invention's effect〕

本発明の方法は、リパーゼの持つ合成活性を十分に発揮
させる為のものであり、リパーゼのエステル交換活性お
よびエステル合成活性が、リン脂質との結合により著し
く増大することを見いだし、これを固定化に応用した結
果得られたものである。
The method of the present invention is for sufficiently exhibiting the synthetic activity of lipase, and found that the transesterification activity and ester synthetic activity of lipase markedly increase due to the binding with phospholipid, and immobilization thereof was performed. It was obtained as a result of applying to.

本発明における固定化リパーゼを用いるエステル交換反
応の例としては、エステルと脂肪酸によるアシドリシス
反応、エステルとアルコールによるアルコリシス反応、
エステル同志によるインターエステル化反応がある。ま
たエステル合成反応の例としては、通常のメタノール、
エタノール、プロパノール等の1価アルコール、又はプ
ロピレングリコール、グリセリン、ソルビトールおよび
ポリグリセリン等の多価のアルコール、又はゲラニオー
ル、シトロネロール、メントール等のテルペンアルコー
ルと炭素数2〜24の脂肪酸とのエステル化反応があげら
れる。
Examples of transesterification reaction using immobilized lipase in the present invention include acidolysis reaction between ester and fatty acid, alcoholysis reaction between ester and alcohol,
There is an interesterification reaction by the ester comrades. Further, as an example of the ester synthesis reaction, ordinary methanol,
The esterification reaction of monohydric alcohols such as ethanol and propanol, polyhydric alcohols such as propylene glycol, glycerin, sorbitol and polyglycerin, or terpene alcohols such as geraniol, citronellol and menthol with fatty acids having 2 to 24 carbon atoms can give.

本発明の効果として、特に位置選択性リパーゼを本発明
の方法で固定化して得た固定化リパーゼは著しい活性を
有し、グリセリドの2位にオレイン酸を多く含有する油
脂と、飽和の脂肪酸とのエステル交換反応により、天然
のカカオ脂に類似した構造を有する対称型の油脂の製造
を目的とした場合に、ジグリセリドの副生および非対称
型への転移とそれに伴う三飽和グリセリドの副生の低減
が可能となる。
As an effect of the present invention, an immobilized lipase obtained by immobilizing a regioselective lipase by the method of the present invention has a remarkable activity, and an oil and fat containing a large amount of oleic acid at the 2-position of glyceride and a saturated fatty acid Reduction of diglyceride by-product and asymmetric conversion and consequent tri-saturated glyceride by-product for the purpose of producing symmetrical oils and fats having a structure similar to that of natural cocoa butter by the transesterification reaction of Is possible.

またエステル類の合成においては、従来の酵素法では反
応の進行に伴って生成する水分により反応が平衡に到達
するため、エステル化が進行しなくなる。そこで反応系
を減圧にする等の脱水操作によってエステル化をさらに
進めようとするが、こうした操作により酵素のエステル
合成活性の低下は避けられなかった。こうした場合に本
発明の方法による固定化リパーゼを用いると、低水分条
件下においても十分なエステル合成活性を保持している
ため、短時間の間に高いエステル化率が達成され、反応
の長時間化による着色および異臭の生成等の副反応によ
る品質の低下が見られないという利点を有する。
Further, in the synthesis of esters, in the conventional enzymatic method, the reaction reaches equilibrium due to the water produced as the reaction progresses, so that the esterification does not proceed. Therefore, it is attempted to further promote the esterification by dehydration operation such as reducing the pressure of the reaction system, but such operation cannot avoid the decrease of the ester synthesis activity of the enzyme. In such a case, when the immobilized lipase according to the method of the present invention is used, a sufficient ester synthesis activity is maintained even under low water conditions, so that a high esterification rate is achieved in a short time and the reaction is performed for a long time. This has the advantage that no deterioration in quality due to side reactions such as coloring due to oxidization and generation of off-flavor is observed.

以上のようにリン脂質とリパーゼの接触・結合によりそ
のエステル交換およびエステル合成活性が増大すること
を発見した事により、工業的実施にあたって簡便かつ廉
価に高活性の固定化リパーゼを製造することが可能とな
った。
As described above, it was discovered that contact and binding of phospholipids and lipase increase their transesterification and ester synthesis activities, making it possible to easily and inexpensively produce a highly active immobilized lipase in industrial practice. Became.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明するが、本
発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 リゾプス・ジャポニカス起源の市販リパーゼ〔商品名<
リパーゼ・サイケン100>大阪細菌研究所株式会社製、
分解活性35,000Unit/g〕10gを、pH5.0の10mMの酢酸緩衝
液95mlに溶解した。別に5mlのイオン交換水に市販の大
豆レシチン(試薬、和光純薬工業株式会社製)1gを懸濁
させた液を調製し、先のリパーゼ溶液に添加し1時間撹
拌してリパーゼとレシチンの懸濁液を得た。このリパー
ゼとレシチンの懸濁液に、フェノールホルムアルデヒド
系弱アニオン交換樹脂〔商品名<デュオライト(Duolit
e)ES-568>ダイアモンドシャムロック社製〕10g(水分
10%)を加え30℃で2時間撹拌した。このとき混合後の
液のpHを5.0となるように調整した。次に該懸濁液より
弱アニオン交換樹脂をろ別し、水で洗浄した後、水分5
%となるように常温にて減圧乾燥を行い10.5gの固定化
リパーゼを得た。この時ろ液の分解活性は1,295Unit/ml
であった、この結果から得られた固定化リパーゼには当
初用いたリパーゼの63%が固定化されていた。
Example 1 Commercially available lipase derived from Rhizopus japonicaus [trade name <
Lipase Saiken 100> Made by Osaka Bacterial Research Institute Co., Ltd.
Decomposition activity 35,000 Unit / g] 10 g was dissolved in 95 ml of 10 mM acetate buffer of pH 5.0. Separately, a liquid prepared by suspending 1 g of commercially available soybean lecithin (reagent, Wako Pure Chemical Industries, Ltd.) in 5 ml of ion-exchanged water was added to the above lipase solution and stirred for 1 hour to suspend the lipase and lecithin. A suspension was obtained. To this suspension of lipase and lecithin, a phenol-formaldehyde weak anion exchange resin [trade name <Duolit (Duolit
e) ES-568> made by Diamond Shamrock] 10 g (water content
10%) was added and the mixture was stirred at 30 ° C. for 2 hours. At this time, the pH of the mixed liquid was adjusted to 5.0. Next, the weak anion exchange resin was filtered off from the suspension, washed with water, and then water 5
The mixture was dried under reduced pressure at room temperature to obtain 10.5 g of immobilized lipase. At this time, the decomposition activity of the filtrate is 1,295 Unit / ml
As a result, 63% of the lipase initially used was immobilized on the immobilized lipase obtained from this result.

本実施例で得られた固定化リパーゼを1g用いて、パーム
油中融点部(沃素価32.5、シグリセリド含量4.6%)10g
と市販のステアリン酸〔商品名ルナックS-90,ステアリ
ン酸純度93%,花王株式会社製〕10gを加え65℃で5時
間反応を行った。反応後、フロリジル(フロリジン社
製:60〜100mesh、溶離液ヘキサン:エーテル=2:3)カ
ラムクロマトグラフィーによりグリセリド画分を分離し
基準油脂分析試験法に従いメチルエステルとし、グリセ
リド中に含まれるステアリン酸含量をガスクロマトグラ
フィーにより分析した。次式で示される平衡値を100%
とした反応率を算出した。
Using 1 g of the immobilized lipase obtained in this Example, 10 g of palm oil in the middle melting point (iodine value 32.5, glyceride content 4.6%)
Then, 10 g of commercially available stearic acid [Lunack S-90 (trade name), stearic acid purity 93%, manufactured by Kao Corporation] was added, and the reaction was carried out at 65 ° C. for 5 hours. After the reaction, Florisil (Floridin: 60-100 mesh, eluent hexane: ether = 2: 3) was used to separate the glyceride fraction by column chromatography to obtain methyl ester according to the standard oil and fat analysis test method, and stearic acid contained in the glyceride. The content was analyzed by gas chromatography. Equilibrium value shown by the following formula is 100%
Was calculated.

上の式において、 St:時間tにおける油脂中のステアリン酸含量 So:反応前の原料油脂中のステアリン酸含量 S∞:1,3ランダム平衡時のステアリン酸含量を意味す
る。
In the above formula, St: stearic acid content in fats and oils at time t So: stearic acid content in raw fats and oils before reaction S∞: 1,3 means stearic acid content at random equilibrium.

その結果は第1表に示した。The results are shown in Table 1.

比較例1 実施例1で用いた市販のリパーゼ10gをpH5.0の10mMの酢
酸緩衝液100mlに溶解し1時間撹拌してリパーゼ溶液を
得た。このリパーゼ溶液に、デュオライトES-568を10g
(水分10%)加え30℃で2時間撹拌した。このとき混合
後の溶液のpHを5となるように調整した。次に該溶液よ
り樹脂(デュオライトES-568)をろ別し、水で洗浄した
後、水分5%となるように常温にて減圧乾燥を行い10.7
gの固定化リパーゼを得た。この固定化リパーゼを用い
て実施例1と同様にエステル交換反応を行った。
Comparative Example 1 10 g of the commercially available lipase used in Example 1 was dissolved in 100 ml of 10 mM acetate buffer of pH 5.0 and stirred for 1 hour to obtain a lipase solution. Add 10g of Duolite ES-568 to this lipase solution.
(Water content 10%) was added, and the mixture was stirred at 30 ° C. for 2 hours. At this time, the pH of the mixed solution was adjusted to 5. Next, the resin (Duolite ES-568) was filtered from the solution, washed with water, and then dried under reduced pressure at room temperature so that the water content became 5%.
g of immobilized lipase was obtained. Using this immobilized lipase, a transesterification reaction was performed in the same manner as in Example 1.

その結果は第1表に示した。The results are shown in Table 1.

第1表に示した結果から、リン脂質処理によるリパーゼ
のエステル交換活性の増大効果が認められる。
From the results shown in Table 1, the effect of increasing the transesterification activity of lipase by phospholipid treatment is recognized.

実施例2 実施例1で用いた市販のリパーゼ10gをpH5.0の10mMの酢
酸緩衝液95mlに溶解し、1時間撹拌してリパーゼ溶液を
調整した。別に5mlのブタノールに大豆レシチン1gを溶
解させた溶液を調製し、これを先のリパーゼ溶液に添加
し1時間撹拌して混合物A(リパーゼ、レシチン、ブタ
ノールなどを含有)を得た。この混合物Aに実施例1で
用いた弱アニオン交換樹脂(デュオライトES-568)10g
(水分10%)を混合し30℃で2時間撹拌した。このとき
のpHは5に調製した。次に該混合物から樹脂をろ別し、
水で洗浄した後、水分5%となるように室温にて減圧乾
燥を行い11.2gの固定化リパーゼを得た。
Example 2 10 g of the commercially available lipase used in Example 1 was dissolved in 95 ml of 10 mM acetate buffer having a pH of 5.0 and stirred for 1 hour to prepare a lipase solution. Separately, 1 g of soybean lecithin was dissolved in 5 ml of butanol to prepare a solution, which was added to the above lipase solution and stirred for 1 hour to obtain a mixture A (containing lipase, lecithin, butanol). 10 g of the weak anion exchange resin (Duolite ES-568) used in Example 1 was added to this mixture A.
(Water content 10%) was mixed and stirred at 30 ° C. for 2 hours. The pH at this time was adjusted to 5. The resin is then filtered off from the mixture,
After washing with water, vacuum drying was performed at room temperature so that the water content was 5% to obtain 11.2 g of immobilized lipase.

ここで得られた固定化リパーゼを用いて、実施例1と同
様に(即ち、実施例1で用いたパーム油中融点部10gと
ステアリン酸10gを加え、65℃で5時間)エステル交換
反応を行った。
Using the immobilized lipase obtained here, a transesterification reaction was carried out in the same manner as in Example 1 (that is, 10 g of the melting point of palm oil used in Example 1 and 10 g of stearic acid were added, and the mixture was heated at 65 ° C. for 5 hours). went.

その結果は第2表に示した。The results are shown in Table 2.

比較例2 実施例1で用いた市販のリパーゼ10gをpH5.0の10mMの酢
酸緩衝液95mlに溶解した。このリパーゼ溶液に5mlにブ
タノールを添加し1時間撹拌して混合物B(リパーゼ、
ブタノールを含有、レシチンは含有しない)を得た。こ
の混合物Bに実施例1で用いた弱アニオン交換樹脂(デ
ュオライトES-568)10g(水分10%)を混合し30℃で2
時間撹拌した。このときのpHは5.0に調製した。次に該
混合物から弱アニオン交換樹脂をろ別し、水で洗浄した
後、水分5%となるように室温にて減圧乾燥を行い10.3
gの固定化リパーゼを得た。
Comparative Example 2 10 g of the commercially available lipase used in Example 1 was dissolved in 95 ml of 10 mM acetate buffer having a pH of 5.0. Butanol was added to 5 ml of this lipase solution, and the mixture was stirred for 1 hour and then mixed with mixture B (lipase,
Containing butanol, but not lecithin). This mixture B was mixed with 10 g of the weak anion exchange resin (Duolite ES-568) used in Example 1 (water content 10%) and the mixture was mixed at 30 ° C. for 2 hours.
Stir for hours. The pH at this time was adjusted to 5.0. Next, the weak anion exchange resin was filtered off from the mixture, washed with water, and then dried under reduced pressure at room temperature so that the water content became 5%.
g of immobilized lipase was obtained.

ここで得られた固定化リパーゼを用いて、実施例1と同
様にエステル交換反応を行った。
Using the immobilized lipase obtained here, a transesterification reaction was carried out in the same manner as in Example 1.

その結果は第2表に示した。The results are shown in Table 2.

実施例3 この例ではリン脂質の溶媒についての選択を行った。Example 3 In this example, a choice of phospholipid solvent was made.

即ち、実施例2においては、ブタノールに代えてメタノ
ール、エタノール、プロパノール、ペンタノール、ヘキ
サノール、ヘプタノール、オクタノールをそれぞれ用い
た以外は実施例2の方法と同一の操作を行った。
That is, in Example 2, the same operation as in the method of Example 2 was performed except that methanol, ethanol, propanol, pentanol, hexanol, heptanol, and octanol were used instead of butanol.

その結果は第2表に示した。The results are shown in Table 2.

第2表に示す結果から、リン脂質の分散溶剤として炭素
数8以下のアルコールが有効である事が明らかとなっ
た。
From the results shown in Table 2, it became clear that alcohol having 8 or less carbon atoms is effective as a dispersion solvent for phospholipids.

実施例4 この例ではリン脂質の種類についての検索を行った。 Example 4 In this example, a search for phospholipid types was performed.

即ち、実施例2において、市販の大豆レシチンにかえ
て、リン脂質としてホスファチジルコリン、ホスファチ
ジルイノシトール、ホスファチジルエタノールアミン、
ホスファチジルセリン(試薬、何れもシグマ社製)をそ
れぞれ用いた以外は実施例2と全く同一の操作を行っ
た。
That is, in Example 2, instead of commercially available soybean lecithin, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, as phospholipids,
The same operation as in Example 2 was performed except that phosphatidylserine (reagent, both manufactured by Sigma) was used.

ここで得られた固定化酵素を用いて実施例1と同様にエ
ステル交換反応を行った。結果は第3表に示したが、い
ずれのリン脂質でも十分な効果が認められた。
A transesterification reaction was carried out in the same manner as in Example 1 using the immobilized enzyme obtained here. The results are shown in Table 3, and any phospholipid showed a sufficient effect.

実施例5 実施例1で用いた市販のリパーゼ10gをpH5.0の10mMの酢
酸緩衝液95mlに溶解した。別に5mlのブタノールにホス
ファチジルコリン1gとオリーブ油(局方オリーブ油、和
光純薬工業株式会社製)1gを添加し、撹拌して均一な混
合物を調製し、これを先のリパーゼ溶液に添加し1時間
撹拌し混合物C(リパーゼ、ホスファチジルコリン、オ
リーブ油、ブタノールなどを含有)を得た。該混合物C
に実施例1で用いた弱アニオン交換樹脂(デュオライト
ES-568)10g(水分10%)を混合し30℃で2時間撹拌し
た。なお混合時のpHは5.0に調整した。次に該混合物か
ら弱アニオン交換樹脂をろ別し、水で洗浄した後、水分
5%となるように常温にて減圧乾燥を行って固定化リパ
ーゼを得た。
Example 5 10 g of the commercially available lipase used in Example 1 was dissolved in 95 ml of 10 mM acetate buffer having a pH of 5.0. Separately, 1 g of phosphatidylcholine and 1 g of olive oil (Pharmacy olive oil, manufactured by Wako Pure Chemical Industries, Ltd.) were added to 5 ml of butanol and stirred to prepare a uniform mixture, which was added to the lipase solution and stirred for 1 hour. A mixture C (containing lipase, phosphatidylcholine, olive oil, butanol, etc.) was obtained. The mixture C
Weak anion exchange resin (Duolite) used in Example 1
ES-568) 10 g (water content 10%) was mixed and stirred at 30 ° C. for 2 hours. The pH during mixing was adjusted to 5.0. Next, the weak anion exchange resin was separated from the mixture by filtration, washed with water, and then dried under reduced pressure at room temperature so that the water content was 5% to obtain immobilized lipase.

ここで得られた固定化リパーゼを用いて実施例1と同様
にエステル交換反応を行った。
Using the immobilized lipase obtained here, a transesterification reaction was carried out in the same manner as in Example 1.

その結果は第4表に示した。The results are shown in Table 4.

比較例3 実施例1で用いた市販のリパーゼ10gをpH5.0の10mMの酢
酸緩衝液95mlに溶解した。別に5mlのブタノールに実施
例5で用いたオリーブ油1gを添加し、撹拌して均一な混
合物を調製し、先のリパーゼ溶液に添加し1時間撹拌し
リパーゼ、オリーブ油、ブタノールなどを含有する混合
物Dを得た。該混合物Dに実施例1で用いた弱アニオン
交換樹脂(デュオライトES-568)10g(水分10%)を混
合し30℃で2時間撹拌した。なお混合時のpHは5.0に調
整した。次にこの混合物から弱アニオン交換樹脂をろ別
し、水で洗浄した後、水分5%となるように常温にて減
圧乾燥を行って固定化リパーゼを得た。
Comparative Example 3 10 g of the commercially available lipase used in Example 1 was dissolved in 95 ml of 10 mM acetate buffer having a pH of 5.0. Separately, 1 g of olive oil used in Example 5 was added to 5 ml of butanol and stirred to prepare a uniform mixture, which was added to the above lipase solution and stirred for 1 hour to obtain a mixture D containing lipase, olive oil, butanol and the like. Obtained. The mixture D was mixed with 10 g of weak anion exchange resin (Duolite ES-568) used in Example 1 (water content 10%) and stirred at 30 ° C. for 2 hours. The pH during mixing was adjusted to 5.0. Next, the weak anion exchange resin was filtered off from this mixture, washed with water, and then dried under reduced pressure at room temperature so that the water content was 5% to obtain immobilized lipase.

ここで得られた固定化リパーゼを用いて実施例1と同様
にエステル交換反応を行った。
Using the immobilized lipase obtained here, a transesterification reaction was carried out in the same manner as in Example 1.

その結果は第4表に示した。The results are shown in Table 4.

実施例6 実施例5において、オリーブ油にかえてオレイン酸ジグ
リセリド(試薬、シグマ社製)、オレイン酸モノグリセ
リド(商品名エキセルO-95、花王株式会社製)、オレイ
ン酸(商品名ルナックO-LL、花王株式会社製)をそれぞ
れ用いた以外は全く実施例5と同一の操作を行った。
Example 6 In Example 5, instead of olive oil, oleic acid diglyceride (reagent, manufactured by Sigma), oleic acid monoglyceride (trade name Exel O-95, manufactured by Kao Corporation), oleic acid (trade name Lunac O-LL, The same operation as in Example 5 was performed except that Kao Corporation) was used.

ここで得られた固定化リパーゼを用いて実施例1と同様
にエステル交換反応を行った。
Using the immobilized lipase obtained here, a transesterification reaction was carried out in the same manner as in Example 1.

その結果は第4表に示した。The results are shown in Table 4.

実施例5、実施例6及び比較例3の結果、及び実施例4
のホスファチジルコリン単独の結果も第4表に一括表示
したが、之等の結果から、リン脂質とリパーゼの基質と
なる油脂類を共存させる事により効果の増大が認められ
た。
Results of Example 5, Example 6 and Comparative Example 3, and Example 4
The results of phosphatidylcholine alone are also collectively shown in Table 4. From these results, it was confirmed that the effect was increased by the coexistence of phospholipids and fats and oils which are substrates for lipase.

実施例7 実施例5において、弱アニオン交換樹脂デュオライトES
-568にかえて、デュオライトES-562、フェノールホルム
アルデヒド吸着樹脂デュオライトS-861、ダウエックスM
WA-10(ダウケミカル社製)、無機担体としてセライト5
45(マリンビル社製)をそれぞれ用いた以外は実施例5
と全く同様の操作を行った。
Example 7 In Example 5, weak anion exchange resin Duolite ES
-568 instead of Duolite ES-562, phenol formaldehyde adsorption resin Duolite S-861, Dowex M
WA-10 (Dow Chemical Company), Celite 5 as an inorganic carrier
Example 5 except that 45 (manufactured by Marine Building) was used respectively.
The same operation was performed.

ここで得られた固定化酵素を用いて実施例1と同様なエ
ステル交換反応を行った。
Using the immobilized enzyme obtained here, the same transesterification reaction as in Example 1 was performed.

その結果は第5表に示したがイオン交換樹脂のみならず
無機担体でも同様な効果が認められた。
The results are shown in Table 5, but similar effects were observed not only with ion exchange resins but also with inorganic carriers.

実施例8 実施例2において、市販リパーゼとしてキャンディダ・
シリンドラッセ起源のリパーゼ〔商品名<リパーゼOF>
名糖産業株式会社製、36万Unit/g〕0.97gを用いた以外
は実施例2と全く同様の方法で行った。
Example 8 In Example 2, as a commercial lipase, Candida
Lipase of Syrindrass origin [Product name <Lipase OF>
The same method as in Example 2 was performed except that 0.97 g of 360,000 Unit / g manufactured by Meito Sangyo Co., Ltd. was used.

ここで得られた固定化酵素を用いて実施例1と同様にエ
ステル交換反応を行った。
A transesterification reaction was carried out in the same manner as in Example 1 using the immobilized enzyme obtained here.

その結果は第6表に示した。The results are shown in Table 6.

実施例9 実施例2において、市販リパーゼとしてリゾプス・デレ
マー起源のリパーゼ〔商品名<タリパーゼ>田辺製薬
(株)製、6000Unit/g〕58gを用いた以外は実施例2と
全く同様の方法で行った。
Example 9 In Example 2, the same procedure as in Example 2 was carried out except that 58 g of lipase derived from Rhizopus delemer [trade name <Taripase> manufactured by Tanabe Seiyaku Co., Ltd., 6000 Unit / g] was used as a commercial lipase. It was

ここで得られた固定化酵素を用いて実施例1と同様にエ
ステル交換反応を行った。
A transesterification reaction was carried out in the same manner as in Example 1 using the immobilized enzyme obtained here.

その結果は第6表に示した。The results are shown in Table 6.

実施例10 実施例2において、市販リパーゼとしてアスペルギルス
・ニガー起源のリパーゼ〔商品名<リパーゼAP6>天野
製薬株式会社製、6万Unit/g〕5.8gを用いた以外は実施
例2と全く同様の方法で行った。
Example 10 In Example 2, exactly the same as in Example 2 except that 5.8 g of lipase of Aspergillus niger origin [trade name <lipase AP6> Amano Pharmaceutical Co., Ltd., 60,000 Unit / g] was used as the commercial lipase. Made by way.

ここで得られた固定化酵素を用いて実施例1と同様にエ
ステル交換反応を行った。
A transesterification reaction was carried out in the same manner as in Example 1 using the immobilized enzyme obtained here.

その結果は第6表に示した。The results are shown in Table 6.

実施例11 実施例2において、市販リパーゼとしてムコール起源の
市販リパーゼ〔商品名<リパーゼAP10>天野製薬株式会
社製、1万Unit/g〕35gを用いた以外は実施例2と全く
同様の方法で行った。
Example 11 In the same manner as in Example 2, except that 35 g of a commercial lipase of Mucor origin [trade name <Lipase AP10> Amano Pharmaceutical Co., Ltd., 10,000 Unit / g] was used as the commercial lipase. went.

ここで得られた固定化酵素を用いて実施例1と同様にエ
ステル交換反応を行った。
A transesterification reaction was carried out in the same manner as in Example 1 using the immobilized enzyme obtained here.

その結果は第6表に示した。The results are shown in Table 6.

実施例8〜11の結果を第6表に一括表示したが、いずれ
の微生物起源の酵素を用いても同様の効果が認められ
た。
Although the results of Examples 8 to 11 are collectively shown in Table 6, the same effect was observed using any of the microorganism-derived enzymes.

実施例12 この例では実施例2及び実施例8〜11で得られた固定化
リパーゼをエステル化に用いた。
Example 12 In this example, the immobilized lipases obtained in Example 2 and Examples 8-11 were used for esterification.

即ち、実施例2又は実施例8〜11で得られた固定化酵素
それぞれ1gを、オクチルアルコール6.3g(和光純薬工業
株式会社製)及びオレイン酸(商品名ルナックO-LL、花
王株式会社製)13.7gと混合し、40℃にて攪拌しながら
エステル合成(エステル化)反応を行った。経時的に反
応液の一部を試料として取り出し、基準油脂分析試験法
に従って試料の酸価を測定した。試料の酸化より次式に
よりエステル化率を求めた。
That is, 1 g of each of the immobilized enzymes obtained in Example 2 or Examples 8 to 11 was treated with 6.3 g of octyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) and oleic acid (trade name: Lunac O-LL, manufactured by Kao Corporation). ) 13.7 g, and the ester synthesis (esterification) reaction was carried out at 40 ° C. with stirring. A part of the reaction solution was taken out as a sample with time, and the acid value of the sample was measured according to the standard oil and fat analysis test method. From the oxidation of the sample, the esterification rate was calculated by the following formula.

ここで、AVt:t時間後の試料の酸価 AVo:反応前の混合試料の酸価 を表す。 Here, AVt: acid value of sample after t hours AVo: acid value of mixed sample before reaction.

その結果は第7表に示した。The results are shown in Table 7.

比較例4 実施例2及び実施例8〜11で用いた市販のリパーゼをそ
れぞれ35,000unit/g用いて、実施例12と同様にエステル
合成反応を行った。
Comparative Example 4 The ester synthesis reaction was carried out in the same manner as in Example 12 using 35,000 units / g of the commercially available lipases used in Example 2 and Examples 8 to 11, respectively.

その結果を第7表に示した。The results are shown in Table 7.

第7表に示される結果から、本発明における固定化酵素
が、エステル合成反応にも適していることが明らかであ
る。
From the results shown in Table 7, it is clear that the immobilized enzyme of the present invention is also suitable for the ester synthesis reaction.

実施例13 次に上記のようにして得られた固定化酵素についてその
耐久性を調べた。
Example 13 Next, the durability of the immobilized enzyme obtained as described above was examined.

即ち、実施例2と比較例3で用意した固定化酵素5gをそ
れぞれジャケット付カラムに充填し、70℃の温水にて保
温した。そこにパーム油中融点部とステアリン酸を等量
混合溶解したものを18g/Hrの速度で連続的に通液し活性
の低下を調べた。
That is, 5 g of the immobilized enzyme prepared in Example 2 and Comparative Example 3 were each packed in a column with a jacket and kept warm with hot water at 70 ° C. A mixture of palm oil in the melting point and stearic acid in equal amounts was dissolved and continuously passed at a rate of 18 g / hr to examine the decrease in activity.

初期の反応活性に対する半減期は未処理(比較例3)の
場合が約50時間であるのに対し、リン脂質処理固定化酵
素(実施例2)では約400時間となり耐久性が向上して
いる。この間に固定化酵素1kgに対して1440kgの反応液
が処理された。
The half-life with respect to the initial reaction activity is about 50 hours when untreated (Comparative Example 3), whereas it is about 400 hours when the phospholipid-treated immobilized enzyme (Example 2) is used, which improves durability. . During this period, 1440 kg of reaction solution was treated with respect to 1 kg of immobilized enzyme.

実施例14 実施例4で得られた固定化酵素5gに2%グルタルアルデ
ヒド水溶液5mlを加え室温で1時間架橋反応を行った。
次にデカンテーションにより余剰のグルタルアルデヒド
を除去した後、20mlのイオン交換水により2回水洗し
た。濾過後に室温にて水分5%となるように減圧乾燥し
固定化酵素架橋品を得た。ここで得られた固定化酵素は
81%の活性残存率であった。この固定化酵素を用いて実
施例13と同様の連続通液試験を行った。初期の反応活性
に対する半減期は約630時間となり、架橋による安定化
が認められた。この間に固定化酵素1kgあたり2300kgの
反応液が処理された。
Example 14 5 g of a 2% glutaraldehyde aqueous solution was added to 5 g of the immobilized enzyme obtained in Example 4, and a crosslinking reaction was carried out at room temperature for 1 hour.
Then, after removing the excess glutaraldehyde by decantation, it was washed twice with 20 ml of ion-exchanged water. After filtration, the product was dried at room temperature under reduced pressure so that the water content was 5% to obtain an immobilized enzyme crosslinked product. The immobilized enzyme obtained here is
The residual activity rate was 81%. Using this immobilized enzyme, the same continuous liquid passing test as in Example 13 was performed. The half-life for the initial reaction activity was about 630 hours, and stabilization by crosslinking was observed. During this period, 2300 kg of reaction solution was treated per 1 kg of immobilized enzyme.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】リパーゼとリン脂質を接触・結合させた状
態で不溶性担体に固定化してなる、エステル交換及びエ
ステル合成に適した固定化酵素。
1. An immobilized enzyme suitable for transesterification and ester synthesis, which is immobilized on an insoluble carrier in a state where lipase and phospholipid are in contact with and bound to each other.
【請求項2】不溶性担体がマクロ多孔性樹脂であり、固
定化が吸着固定化である特許請求の範囲第1項記載の固
定化酵素。
2. The immobilized enzyme according to claim 1, wherein the insoluble carrier is a macroporous resin and the immobilization is adsorption immobilization.
【請求項3】リパーゼを不溶性担体に固定化する前また
は固定化時にリン脂質を添加する事によりリパーゼのエ
ステル交換活性およびエステル合成活性を増大させて固
定化することを特徴とする固定化酵素の製造方法。
3. An immobilized enzyme characterized by increasing the transesterification activity and the ester synthesis activity of lipase by immobilizing lipase before or during immobilization of lipase on an insoluble carrier. Production method.
【請求項4】リパーゼにリン脂質を添加し、リパーゼと
リン脂質とを接触させるにあたり、炭素数8以下の脂肪
族1価アルコールを用いることにより、リン脂質とリパ
ーゼとの結合を促進させる特許請求の範囲第3項記載の
固定化酵素の製造方法。
4. When a phospholipid is added to lipase and the lipase and the phospholipid are brought into contact with each other, an aliphatic monohydric alcohol having 8 or less carbon atoms is used to promote the binding between the phospholipid and the lipase. 4. A method for producing an immobilized enzyme according to claim 3.
【請求項5】リパーゼを溶解するため、リパーゼに緩衝
液を添加する特許請求の範囲第3項又は第4項記載の固
定化酵素の製造方法。
5. The method for producing an immobilized enzyme according to claim 3 or 4, wherein a buffer solution is added to the lipase to dissolve the lipase.
【請求項6】リパーゼを溶解するための緩衝液をpH3〜
9に制御することにより、リパーゼの失活を抑制する特
許請求の範囲第5項記載の固定化酵素の製造方法。
6. A buffer for dissolving lipase, which has a pH of 3 to
The method for producing an immobilized enzyme according to claim 5, wherein the inactivation of lipase is suppressed by controlling the activity to 9.
【請求項7】リパーゼとリン脂質とを不溶性担体に固定
化する際に、リパーゼの基質となる油脂類、脂肪酸、又
はそれらの誘導体(ジグリセリド又はモノグリセリド)
を添加し、リパーゼの活性部位を保護し失活を抑制する
特許請求の範囲第3項又は第4項記載の固定化酵素の製
造方法。
7. An oil, a fatty acid, or a derivative thereof (diglyceride or monoglyceride) which serves as a substrate for lipase when immobilizing lipase and phospholipid on an insoluble carrier.
The method for producing an immobilized enzyme according to claim 3 or 4, wherein is added to protect the active site of lipase and suppress inactivation.
【請求項8】不溶性担体を、リパーゼ及びリン脂質と接
触させる前、又は接触中、又は接触させた後に、多官能
性架橋剤で処理し、然る後、残存する架橋剤を除去する
特許請求の範囲第3〜7項のいずれか一項に記載の固定
化酵素の製造方法。
8. A method of treating an insoluble carrier with a polyfunctional crosslinking agent before, during, or after contacting with a lipase and a phospholipid, and then removing the remaining crosslinking agent. 8. The method for producing an immobilized enzyme according to any one of claims 3 to 7.
【請求項9】固定化が、マクロ多孔性樹脂への吸着固定
化である特許請求の範囲第3〜8項のいずれか一項に記
載の固定化酵素の製造方法。
9. The method for producing an immobilized enzyme according to claim 3, wherein the immobilization is adsorption and immobilization on a macroporous resin.
【請求項10】固定化の温度が0〜60℃である、特許請
求の範囲第9項記載の固定化酵素の製造方法。
10. The method for producing an immobilized enzyme according to claim 9, wherein the immobilization temperature is 0 to 60 ° C.
JP62047400A 1987-03-02 1987-03-02 Immobilized enzyme and method for producing the same Expired - Lifetime JPH0710233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047400A JPH0710233B2 (en) 1987-03-02 1987-03-02 Immobilized enzyme and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047400A JPH0710233B2 (en) 1987-03-02 1987-03-02 Immobilized enzyme and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63214184A JPS63214184A (en) 1988-09-06
JPH0710233B2 true JPH0710233B2 (en) 1995-02-08

Family

ID=12774061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047400A Expired - Lifetime JPH0710233B2 (en) 1987-03-02 1987-03-02 Immobilized enzyme and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0710233B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778135B2 (en) * 1989-07-18 1998-07-23 味の素株式会社 Preparation method of lipase-immobilized enzyme preparation
US5177013A (en) * 1989-07-31 1993-01-05 Ajinomoto Co., Inc. Preparation of an immobilized lipase having a low water content without drying
US5171870A (en) * 1991-04-22 1992-12-15 Uop Process for separating triglycerides having different degrees of unsaturation
CA2146848A1 (en) * 1992-10-29 1994-05-11 Ian Christopher Chandler Enzymic triglyceride conversion
GB0019118D0 (en) * 2000-08-03 2000-09-27 Danisco Solid phase glycerolysis

Also Published As

Publication number Publication date
JPS63214184A (en) 1988-09-06

Similar Documents

Publication Publication Date Title
US5128251A (en) Immobilized lipolytic enzyme for esterification and interesterification
CA1210409A (en) Rearrangement process
EP0140542B1 (en) An immoblized lipase preparation and use thereof
US5989599A (en) Process for the interesterification of phospholipids
US7141399B2 (en) Process for the production of diglycerides
EP1008647A2 (en) A process for preparing an immobilized enzyme
JP2749587B2 (en) Method for producing immobilized enzyme
JPH0710233B2 (en) Immobilized enzyme and method for producing the same
JPS62287A (en) Method of purifying fats and oils with enzyme
JP2657887B2 (en) Preparation method of immobilized enzyme
JP3929890B2 (en) Method for producing diglyceride
JPH0710231B2 (en) Immobilized enzyme and ester synthesis method using immobilized enzyme
JP3037349B2 (en) Enzyme-immobilizing carrier and method for producing immobilized enzyme
JPH0712310B2 (en) Immobilization method of lipolytic enzyme
JPH0710232B2 (en) Lipolytic enzyme and method for ester synthesis and exchange reaction using the enzyme
JP2004222595A (en) Method for producing diglyceride
JP2004208546A (en) Method for producing fatty acid
JPH04258291A (en) Immobilized enzyme and its production
JP3720205B2 (en) Method for producing partial glyceride
JPH0665312B2 (en) Transesterification method for fats and oils
JPH012588A (en) Modified oil manufacturing method
JPH0528114B2 (en)
JPH01137989A (en) Modification of oil and fat
JP2716909B2 (en) New immobilized carrier for lipolytic enzymes
JP2000166552A (en) Preparation of immobilized enzyme