JP3720205B2 - Method for producing partial glyceride - Google Patents
Method for producing partial glyceride Download PDFInfo
- Publication number
- JP3720205B2 JP3720205B2 JP34682298A JP34682298A JP3720205B2 JP 3720205 B2 JP3720205 B2 JP 3720205B2 JP 34682298 A JP34682298 A JP 34682298A JP 34682298 A JP34682298 A JP 34682298A JP 3720205 B2 JP3720205 B2 JP 3720205B2
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- reaction
- fatty acid
- immobilized
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 125000005456 glyceride group Chemical group 0.000 title claims description 5
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 35
- 102000004190 Enzymes Human genes 0.000 claims description 35
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 30
- 229930195729 fatty acid Natural products 0.000 claims description 30
- 239000000194 fatty acid Substances 0.000 claims description 30
- 150000004665 fatty acids Chemical class 0.000 claims description 26
- 108010093096 Immobilized Enzymes Proteins 0.000 claims description 18
- 238000005886 esterification reaction Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 239000003957 anion exchange resin Substances 0.000 claims description 5
- 230000003100 immobilizing effect Effects 0.000 claims description 3
- 229940088598 enzyme Drugs 0.000 description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000004367 Lipase Substances 0.000 description 6
- 239000008351 acetate buffer Substances 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- -1 myristic acid, unsaturated fatty acids Chemical class 0.000 description 6
- 108090001060 Lipase Proteins 0.000 description 5
- 102000004882 Lipase Human genes 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 230000032050 esterification Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 235000019421 lipase Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229940040461 lipase Drugs 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 3
- 229960003656 ricinoleic acid Drugs 0.000 description 3
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 241000235395 Mucor Species 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 235000019737 Animal fat Nutrition 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000159512 Geotrichum Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 240000007930 Oxalis acetosella Species 0.000 description 1
- 235000008098 Oxalis acetosella Nutrition 0.000 description 1
- 102000019280 Pancreatic lipases Human genes 0.000 description 1
- 108050006759 Pancreatic lipases Proteins 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940116369 pancreatic lipase Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000006227 trimethylsilylation reaction Methods 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、酵素を用いた脂肪酸とアルコールとのエステル化反応に関する。
【0002】
【従来の技術】
油脂のエステル交換、及び脂肪酸とアルコールのエステル化を主目的とする反応用の酵素として、リパーゼと呼ばれている油脂分解酵素を担体に固定化した固定化酵素が用いられている。これらの反応は、加水分解を抑制するため、できるだけ低水分濃度(1000ppm 以下)で行うことが有利であるため、固定化酵素の調製時から担体に数%の水分しか与えないように強制的に乾燥を行っている。
しかし、固定化酵素の乾燥工程では吸着した酵素の失活が起こり易く、実際の活性発現時に吸着時の最大活性を発現しない場合が多い。
特開昭60−134090号公報には、固定化後に脂肪酸誘導体の接触下で固定化酵素を乾燥させて活性発現を高めることが記載されているが、この方法では固定化酵素の乾燥に高価な設備が必要である上に、緩慢乾燥の条件設定等が複雑であり、実用的・効率的でない。
【0003】
【発明が解決しようとする課題】
以上の状況において、活性発現を十分に発し、さらに酵素の脱離や失活を抑えたエステル化用固定化酵素を調製し、エステル化反応を促進することが望まれている。
【0004】
【課題を解決するための手段】
この課題を解決するため本発明者が検討した結果、担体上に吸着した酵素に対し安定な状態を与える必要があり、このためには、反応基質と酵素とを、酵素の固定化後に速やかに接触させることが有効であることを見出した。
即ち本発明は、位置特異性を有する油脂分解酵素を固定化用担体に吸着固定化した後、乾燥せずに直接反応基質と接触させてエステル化反応を行う部分グリセライドの製造方法である。
【0005】
【発明の実施の形態】
エステル化反応の場合、脱水下で反応をシフトさせながら反応を行うため、反応を行いながら同時に脱水系を利用して固定化酵素に残存する過剰な水分を除くことが可能である。油脂分解酵素を固定化用担体に吸着固定化した後、乾燥せずに直接反応基質と接触させて行う初発のエステル化反応では、この過剰な水分を除去するための余分な反応時間がかかってしまうが、従来行われている固定化酵素の乾燥時間に比べれば非常に短時間で済む。更に、この初発の反応で生じる生成物の組成や品質に関しては、2回目以降の反応で生じる生成物と遜色はない。この初発のエステル化反応において、酵素に対して必要な活性発現水分になるまでの時間は、使用する固定化酵素の量、脱水系の能力にもよるが、概ね1時間程度である。2回目以降の反応に関しては、初発の反応で過剰な水分が除去されているため、初発の反応で要した水分除去の時間は不要である。
【0006】
本発明で使用する担体としては多孔性の陰イオン交換樹脂が良い。樹脂の粒子径は400 〜1000μmのものが望ましく、細孔径は100 〜1500Åのものが望ましい。樹脂の材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられる。特にフェノールホルムアルデヒド系樹脂が望ましい。この細孔が酵素吸着に大きな表面積を与え、より大きな吸着量を得ることができる。
【0007】
本発明では、高活性を発現するような吸着状態にするため、固定化の前処理として、担体を脂溶性脂肪酸若しくは脂溶性脂肪酸誘導体で処理することが好ましい。使用する脂溶性脂肪酸若しくは脂溶性脂肪酸誘導体としては炭素数8〜18のものが望ましい。例えば該脂肪酸としては、カプリン酸、ラウリン酸、ミリスチン酸等の直鎖飽和脂肪酸、オレイン酸、リノール酸等の不飽和脂肪酸、リシノール酸等のヒドロキシ脂肪酸、もしくはイソステアリン酸等の分岐脂肪酸が挙げられる。脂肪酸誘導体としては、炭素数8〜18の脂肪酸と水酸基を有する化合物とのエステルが挙げられ、1価アルコールエステル、多価アルコールエステル、リン脂質、あるいはこれらのエステルに更にエチレンオキサイドを負荷した誘導体等が例示される。1価アルコールエステルとしては、メチルエステル、エチルエステル等が、多価アルコールエステルとしては、モノグリセライド、ジグリセライド、及びそれらの誘導体、あるいはポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル等が挙げられる。
これらの脂肪酸及びその誘導体はいずれも常温で液状であることが工程上望ましい。またこれらは単一で用いても良いが、組み合わせることで一層の効果が発揮される。これらの誘導体は水性媒体中で化学的、もしくは油脂分解酵素で加水分解され、脂肪酸を生成するためと考えられる。
これらの脂溶性脂肪酸及びその誘導体と多孔性陰イオン交換樹脂の接触法としては、水もしくは有機溶剤中にこれらをそのまま加えても良いが、分散性を良くするために溶剤に脂溶性脂肪酸又はその誘導体を一旦分散・溶解させた後、水に分散させた多孔性陰イオン交換樹脂に加えても良い。この時の有機溶剤としてはクロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸及びその誘導体と多孔性陰イオン交換樹脂の比率は、多孔性陰イオン樹脂1重量部(乾燥重量)に対し、脂溶性脂肪酸及びその誘導体0.01〜1重量部、特に0.05〜0.5 重量部が好ましい。接触温度は0〜100 ℃、好ましくは20〜60℃が良い。接触時間は、5分〜5時間程度で良い。
【0008】
本発明で使用する油脂分解酵素は、モノグリセライドやジグリセライド等の部分グリセライドを調製する場合は、位置特異性を有するリゾプス(Rizopus) 属、アスペルギルス(Aspergillus) 属、クロモバクテリウム(Chromobacterium) 属、ムコール(Mucor) 属、シュードモナス(Pseudomonas) 属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium) 属、キャンディダ(Candida) 属等の微生物起源のリパーゼ及び膵臓リパーゼ等の動物リパーゼが挙げられる。また高エステル化率でトリグリセライドを得るためには位置特異性のない(ランダム型)のリパーゼが良く、微生物起源ではシュードモナス(Pseudomonas) 属、及びキャンディダ(Candida) 属等が良い。
【0009】
固定化を行う温度は酵素の失活が起きない0〜60℃、好ましくは5〜40℃が良いが、酵素の特性によって選ぶことができる。また酵素溶液のpHは、酵素の変性が起きない範囲であれば良く、pH3〜9が望ましい。これも温度同様酵素の特性によって決めれば良い。これらのpHを維持する緩衝液としては、特に限定しないが、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等がある。
【0010】
固定化の際の酵素溶液中の酵素濃度は、固定化効率の点から酵素の溶解度以下で且つ十分な濃度である事が望ましい。また必要に応じて不溶部を遠心分離で除去し、上澄を使用することも出来る。また固定化担体と酵素の比率は固定化担体1重量部に対して、酵素0.05〜10重量部、特に0.1 〜5重量部でが好ましい。
【0011】
酵素と上記の如く処理した担体の接触は、酵素液中に担体を分散させて攪拌する方法や、カラム等の充填塔に担体を封入してポンプ等で酵素液を循環させる方法があるが、これらの何れでもよい。吸着固定化された固定化酵素は、物理的方法で充分水を切った状態で反応基質と接触させ、エステル化反応を行う。このとき固定化酵素中の水分は用いる担体の種類によっても異なるが、通常20重量%以上、好ましくは40〜60重量%の範囲にある。
【0012】
反応基質としては、炭素数2〜22の脂肪酸が挙げられる。これらは飽和、不飽和の何れでもよく、また直鎖の他、分岐、共役二重結合等を含んでいても良い。また、構造異性体を含んでも良く、特に限定されるものではない。単一脂肪酸組成を有するエステルや部分グリセライド、トリグリセライドを調製する場合は、これらの脂肪酸を単独で用いることができ、また、2種類以上混合して用いてもよい。更に、脂肪酸としては、1種以上の植物油・動物脂を完全分解または部分分解したものも使用できる。一方、アルコールとしては、炭素数1〜22の1価のアルコール及び2価以上のアルコールが挙げられる。反応基質に関しては、目的とするエステル化物の調製が可能になるように上記の脂肪酸とアルコールを組み合わせて使用すればよく、特定のものの使用に限定されない。
【0013】
エステル化の反応方法は、減圧脱水法、グリセリン脱水法、モレキュラーシーブ等の脱水剤を用いた脱水反応法等の公知の方法でよい。また、固定化酵素は、攪拌式反応器、充填塔反応器、流動床反応器の何れに使用してもよい。
【0014】
【発明の効果】
本発明によれば、固定化酵素上の酵素に対して安定な状態を与え、極力乾燥による酵素の失活を抑えることで、吸着した酵素が持つ最大限の活性が引き出され、長期間に渡り、効率的で安定なエステル化反応を行うことができる。
【0015】
【実施例】
実施例1
Duolite A-568 (ダイヤモンドシャムロック社製)10gをN/10のNaOH溶液100cc 中で1時間撹拌した。濾過した後100cc のイオン交換水で洗浄し500mM の酢酸緩衝液(pH7)100cc でpHの平衡化を行った。その後50mMの酢酸緩衝液(pH7)100cc で2時間ずつ2回pHの平衡化を行った。この後、濾過を行い担体を回収した後、エタノール50ccでエタノール置換を30分行った。濾過した後、リシノール酸を10g含むエタノール50ccを加え30分間、リシノール酸を担体に吸着させた。その後、濾過し、担体を回収し、50mMの酢酸緩衝液(pH5)50ccで30分ずつ4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、市販のリパーゼ(リ・リパーゼ 長瀬産業(株)製)10gを50mMの酢酸緩衝液(pH7)90ccに溶解した酵素液と5時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH7)100cc で洗浄を行い、固定化していない酵素や蛋白を洗浄した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性の差より固定化率を求めたところ、98%であった。
次いで、大豆油を分解して生成した脂肪酸を100 g加え、良く攪拌した後、グリセリンを16g添加し、40℃、減圧下(13Pa以下)でエステル化反応を行った。反応時間4時間で反応油中のDG(ジグリセライド)収率(ジグリセライド含有率+トリグリセライド含有率)は63%に達した。この反応の後、反応終了油を濾別して固定化酵素を全量回収し、上記の大豆油分解脂肪酸100 gとグリセリン16gを添加し、同反応を更に2回繰り返した。その結果、この2回の繰り返し反応とも、反応時間2時間で反応終了油中のDG収率は62%となった。以上の繰り返し反応において、DG収率約62%反応時の反応油中の各成分組成を表1に示した。
【0016】
比較例1
実施例1で調製した固定化酵素を、実施例1に示した大豆油分解脂肪酸の添加なしに40℃で一昼夜減圧乾燥(133Pa 以下)した。乾燥後の水分量は約2%であった。この固定化酵素10gを用いて、実施例1と同様にエステル化反応を行い、3回繰り返し反応を行った。その結果、何れの反応でも反応3時間でDG収率は62〜63%であった。以上の繰り返し反応において、DG収率約62%反応時の反応油中の各成分組成を表1に示した。
【0017】
【表1】
【0018】
尚、上記例で反応終了油中の成分比は、サンプルをトリメチルシリル化してガスクロマトグラフィーで分析した結果である。
上記の実施例1と比較例1との対比より、本発明方法により固定化酵素の乾燥を行わずに反応を行った場合は、反応時間の短縮ができ、生成物の品質は損なわれないことが判明した。それぞれの酵素のエステル化の活性を比較したところ、反応基質で処理したものは150 %(対乾燥品)の活性を発現したことになる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an esterification reaction of fatty acid and alcohol using an enzyme.
[0002]
[Prior art]
As an enzyme for reactions mainly intended for transesterification of fats and oils and esterification of fatty acids and alcohols, an immobilized enzyme in which a fat-and-oil degrading enzyme called lipase is immobilized on a carrier is used. In order to suppress hydrolysis, it is advantageous to perform these reactions at as low a water concentration as possible (1000 ppm or less). Therefore, it is compulsory to supply only a few percent of moisture to the carrier from the time of preparation of the immobilized enzyme. It is drying.
However, in the step of drying the immobilized enzyme, the adsorbed enzyme is likely to be deactivated, and in many cases, the maximum activity at the time of adsorption is not expressed when the actual activity is expressed.
Japanese Patent Application Laid-Open No. 60-134090 describes that after immobilization, the immobilized enzyme is dried under contact with a fatty acid derivative to increase the activity expression. However, this method is expensive for drying the immobilized enzyme. In addition to the need for equipment, the conditions for slow drying are complicated, making it impractical and efficient.
[0003]
[Problems to be solved by the invention]
Under the circumstances described above, it is desired to prepare an immobilized esterase for esterification that exhibits sufficient activity expression and further suppresses the desorption and inactivation of the enzyme to promote the esterification reaction.
[0004]
[Means for Solving the Problems]
As a result of the study by the present inventors to solve this problem, it is necessary to give a stable state to the enzyme adsorbed on the carrier. For this purpose, the reaction substrate and the enzyme are quickly combined after the enzyme is immobilized. It was found that contact is effective.
That is, the present invention is a method for producing a partial glyceride in which an oleolytic enzyme having positional specificity is adsorbed and immobilized on an immobilizing carrier and then directly contacted with a reaction substrate without being dried.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the case of an esterification reaction, the reaction is carried out while shifting the reaction under dehydration, so that it is possible to remove excess water remaining in the immobilized enzyme using the dehydration system while carrying out the reaction. In the first esterification reaction, in which the fat-degrading enzyme is adsorbed and immobilized on the immobilization carrier and then directly contacted with the reaction substrate without drying, it takes extra reaction time to remove this excess water. However, it takes a very short time compared to the drying time of the immobilized enzyme which has been conventionally performed. Furthermore, regarding the composition and quality of the product produced by this initial reaction, there is no difference from the product produced by the second and subsequent reactions. In this initial esterification reaction, the time required to reach the required activity-expressing moisture for the enzyme is approximately 1 hour, depending on the amount of immobilized enzyme used and the capacity of the dehydration system. With respect to the second and subsequent reactions, excessive water is removed in the initial reaction, so the time for removing the water required in the initial reaction is unnecessary.
[0006]
The carrier used in the present invention is preferably a porous anion exchange resin. The particle diameter of the resin is preferably 400 to 1000 μm, and the pore diameter is preferably 100 to 1500 mm. Examples of the material for the resin include phenol formaldehyde, polystyrene, acrylamide, and divinylbenzene. A phenol formaldehyde resin is particularly desirable. These pores give a large surface area to enzyme adsorption, and a larger adsorption amount can be obtained.
[0007]
In the present invention, it is preferable to treat the carrier with a fat-soluble fatty acid or a fat-soluble fatty acid derivative as a pretreatment for immobilization in order to obtain an adsorption state that exhibits high activity. As the fat-soluble fatty acid or fat-soluble fatty acid derivative to be used, those having 8 to 18 carbon atoms are desirable. Examples of the fatty acid include linear saturated fatty acids such as capric acid, lauric acid and myristic acid, unsaturated fatty acids such as oleic acid and linoleic acid, hydroxy fatty acids such as ricinoleic acid, and branched fatty acids such as isostearic acid. Examples of the fatty acid derivative include esters of a fatty acid having 8 to 18 carbon atoms and a compound having a hydroxyl group, monohydric alcohol esters, polyhydric alcohol esters, phospholipids, or derivatives in which ethylene oxide is further loaded on these esters. Is exemplified. Examples of monohydric alcohol esters include methyl esters and ethyl esters, and examples of polyhydric alcohol esters include monoglycerides, diglycerides, and derivatives thereof, polyglycerin fatty acid esters, sorbitan fatty acid esters, and sucrose fatty acid esters.
It is desirable in the process that these fatty acids and derivatives thereof are all liquid at room temperature. These may be used alone, but when combined, further effects are exhibited. It is considered that these derivatives are chemically or hydrolyzed with oleolytic enzymes in an aqueous medium to produce fatty acids.
As a method for contacting these fat-soluble fatty acids and derivatives thereof with the porous anion exchange resin, these may be added as they are in water or an organic solvent, but in order to improve dispersibility, the fat-soluble fatty acid or its The derivative may be once dispersed and dissolved, and then added to the porous anion exchange resin dispersed in water. Examples of the organic solvent at this time include chloroform, hexane, and ethanol. The ratio of the fat-soluble fatty acid and its derivative to the porous anion exchange resin is 0.01 to 1 part by weight, especially 0.05 to 0.5 part by weight, with respect to 1 part by weight (dry weight) of the porous anion resin. Is preferred. The contact temperature is 0 to 100 ° C, preferably 20 to 60 ° C. The contact time may be about 5 minutes to 5 hours.
[0008]
When preparing a partial glyceride such as monoglyceride or diglyceride, the oil-degrading enzyme used in the present invention has positional specificity, Rizopus genus, Aspergillus genus, Chromobacterium genus, mucor ( Examples include lipases derived from microorganisms such as Mucor, Pseudomonas, Geotrichum, Penicillium, and Candida, and animal lipases such as pancreatic lipase. In order to obtain triglycerides at a high esterification rate, a lipase having no position specificity (random type) is preferable, and Pseudomonas genus, Candida genus and the like are preferable for microbial origin.
[0009]
The temperature at which the immobilization is performed is 0 to 60 ° C., preferably 5 to 40 ° C. at which the enzyme is not deactivated, but can be selected depending on the characteristics of the enzyme. The pH of the enzyme solution may be in a range where no denaturation of the enzyme occurs and is preferably pH 3-9. This may be determined by the enzyme characteristics as well as the temperature. The buffer solution for maintaining these pHs is not particularly limited, but includes an acetate buffer solution, a phosphate buffer solution, a Tris-HCl buffer solution, and the like.
[0010]
The enzyme concentration in the enzyme solution at the time of immobilization is preferably not more than the solubility of the enzyme and sufficient concentration from the viewpoint of immobilization efficiency. If necessary, the insoluble part can be removed by centrifugation, and the supernatant can be used. The ratio of the immobilized carrier to the enzyme is preferably 0.05 to 10 parts by weight, particularly 0.1 to 5 parts by weight with respect to 1 part by weight of the immobilized carrier.
[0011]
The contact between the enzyme and the carrier treated as described above includes a method of dispersing the carrier in the enzyme solution and stirring, and a method of sealing the carrier in a packed tower such as a column and circulating the enzyme solution with a pump or the like. Any of these may be used. The immobilized enzyme adsorbed and immobilized is brought into contact with a reaction substrate in a state where water has been sufficiently removed by a physical method to perform an esterification reaction. At this time, the moisture in the immobilized enzyme varies depending on the type of carrier used, but is usually 20% by weight or more, preferably in the range of 40 to 60% by weight.
[0012]
Examples of the reaction substrate include fatty acids having 2 to 22 carbon atoms. These may be either saturated or unsaturated, and may contain a branch, a conjugated double bond, etc. in addition to a straight chain. Moreover, a structural isomer may be included and is not particularly limited. When preparing an ester, a partial glyceride, or a triglyceride having a single fatty acid composition, these fatty acids can be used alone or in combination of two or more. Furthermore, as the fatty acid, one obtained by completely or partially decomposing one or more kinds of vegetable oil / animal fat can be used. On the other hand, as alcohol, C1-C22 monohydric alcohol and bivalent or more alcohol are mentioned. The reaction substrate may be used in combination with the above fatty acid and alcohol so that the target esterified product can be prepared, and is not limited to the use of a specific one.
[0013]
The reaction method for esterification may be a known method such as a vacuum dehydration method, a glycerin dehydration method, or a dehydration reaction method using a dehydrating agent such as molecular sieve. The immobilized enzyme may be used in any of a stirring reactor, a packed column reactor, and a fluidized bed reactor.
[0014]
【The invention's effect】
According to the present invention, by providing a stable state to the enzyme on the immobilized enzyme and suppressing the deactivation of the enzyme by drying as much as possible, the maximum activity possessed by the adsorbed enzyme is drawn, and it can be extended over a long period. An efficient and stable esterification reaction can be performed.
[0015]
【Example】
Example 1
10 g of Duolite A-568 (Diamond Shamrock) was stirred for 1 hour in 100 cc of an N / 10 NaOH solution. After filtration, it was washed with 100 cc of ion-exchanged water, and the pH was equilibrated with 100 cc of 500 mM acetate buffer (pH 7). Thereafter, the pH was equilibrated twice for 2 hours with 100 cc of 50 mM acetate buffer (pH 7). Thereafter, filtration was performed to recover the carrier, and then ethanol substitution with 50 cc of ethanol was performed for 30 minutes. After filtration, 50 cc of ethanol containing 10 g of ricinoleic acid was added and ricinoleic acid was adsorbed on the carrier for 30 minutes. Thereafter, the carrier was recovered by filtration, and washed with 50 cc of 50 mM acetate buffer (pH 5) four times for 30 minutes, ethanol was removed, and the carrier was recovered by filtration. Thereafter, 10 g of a commercially available lipase (manufactured by Re-lipase Nagase Sangyo Co., Ltd.) was contacted with an enzyme solution dissolved in 90 cc of 50 mM acetate buffer (pH 7) for 5 hours for immobilization. After filtration, the immobilized enzyme was recovered, washed with 100 cc of 50 mM acetate buffer (pH 7), and unimmobilized enzyme and protein were washed. All the above operations were performed at 20 ° C. When the immobilization rate was determined from the difference between the residual activity of the enzyme solution after immobilization and the activity of the enzyme solution before immobilization, it was 98%.
Next, 100 g of fatty acid produced by decomposing soybean oil was added and stirred well, then 16 g of glycerin was added, and an esterification reaction was performed at 40 ° C. under reduced pressure (13 Pa or less). The DG (diglyceride) yield (diglyceride content + triglyceride content) in the reaction oil reached 63% after a reaction time of 4 hours. After this reaction, the reaction-finished oil was filtered off to recover the total amount of the immobilized enzyme, 100 g of soybean oil-decomposed fatty acid and 16 g of glycerin were added, and the reaction was repeated twice more. As a result, in these two repeated reactions, the DG yield in the reaction-finished oil was 62% after a reaction time of 2 hours. In the above repeated reaction, the composition of each component in the reaction oil at the time of reaction with a DG yield of about 62% is shown in Table 1.
[0016]
Comparative Example 1
The immobilized enzyme prepared in Example 1 was dried under reduced pressure (133 Pa or less) at 40 ° C. for 24 hours without adding the soybean oil-decomposing fatty acid shown in Example 1. The moisture content after drying was about 2%. Using 10 g of this immobilized enzyme, an esterification reaction was carried out in the same manner as in Example 1, and the reaction was repeated three times. As a result, in any reaction, the DG yield was 62 to 63% in 3 hours of reaction. Table 1 shows the composition of each component in the reaction oil when the reaction was performed with a DG yield of about 62%.
[0017]
[Table 1]
[0018]
In the above example, the component ratio in the reaction finished oil is the result of trimethylsilylation of the sample and analysis by gas chromatography.
From the comparison between Example 1 and Comparative Example 1 above, when the reaction is performed without drying the immobilized enzyme by the method of the present invention, the reaction time can be shortened and the quality of the product is not impaired. There was found. When the esterification activities of the respective enzymes were compared, those treated with the reaction substrate expressed 150% (vs. dry product).
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34682298A JP3720205B2 (en) | 1998-12-07 | 1998-12-07 | Method for producing partial glyceride |
US09/453,078 US6716610B2 (en) | 1998-12-07 | 1999-12-02 | Esterification or hydrolysis with substrate treated un-dried immobilized lipolytic enzyme |
DE69936757T DE69936757T2 (en) | 1998-12-07 | 1999-12-07 | Process for the preparation of an immobilized enzyme |
EP99123990A EP1008647B1 (en) | 1998-12-07 | 1999-12-07 | A process for preparing an immobilized enzyme |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34682298A JP3720205B2 (en) | 1998-12-07 | 1998-12-07 | Method for producing partial glyceride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000166589A JP2000166589A (en) | 2000-06-20 |
JP3720205B2 true JP3720205B2 (en) | 2005-11-24 |
Family
ID=18386049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34682298A Expired - Fee Related JP3720205B2 (en) | 1998-12-07 | 1998-12-07 | Method for producing partial glyceride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3720205B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0302166A (en) | 2002-07-02 | 2004-09-08 | Kao Corp | Process for preparation of immobilized enzyme |
-
1998
- 1998-12-07 JP JP34682298A patent/JP3720205B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000166589A (en) | 2000-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906305B2 (en) | Process for preparing an immobilized enzyme | |
EP1008647B1 (en) | A process for preparing an immobilized enzyme | |
EP2272954B1 (en) | Method for production of immobilized enzyme | |
US8415124B2 (en) | Method for producing an immobilized enzyme for hydrolyzing fats and oils | |
JP3720205B2 (en) | Method for producing partial glyceride | |
JP3734972B2 (en) | Method for preparing immobilized enzyme | |
JP4012117B2 (en) | Method for producing immobilized enzyme | |
JP3929890B2 (en) | Method for producing diglyceride | |
JP2004222595A (en) | Method for producing diglyceride | |
JP3813584B2 (en) | Method for producing diglyceride | |
JPS63214184A (en) | Immobilized enzyme and production thereof | |
JP4768496B2 (en) | Method for producing immobilized enzyme | |
JPH04258291A (en) | Immobilized enzyme and its production | |
JP4616755B2 (en) | Method for producing immobilized enzyme | |
JPH01174384A (en) | Method for immobilizing lipid hydrolase | |
JPH03160992A (en) | Carrier for immobilization of enzyme and production of immobilized enzyme | |
JPH01153091A (en) | Lipid hydrolase and method for ester synthesis and interchange reaction using said enzyme | |
JP4109059B2 (en) | Method for producing immobilized enzyme | |
JP3893106B2 (en) | Method for producing diglyceride | |
JPH06327486A (en) | Method for transesterification using immobilized enzyme | |
JPH0471491A (en) | Carrier for immobilizing enzyme and production of immobilized enzyme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080916 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |