JPH0694555A - Pressure sensor - Google Patents
Pressure sensorInfo
- Publication number
- JPH0694555A JPH0694555A JP24387592A JP24387592A JPH0694555A JP H0694555 A JPH0694555 A JP H0694555A JP 24387592 A JP24387592 A JP 24387592A JP 24387592 A JP24387592 A JP 24387592A JP H0694555 A JPH0694555 A JP H0694555A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- fluid
- measured
- gas
- introducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガスの流量を計測する
ガスメータに内蔵され、ガスの供給が正常かどうかを監
視するための圧力センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor incorporated in a gas meter for measuring gas flow rate and for monitoring whether or not gas supply is normal.
【0002】[0002]
【従来の技術】この種のガスメータに設けられる小型圧
力センサとして半導体式圧力センサを使うことが考えら
れている。従来の半導体式圧力センサについて図10に断
面を示し説明する。2. Description of the Related Art It is considered to use a semiconductor pressure sensor as a small pressure sensor provided in this type of gas meter. A conventional semiconductor pressure sensor will be described by showing a cross section in FIG.
【0003】図10において1は圧力センサの外枠であ
り、ガス導入部2を有している。前記外枠2内には、ガ
スの導入部2に対応させてセンサケース3を接着剤4で
接着させている。センサケース3は大気の導入部5を有
し、内部に圧力検出部を設けている。圧力検出部はシリ
コン基板上6と、このシリコン基板6上にエッチングに
より設けられた厚み数ミクロンのシリコン膜7と、この
シリコン膜7上に形成され機械的歪により抵抗値の変化
する半導体抵抗によって構成されている。前記シリコン
膜7上にはガスに含まれるごみや水分を直接接触しない
ようにゲル8がコーティングされている。また外枠1内
には増幅回路等の電気回路が形成されたプリント基板9
が設けられ、プラスチック樹脂10によりモールドされて
いる。なおプリント基板9は入出力端子11を有してい
る。図中の12はガスの導入部2の先端を示している。In FIG. 10, reference numeral 1 denotes an outer frame of the pressure sensor, which has a gas introducing portion 2. In the outer frame 2, a sensor case 3 is adhered with an adhesive 4 corresponding to the gas introduction part 2. The sensor case 3 has an air introduction part 5 and a pressure detection part inside. The pressure detecting portion is composed of a silicon substrate 6, a silicon film 7 having a thickness of several microns provided on the silicon substrate 6 by etching, and a semiconductor resistor which is formed on the silicon film 7 and whose resistance value changes due to mechanical strain. It is configured. The silicon film 7 is coated with a gel 8 so as not to come into direct contact with dust and water contained in the gas. A printed circuit board 9 having an electric circuit such as an amplifier circuit formed in the outer frame 1
Are provided and molded with the plastic resin 10. The printed circuit board 9 has an input / output terminal 11. Reference numeral 12 in the figure denotes the tip of the gas introducing portion 2.
【0004】上記構成においてガスの導入部2から加わ
るガス圧と、大気の導入部5から加わる大気圧との差圧
によりシリコン膜7が機械的な歪を生じる。そしてその
歪みはガス圧と大気圧との差圧に比例する。シリコン膜
7が歪をおこすとシリコン膜7上に形成された半導体抵
抗の抵抗値が歪の大きさに比例して変化する。したがっ
てこの抵抗値の変化を検出し増幅して出力することによ
り、ガス圧と大気圧の差圧を測定することができる。ま
たプリント基板9上に形成された電気回路は前記抵抗値
の変化を増幅する機能を有している。入出力端子11はプ
リント基板9上の電気回路およびシリコン膜7上の抵抗
に電源を供給するための電源端子、抵抗値の変化を増幅
して出力するための出力端子、およびグランド端子であ
る。In the above structure, the silicon film 7 is mechanically distorted by the pressure difference between the gas pressure applied from the gas inlet 2 and the atmospheric pressure applied from the atmosphere inlet 5. The strain is proportional to the pressure difference between the gas pressure and the atmospheric pressure. When the silicon film 7 is distorted, the resistance value of the semiconductor resistor formed on the silicon film 7 changes in proportion to the magnitude of the strain. Therefore, the differential pressure between the gas pressure and the atmospheric pressure can be measured by detecting, amplifying and outputting the change in the resistance value. The electric circuit formed on the printed board 9 has a function of amplifying the change in the resistance value. The input / output terminals 11 are a power supply terminal for supplying power to the electric circuit on the printed board 9 and the resistance on the silicon film 7, an output terminal for amplifying and outputting a change in resistance value, and a ground terminal.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、シリコン膜7へは、ゲル8を介してガスの
圧力を受ける構成であるため、ガスに直接触れるのは、
ゲル8、接着剤4、センサケース3である。このうちゲ
ル8、接着剤4は、おもに高分子材料で構成されている
が、ガスに直接触れる部分にあるためガスに侵されやす
く、膨潤してガスを透過し、最悪の場合、モールド剤で
あるプラスチック樹脂10を介して大気側へガスが漏れて
しまうという課題があった。また、温度変動によって、
ガスが液化と気化を繰り返すうちに、前記ゲル8、接着
剤4、プラスチック樹脂10等が膨潤と収縮によって変
形、変質してしまったり、ガス中のごみを付着してしま
い、その結果ガス圧と大気圧との差圧を正確に計ること
ができなくなるという課題があった。However, in the above-mentioned conventional structure, since the silicon film 7 is structured to receive the pressure of the gas through the gel 8, the direct contact with the gas is
The gel 8, the adhesive 4, and the sensor case 3. Of these, the gel 8 and the adhesive 4 are mainly composed of a polymer material, but are easily touched by the gas because they are directly in contact with the gas, swell and permeate the gas. In the worst case, the molding agent is used. There is a problem that gas leaks to the atmosphere side through a certain plastic resin 10. Also, due to temperature fluctuations,
While the gas is repeatedly liquefied and vaporized, the gel 8, the adhesive 4, the plastic resin 10 and the like are deformed and deteriorated due to swelling and shrinkage, or dust in the gas is attached, resulting in the gas pressure and There was a problem that the pressure difference from the atmospheric pressure could not be measured accurately.
【0006】本発明は上記課題を解決するもので、被測
定ガスに直接触れる材料の膨潤と収縮等による変形、変
質を防止してセンサ外部へのガス漏れを防止し、また被
測定ガス中のごみの付着よるセンサ特性劣化をも防止
し、長期間、シリコン膜へ正確なガス圧力が印加される
信頼性の高い圧力センサを実現することを目的としてい
る。The present invention solves the above problems and prevents deformation and deterioration of the material that is in direct contact with the gas to be measured due to swelling, contraction, etc., to prevent gas leakage to the outside of the sensor, and to prevent gas in the gas to be measured. It is an object of the present invention to realize a highly reliable pressure sensor in which accurate gas pressure is applied to a silicon film for a long period of time by preventing deterioration of sensor characteristics due to dust adhesion.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の目的を
達成するために下記構成とした。第1の解決手段とし
て、被測定流体の圧力と基準圧力との差圧を測定するた
めに設けられ、前記被測定流体を導入する被測定流体導
入部と、前記基準圧力となる基準流体を導入する基準流
体導入部と、前記被測定流体導入部と前記基準流体導入
部との間に設けられ前記差圧を検出する圧力検出部と、
前記圧力検出部と前記被測定流体を直接接触させない隔
壁部とからなる構成とした。The present invention has the following constitution in order to achieve the above object. As a first solution means, a measured fluid introducing portion, which is provided to measure the differential pressure between the pressure of the measured fluid and the reference pressure, and which introduces the measured fluid, and a reference fluid serving as the reference pressure are introduced. A reference fluid introducing section, a pressure detecting section for detecting the differential pressure provided between the measured fluid introducing section and the reference fluid introducing section,
The pressure detecting portion and the partition wall portion that does not directly contact the fluid to be measured are configured.
【0008】また、第2の解決手段として、被測定流体
の圧力と基準圧力との差圧を測定するために設けられ、
前記基準前記被測定流体を導入する被測定流体導入部
と、前記基準圧力となる基準流体を導入する基準流体導
入部と、前記被測定流体導入部と前記基準流体導入部と
の間に設けられ前記差圧を検出する圧力検出部と、前記
圧力検出部と前記被測定流体導入部との間に充填された
液体隔壁部とからなる構成とした。As a second means for solving the problems, it is provided for measuring the pressure difference between the pressure of the fluid to be measured and the reference pressure,
The reference fluid is introduced between the fluid to be measured introducing the fluid to be measured, the reference fluid introducing portion to introduce the reference fluid serving as the reference pressure, and the fluid to be measured introducing portion and the reference fluid introducing portion. The pressure detecting section for detecting the differential pressure and the liquid partition section filled between the pressure detecting section and the fluid to be measured introducing section are configured.
【0009】そして、第3の解決手段として、被測定流
体の圧力と基準圧力との差圧を測定するために設けら
れ、前記被測定流体を導入する被測定流体導入部と、前
記基準圧力となる基準流体を導入する基準流体導入部
と、前記被測定流体導入部と前記基準流体導入部との間
に設けられ前記差圧を検出する圧力検出部と、前記圧力
検出部と前記被測定流体導入部との間に形成され、前記
被測定流体を受圧し、前記圧力検出部へ圧力伝達する金
属材料や樹脂、高分子材料の仕切部とからなる構成とし
た。As a third means for solving the problems, a measured fluid introducing portion for measuring the differential pressure between the pressure of the measured fluid and the reference pressure, which introduces the measured fluid, and the reference pressure are provided. A reference fluid introducing section for introducing a reference fluid, a pressure detecting section for detecting the differential pressure provided between the measured fluid introducing section and the reference fluid introducing section, the pressure detecting section and the measured fluid. A partition formed of a metal material, a resin, and a polymer material, which is formed between the introducing portion and receives the fluid to be measured and transmits the pressure to the pressure detecting portion, is adopted.
【0010】さらに、第4の解決手段として、被測定流
体の圧力と基準圧力との差圧を測定するために設けら
れ、前記被測定流体を導入する被測定流体導入部と、前
記基準圧力となる基準流体を導入する基準流体導入部
と、前記被測定流体導入部と前記基準流体導入部との間
に設けられ前記差圧を検出する圧力検出部と、前記圧力
検出部と前記被測定流体導入部との間に形成され、前記
被測定流体を受圧し、前記圧力検出部へ圧力伝達する金
属材料や樹脂、高分子材料の仕切部と、前記圧力検出部
と前記仕切部との間に充填された液体隔壁部とからなる
構成とした。Further, as a fourth solution means, a measured fluid introducing portion, which is provided for measuring the differential pressure between the pressure of the measured fluid and the reference pressure, and which introduces the measured fluid, and the reference pressure. A reference fluid introducing section for introducing a reference fluid, a pressure detecting section for detecting the differential pressure provided between the measured fluid introducing section and the reference fluid introducing section, the pressure detecting section and the measured fluid. Between the pressure detecting part and the partition part, which is formed between the introducing part, receives the fluid to be measured, and transmits the pressure to the pressure detecting part, the metal material or the resin, the partition part of the polymer material, and the pressure detecting part and the partition part. It is configured to include a filled liquid partition wall.
【0011】さらに、第5の解決手段として、半導体の
圧力センサ素子と、この圧力センサ素子を収容し被測定
圧を導入する圧力導入部を有した収容部材と、この収容
部材の圧力導入部と上記センサ素子との間に空気を介在
させて気密状態に隔離した伸縮自在の隔膜とからなる構
成とした。Further, as a fifth solution means, a semiconductor pressure sensor element, an accommodating member having a pressure introducing portion for accommodating the pressure sensor element and introducing the measured pressure, and a pressure introducing portion of the accommodating member. An expandable and contractable diaphragm is formed so as to be airtightly isolated by interposing air between the sensor element and the sensor element.
【0012】[0012]
【作用】本発明は上記構成によって、下記の作用が得ら
れる。第1の課題解決手段により、圧力検出部へは、隔
壁部を介して被測定流体(ガス)圧力のみが正確に伝達
され、かつ圧力検出部のゲル、センサケースを接着する
接着剤等の高分子材料は、ガスに直接触れないためガス
に侵されず、したがって前記高分子材料は膨潤せず、ま
たガス中のごみの付着によるセンサ特性劣化も発生しな
い。The present invention has the following functions due to the above-mentioned structure. According to the first problem solving means, only the pressure of the fluid to be measured (gas) is accurately transmitted to the pressure detecting portion via the partition wall portion, and the gel of the pressure detecting portion, the adhesive for adhering the sensor case, etc. The molecular material is not touched by the gas and is not attacked by the gas. Therefore, the polymer material does not swell, and the sensor characteristics are not deteriorated due to adhesion of dust in the gas.
【0013】第2の課題解決手段により、圧力検出部へ
は、体積圧縮率の少ない液体隔壁部を介してガス圧力の
みが均等かつ正確に伝達され、かつゲル、接着剤等の高
分子材料は、ガスに直接触れないためガスに侵されず、
したがってゲル、接着剤等の高分子材料は膨潤せず、ま
たガス中のごみの付着によるセンサ特性劣化も発生しな
い。According to the second means for solving the problems, only the gas pressure is uniformly and accurately transmitted to the pressure detecting portion through the liquid partition wall portion having a small volume compression ratio, and the polymer material such as gel and adhesive is Since it does not touch the gas directly, it is not attacked by the gas,
Therefore, polymer materials such as gels and adhesives do not swell, and sensor characteristics do not deteriorate due to adhesion of dust in gas.
【0014】第3の課題解決手段により、圧力検出部へ
は、仕切部によって、ガス通路と遮断されガス圧力のみ
が正確に伝達され、かつ仕切部は被測定流体導入部の開
口率の規制がなく、設計、製造の自由度が高い。またゲ
ル、接着剤等の高分子材料は、ガスに直接触れないため
ガスに侵されず、したがって前記高分子材料は膨潤せ
ず、またガス中のごみの付着によるセンサ特性劣化も発
生しない。According to the third means for solving the problems, only the gas pressure is accurately transmitted to the pressure detecting section by the partition section so that the gas pressure is accurately transmitted, and the partition section regulates the opening ratio of the fluid to be measured introduction section. There is a high degree of freedom in design and manufacturing. Further, the polymer material such as gel and adhesive is not directly touched by the gas and is not attacked by the gas. Therefore, the polymer material does not swell and the sensor characteristics are not deteriorated due to the adhesion of dust in the gas.
【0015】第4の課題解決手段により、圧力検出部
は、仕切部と液体隔壁部によって、ガス通路と遮断され
ガス圧力のみが正確に伝達され、かつゲル、接着剤等の
高分子材料は、ガスに直接触れないためガスに侵され
ず、したがって前記高分子材料は膨潤せず、またガス中
のごみの付着によるセンサ特性劣化も発生しない。ま
た、仕切部破壊時にも、充填された液体隔壁部によって
上記高分子材料は、ガスに直接触れないように構成して
いるためガスに侵されず、したがって前記高分子材料は
膨潤せず、またガス中のごみの付着によるセンサ特性劣
化も発生しない。According to the fourth means for solving the problems, the pressure detecting section is blocked from the gas passage by the partition section and the liquid partition section, only the gas pressure is accurately transmitted, and the polymer material such as gel and adhesive is Since the polymer material is not directly touched by the gas, the polymer material is not swollen, and the sensor characteristics are not deteriorated due to the adhesion of dust in the gas. Further, even when the partition portion is broken, the polymer material is constituted so as not to come into direct contact with the gas by the filled liquid partition wall portion, so that it is not attacked by the gas, and therefore the polymer material does not swell, and Deterioration of sensor characteristics due to the attachment of dust in the gas does not occur.
【0016】第5の課題解決手段により、被測定圧力媒
体の圧力を、隔膜および内部の空気を介してセンサ素子
にかかるようにしているので、被測定圧力媒体によるセ
ンサ素子への影響がなくなる。According to the fifth means for solving the problems, the pressure of the pressure medium to be measured is applied to the sensor element via the diaphragm and the internal air, so that the influence of the pressure medium to be measured on the sensor element is eliminated.
【0017】[0017]
【実施例】以下本発明の実施例を図1から図6を参照し
て説明する。なお上記従来例と同一相当部分には同一符
号を付与して説明する。 実施例1 図1は実施例1の半導体式圧力センサの断面図である。
この構成の特徴はセンサケース3内において、ガスの導
入部2と圧力検出部との間に隔壁部13を形成したことに
ある。隔壁部13は、耐ガス性、耐薬品性を有するため高
分子材料特有の膨潤現象を起こさず、よって体積変化、
変質等が発生しないため、ガスを透過させず、ガス漏れ
を起こすことはない。なお、圧力検出部はシリコン基板
6、シリコン膜7、ゲル8等よりなるものである。 実施例2 図2は実施例2の半導体式圧力センサの断面図である。
この構成の特徴は、ガスの導入部2部分、すなわちガス
の導入部の先端12と圧力検出部におけるゲル8との間に
フッ素系オイルよりなる液体隔壁部14を充填したことに
ある。ガスの導入部の先端12は、表面張力によって液体
隔壁部(フッソ系オイル)14がこぼれ出ないような穴径
に形成されている。フッソ系オイルは、耐ガス性、耐薬
品を有し、かつ体積圧縮率が少ないため、ガス圧力を正
確に圧力検出部に伝達できる。またゲル8、接着剤4の
高分子材料の特徴は膨潤現象を起こさず、よって体積変
化、変質等が発生しないため、ガスを透過させガス漏れ
を起こすこともない。 実施例3 図3は実施例3の半導体式圧力センサの断面図、図4は
図3のガス導入部部分の詳細断面図である。この構成の
特徴は、ガスの導入部2部分、すなわちガスの導入部の
先端12と圧力センサの感圧部であるシリコン膜7を有す
る空間との間に金属フィルム(ステンレス316 :厚さ20
〜30ミクロンのダイアフラム)よりなる仕切部15を設け
たことにある。この仕切部15の取付けはガスの導入部の
先端12部分と外枠1との接合部16において、金属フィル
ムよりなる仕切部15をゴムパッキン17を介在させて挾圧
固定する。前記金属フィルムの仕切部15によって、ガス
通路(ガスの導入部の先端12部分)と圧力センサの感圧
部であるシリコン膜7を有する空間とは遮断され、シリ
コン膜7へはガス圧力のみが正確に伝達される。ゲル
8、接着剤4は、ガスに直接触れないためガスに侵され
ず、したがって膨潤せず、またガス中のごみの付着によ
るセンサ特性劣化も発生しない。また仕切部15は被測定
流体導入部の開口率の規制がなく、設計、製造の自由度
が高い。Embodiments of the present invention will be described below with reference to FIGS. It should be noted that the same reference numerals are given to the same components as those of the above-mentioned conventional example. Example 1 FIG. 1 is a sectional view of a semiconductor type pressure sensor of Example 1.
The feature of this configuration is that a partition 13 is formed in the sensor case 3 between the gas inlet 2 and the pressure detector. Since the partition wall portion 13 has gas resistance and chemical resistance, it does not cause the swelling phenomenon peculiar to the polymer material, and therefore the volume change,
Since no alteration or the like occurs, the gas does not permeate and no gas leak occurs. The pressure detection unit is composed of the silicon substrate 6, the silicon film 7, the gel 8 and the like. Second Embodiment FIG. 2 is a sectional view of a semiconductor type pressure sensor according to a second embodiment.
The feature of this configuration is that a liquid partition wall portion 14 made of fluorine-based oil is filled between the gas introduction portion 2 portion, that is, the tip 12 of the gas introduction portion and the gel 8 in the pressure detection portion. The tip 12 of the gas introduction portion is formed with a hole diameter that prevents the liquid partition wall (fluorine-based oil) 14 from spilling due to surface tension. The fluorine-based oil has gas resistance and chemical resistance, and has a small volume compression rate, so that the gas pressure can be accurately transmitted to the pressure detection unit. Further, the polymer material of the gel 8 and the adhesive 4 does not cause a swelling phenomenon, and therefore does not cause a volume change, deterioration, etc., and therefore does not cause gas leakage and gas leakage. Third Embodiment FIG. 3 is a sectional view of a semiconductor type pressure sensor of a third embodiment, and FIG. 4 is a detailed sectional view of a gas introducing portion portion of FIG. This structure is characterized in that a metal film (stainless steel 316: thickness 20) is provided between the gas introduction portion 2, that is, the tip 12 of the gas introduction portion and the space having the silicon film 7 which is the pressure sensitive portion of the pressure sensor.
There is a partition 15 made of a diaphragm of about 30 microns. The partition 15 is attached by fixing the partition 15 made of a metal film at the joint 16 between the tip 12 of the gas introduction portion and the outer frame 1 with a rubber packing 17 interposed. The partition 15 of the metal film blocks the gas passage (the tip 12 of the gas introduction part) from the space having the silicon film 7 which is the pressure sensitive part of the pressure sensor, and only the gas pressure is applied to the silicon film 7. Accurately transmitted. The gel 8 and the adhesive 4 are not directly touched by the gas and are not attacked by the gas. Therefore, the gel 8 and the adhesive 4 do not swell, and the deterioration of the sensor characteristics due to the adhesion of dust in the gas does not occur. Further, the partition portion 15 has no restriction on the aperture ratio of the fluid to be measured introduction portion, and has a high degree of freedom in designing and manufacturing.
【0018】なお本実施例では、ガスの導入部の先端12
と圧力センサの感圧部であるシリコン膜7を有する空間
とを遮断する仕切部15を金属フィルムで構成した場合に
ついて説明したが、ポリエステル系樹脂フィルム等の耐
ガス性を有する樹脂フィルム仕切部にしてもよい。 実施例4 図5は実施例4の半導体式圧力センサの断面図、図6は
図5のガス導入部部分の詳細断面図である。この構成の
特徴は液体隔壁部(フッソ系オイル)14と金属フィルム
よりなる仕切部15を併設した構成にある。なお液体隔壁
部14は実施例2と、また仕切部15の構成は実施例3と同
じであるので、その説明は省略する。ガスの導入部の先
端12部分は、万一、金属フィルムの仕切部15が破損、脱
落した場合に、表面張力によってフッソ系オイルよりな
る流体隔壁部14がこぼれ出ないような穴径に形成されて
いる。金属フィルムの仕切部15によって、ガス通路(ガ
スの導入部の先端12部分)とシリコン膜7およびゲル8
の前面のフッ素系オイルよりなる液体隔壁部14部分とは
遮断され、シリコン膜7へはガス圧力のみが正確に伝達
される。ゲル8、接着剤4は、ガスに直接触れないため
ガスに侵されず、したがって膨潤せず、またガス中のご
みの付着によるセンサ特性劣化も発生しない。In this embodiment, the tip 12 of the gas introduction part is
The case where the partition portion 15 for blocking the pressure sensor and the space having the silicon film 7 which is the pressure sensitive portion of the pressure sensor is made of a metal film has been described. However, a resin film partition portion having gas resistance such as polyester resin film is used. May be. Embodiment 4 FIG. 5 is a sectional view of a semiconductor type pressure sensor of Embodiment 4, and FIG. 6 is a detailed sectional view of a gas introducing portion portion of FIG. The feature of this configuration is that the liquid partition (fluorine-based oil) 14 and the partition 15 made of a metal film are provided together. The liquid partition 14 is the same as that of the second embodiment and the partition 15 is the same as that of the third embodiment, and therefore the description thereof is omitted. The tip 12 part of the gas introduction part is formed with a hole diameter that prevents the fluid partition wall part 14 made of fluorine-based oil from spilling out due to surface tension should the partition part 15 of the metal film be damaged or fallen off. ing. The partition 15 of the metal film allows the gas passage (the tip 12 of the gas inlet), the silicon film 7 and the gel 8 to be separated.
It is cut off from the liquid partition wall portion 14 made of fluorine-based oil on the front surface of, and only the gas pressure is accurately transmitted to the silicon film 7. The gel 8 and the adhesive 4 are not directly touched by the gas and are not attacked by the gas. Therefore, the gel 8 and the adhesive 4 do not swell, and the sensor characteristics are not deteriorated due to adhesion of dust in the gas.
【0019】また、金属フィルムよりなる仕切部15の破
壊時にも、充填されたフッ素系オイルよりなる液体隔壁
部14によって、ゲル8、接着剤4等の高分子材料は、ガ
スに直接触れないように構成しているためガスに侵され
ず、したがって上記同様の効果が得られる。Even when the partition 15 made of a metal film is broken, the polymer partition material such as the gel 8 and the adhesive 4 is prevented from coming into direct contact with the gas by the liquid partition wall 14 made of the fluorinated oil. Since it is configured as described above, it is not invaded by the gas, and therefore the same effect as described above can be obtained.
【0020】なお本実施例では、ガスの導入部の先端12
と圧力センサの感圧部であるシリコン膜7を有する空間
とを遮断する仕切部を金属フィルムで構成した場合につ
いて説明したが、実施例3と同様に、ポリエステル系樹
脂フィルム等の耐ガス性を有する樹脂フィルム仕切部に
してもよい。 実施例5 図7は実施例5の半導体式圧力センサの断面図である。
この構成の特徴は腐食性ガス等の危険なガスが直接セン
サ素子に触れないようにしたことにある。具体的には、
シリコン半導体のセンサ素子19がセンサケース18内に設
けられ、センサ素子19はガラス基台20に陽極接合部21に
より接着されている。ガラス基台20はシリコン系樹脂の
接着剤25によってセンサケース18内に固定されている。
センサケース18は、PPS樹脂等の耐熱性のある樹脂で
あり、リードフレーム30がインサート成形され、リード
フレーム30とセンサ素子19との間に金線28がボンディン
グされている。センサケース18には大気圧導入筒18aが
一体に形成され、この大気圧導入筒18aとは反対側のセ
ンサ素子19の表面側には、ポッティング剤24が充填さ
れ、センサ素子19が埋設されている。In this embodiment, the tip 12 of the gas introduction part is
Although the case where the partition part for blocking the space having the silicon film 7 which is the pressure sensitive part of the pressure sensor is made of the metal film has been described, the gas resistance of the polyester resin film or the like can be improved similarly to the third embodiment. You may make it the resin film partition part which it has. Fifth Embodiment FIG. 7 is a sectional view of a semiconductor type pressure sensor of a fifth embodiment.
The feature of this configuration is that dangerous gas such as corrosive gas is prevented from directly contacting the sensor element. In particular,
A sensor element 19 made of a silicon semiconductor is provided in the sensor case 18, and the sensor element 19 is bonded to a glass base 20 by an anodic bonding portion 21. The glass base 20 is fixed in the sensor case 18 with an adhesive 25 made of a silicone resin.
The sensor case 18 is made of heat-resistant resin such as PPS resin, the lead frame 30 is insert-molded, and the gold wire 28 is bonded between the lead frame 30 and the sensor element 19. The sensor case 18 is integrally formed with an atmospheric pressure introducing cylinder 18a, and the surface of the sensor element 19 opposite to the atmospheric pressure introducing cylinder 18a is filled with a potting agent 24 so that the sensor element 19 is embedded. There is.
【0021】センサケース18には、リードフレーム30を
介してプリント基板27が取り付けられ、プリント基板27
には端子31が固定されている。センサケース18は、収容
部材であるPBT樹脂等のハウジング29の中央部にエポ
キシ系接着剤26により固定され、ポッティング剤24で覆
われたセンサ素子19の表面側がハウジング29の圧力導入
筒29a側を向いて取り付けられている。ハウジング29内
では、センサケース18がシリコン系樹脂の充填剤23と、
さらにその上に充填された軟質エポキシ系樹脂の充填剤
22とが充填され、大気圧導入筒18aと端子31が突出した
状態に形成されている。A printed circuit board 27 is attached to the sensor case 18 via a lead frame 30.
The terminal 31 is fixed to. The sensor case 18 is fixed to the center of a housing 29 made of PBT resin or the like, which is a housing member, with an epoxy adhesive 26, and the surface of the sensor element 19 covered with the potting agent 24 faces the pressure introducing cylinder 29a side of the housing 29. It is installed facing. In the housing 29, the sensor case 18 and the filler 23 of silicon resin,
Further, a filler of a soft epoxy resin filled thereon
22 and the atmospheric pressure introducing cylinder 18a and the terminal 31 are formed in a protruding state.
【0022】ハウジング29の圧力導入筒29aには、大気
圧導入筒18aの外部とハウジング29の内部とを隔離する
隔膜であるベローズ32が固定されている。ベローズ32
は、ゴムまたは合成樹脂からなる柔軟な薄膜であり、有
底筒状に形成されている。ベローズ32の側面は波うった
状態に形成され、柔軟に変形可能に形成されている。ベ
ローズ32の基端周縁部32aは圧力導入筒29aの内壁の取
り付け溝29bにはめ込まれ、全周にわたって気密状態に
取り付けられている。また、ベローズ32の材質は、腐食
性ガス等の有毒ガスに対して耐久性があり、安全性の高
いものを選択する。ベローズ32、センサ素子19とにより
挟まれた空間には、空気が気密状態に収容されている。A bellows 32, which is a diaphragm that separates the outside of the atmospheric pressure introducing cylinder 18a from the inside of the housing 29, is fixed to the pressure introducing cylinder 29a of the housing 29. Bellows 32
Is a flexible thin film made of rubber or synthetic resin, and is formed in a cylindrical shape with a bottom. The side surface of the bellows 32 is formed in a wavy shape, and is flexible and deformable. The base end peripheral edge portion 32a of the bellows 32 is fitted into the mounting groove 29b of the inner wall of the pressure introducing cylinder 29a, and is mounted in an airtight state over the entire circumference. Further, as the material of the bellows 32, a material having durability and high safety against toxic gas such as corrosive gas is selected. Air is hermetically housed in the space sandwiched by the bellows 32 and the sensor element 19.
【0023】この実施例の圧力センサの動作は、圧力導
入筒29aに被測定ガス圧がかかるように接続し、大気圧
導入筒18aには大気圧がかかるようにゴム管なとを接続
する。そして、被測定ガス圧が圧力導入筒29aにかかる
と、ベローズ32はその圧力で伸び、センサ素子19とベロ
ーズ32との間の空間部の空気の圧力がガス圧と釣り合っ
て等しくなる状態までベローズ32は変形する。これによ
って、センサ素子19には、被測定ガス圧がベローズ32お
よびその内側の空気の圧力を介して伝わり、被測定ガス
の圧力が検出される。In the operation of the pressure sensor of this embodiment, the pressure introducing cylinder 29a is connected so that the gas pressure to be measured is applied, and the atmospheric pressure introducing cylinder 18a is connected with a rubber pipe or the like so that the atmospheric pressure is applied. Then, when the gas pressure to be measured is applied to the pressure introducing tube 29a, the bellows 32 expands by the pressure, and the bellows is expanded until the pressure of the air in the space between the sensor element 19 and the bellows 32 becomes equal to the gas pressure. 32 transforms. As a result, the measured gas pressure is transmitted to the sensor element 19 via the bellows 32 and the pressure of the air inside thereof, and the pressure of the measured gas is detected.
【0024】この実施例の圧力センサによれば、腐食性
ガス等の危険なガスが直接センサ素子19に触れることが
なく、センサ内でのガス漏れが生じる可能性のある箇所
も少なくすることができ、安全性の高いものになる。 実施例6 第6の実施例を図8に基づいて説明する。本実施例の特
徴的構成は前述第5実施例の構成においてベローズ32の
周縁部を、二分割された圧力導入筒29aと29cとの間に
挟みこんで固定した構成にある。図中33は、前記二分割
された圧力導入筒29a,29cの接合部である。According to the pressure sensor of this embodiment, dangerous gas such as corrosive gas does not come into direct contact with the sensor element 19, and the number of places where gas leakage may occur in the sensor can be reduced. It can be done and is highly safe. Sixth Embodiment A sixth embodiment will be described with reference to FIG. The characteristic construction of this embodiment is that the peripheral portion of the bellows 32 is fixed by being sandwiched between the pressure introducing cylinders 29a and 29c divided into two parts in the construction of the fifth embodiment. Reference numeral 33 in the drawing denotes a joint portion of the pressure introducing cylinders 29a and 29c divided into two parts.
【0025】これによって、ベローズ32の基端周縁部32
aがより確実に圧力導入筒29に気密状態で取り付けら
れ、ベローズ32とセンサ素子19との間の空間部の気密性
がより高くなり、安全性も高いものにすることができ
る。 実施例7 第7の実施例を図9に基づいて説明する。本実施例の特
徴的構成は、ベローズ32の基端周縁部32aを、センサケ
ース18とハウジング29との接続部で挟み込んで固定した
ことにある。As a result, the base peripheral edge portion 32 of the bellows 32 is
a is more reliably attached to the pressure introducing tube 29 in an airtight state, the airtightness of the space between the bellows 32 and the sensor element 19 is higher, and the safety can be improved. Seventh Embodiment A seventh embodiment will be described with reference to FIG. The characteristic configuration of this embodiment is that the base end peripheral edge portion 32a of the bellows 32 is sandwiched and fixed by the connecting portion between the sensor case 18 and the housing 29.
【0026】これによって、ベローズ32は、さらに確実
に固定され、しかも取り付け工数も削減されるものであ
る。As a result, the bellows 32 can be more securely fixed and the number of mounting steps can be reduced.
【0027】[0027]
【発明の効果】以上説明した本発明の圧力センサは、以
下に示す効果がある。 (1) 圧力検出部と被測定流体を直接接触させない隔壁部
によって、ゲル、接着剤等の高分子材料の膨潤と収縮等
による変形、変質を防止し、またガス中のごみの付着に
よるセンサ特性劣化をも防止でき、長期間、シリコン膜
へ正確なガス圧力が印加される信頼性の高い圧力センサ
を実現できることができる。The pressure sensor of the present invention described above has the following effects. (1) The partition that does not directly contact the fluid to be measured with the pressure detection part prevents deformation and deterioration due to swelling and shrinkage of polymer materials such as gels and adhesives, and sensor characteristics due to the adhesion of dust in gas. It is possible to prevent deterioration and realize a highly reliable pressure sensor in which an accurate gas pressure is applied to the silicon film for a long period of time.
【0028】(2) 圧力検出部と被測定流体を直接接触さ
せない液体隔壁部によって、ゲル、接着剤等の高分子材
料の膨潤と収縮等による変形、変質を防止し、またガス
中のごみの付着によるセンサ特性劣化をも防止でき、長
期間、シリコン膜へ正確なガス圧力が印加される信頼性
の高い圧力センサを実現することができる。(2) The liquid partition wall, which does not directly contact the pressure detection portion and the fluid to be measured, prevents deformation and alteration of the polymer material such as gel and adhesive due to swelling and shrinking, and prevents dust in the gas. It is possible to prevent deterioration of sensor characteristics due to adhesion, and to realize a highly reliable pressure sensor in which accurate gas pressure is applied to the silicon film for a long period of time.
【0029】また、液体隔壁部としてフッ素系オイルを
用いると、耐ガス性、耐薬品性を有し、かつ体積圧縮率
が少ないため、ガス圧力を正確に圧力検出部に伝達でき
る。 (3) 圧力検出部と被測定流体導入部との空間とを遮断す
る仕切部によって、ゲル、接着剤等の高分子材料とガス
とを遮断するので、膨潤と収縮等による変形、変質を防
止し、またガス中のごみの付着によるセンサ特性劣化を
も防止でき、長期間、シリコン膜へ正確なガス圧力が印
加される信頼性の高い圧力センサを実現することができ
る。また、仕切部は被測定流体導入部の開口率の規制が
なく、設計、製造の自由度が高い。Further, when fluorine-based oil is used for the liquid partition wall, it has gas resistance and chemical resistance, and has a small volume compression rate, so that the gas pressure can be accurately transmitted to the pressure detection section. (3) Since the partition that blocks the space between the pressure detection part and the fluid to be measured introduction part blocks the polymeric material such as gel and adhesive from gas, it prevents deformation and deterioration due to swelling and contraction. In addition, it is possible to prevent deterioration of sensor characteristics due to adhesion of dust in the gas, and it is possible to realize a highly reliable pressure sensor in which an accurate gas pressure is applied to the silicon film for a long period of time. Further, the partition part has no restriction on the opening ratio of the fluid to be measured introduction part, and has a high degree of freedom in design and manufacturing.
【0030】(4) 圧力検出部と被測定流体導入部との空
間とを遮断する液体隔壁部および仕切部によって、ゲ
ル、接着剤等の高分子材料とガスとを遮断するので、前
記ゲル、接着剤等の高分子材料の膨潤と収縮等による変
形、変質を防止し、またガス中のごみの付着によるセン
サ特性劣化をも防止でき、長期間、シリコン膜へ正確な
ガス圧力が印加される信頼性の高い圧力センサを実現す
ることができる。また、仕切部破壊時にも、充填された
液体隔壁部をなすフッ素系オイルによって、ゲル、接着
剤等の高分子材料は保護され、ガスに直接触れないよう
に構成しているためガスに侵されないので、流体の圧力
を引き続き正確に検出できるという効果がある。(4) Since the liquid partition wall and the partition that block the space between the pressure detection part and the fluid to be measured part block the polymer material such as gel and adhesive from gas, the gel, It can prevent deformation and deterioration due to swelling and shrinkage of polymer materials such as adhesives, and also prevent deterioration of sensor characteristics due to adhesion of dust in gas, and accurate gas pressure is applied to the silicon film for a long period of time. It is possible to realize a highly reliable pressure sensor. In addition, even when the partition is destroyed, the polymer material such as gel and adhesive is protected by the fluorinated oil that forms the filled liquid partition wall, and it is constructed so as not to come into direct contact with the gas, so it is not attacked by the gas. Therefore, there is an effect that the fluid pressure can be accurately detected continuously.
【0031】(5) センサ素子と圧力導入部との間に隔膜
を介在させたので、被測定圧力媒体が直接センサ素子に
触れず、被測定ガス等による腐食や、経年変化による亀
裂等によりガス漏れ等が生じることを確実に防止するこ
とができ、安全性、信頼性の高いものにすることができ
る。(5) Since the diaphragm is interposed between the sensor element and the pressure introducing portion, the pressure medium to be measured does not directly touch the sensor element, and the gas due to corrosion due to the gas to be measured or cracks due to aging, etc. It is possible to reliably prevent the occurrence of leaks and the like, and it is possible to improve safety and reliability.
【図1】本発明の実施例1における圧力センサの構造を
示す断面図FIG. 1 is a sectional view showing a structure of a pressure sensor according to a first embodiment of the present invention.
【図2】本発明の実施例2における圧力センサの構造を
示す断面図FIG. 2 is a sectional view showing a structure of a pressure sensor according to a second embodiment of the invention.
【図3】本発明の実施例3における圧力センサの構造を
示す断面図FIG. 3 is a sectional view showing a structure of a pressure sensor according to a third embodiment of the invention.
【図4】同実施例3の圧力センサのガス導入部付近の詳
細を示す断面図FIG. 4 is a cross-sectional view showing details of the vicinity of a gas introducing portion of the pressure sensor of the third embodiment.
【図5】本発明の実施例4における圧力センサの構造を
示す断面図FIG. 5 is a sectional view showing a structure of a pressure sensor according to a fourth embodiment of the invention.
【図6】同実施例4の圧力センサのガス導入部付近の詳
細を示す断面図FIG. 6 is a sectional view showing details of the vicinity of a gas introducing portion of the pressure sensor of the fourth embodiment.
【図7】本発明の実施例5における圧力センサの構造を
示す断面図FIG. 7 is a sectional view showing a structure of a pressure sensor according to a fifth embodiment of the invention.
【図8】本発明の実施例6における圧力センサの構造を
示す断面図FIG. 8 is a sectional view showing the structure of a pressure sensor according to a sixth embodiment of the present invention.
【図9】本発明の実施例7における圧力センサの構造を
示す断面図FIG. 9 is a sectional view showing the structure of a pressure sensor according to a seventh embodiment of the present invention.
【図10】従来の圧力センサの構造を示す断面図FIG. 10 is a sectional view showing the structure of a conventional pressure sensor.
1 外枠 2 ガスの導入部(被測定流体導入部) 3 センサケース 4 接着剤 5 大気の導入部(基準流体導入部) 6 シリコン基板 7 シリコン膜(圧力検出部) 8 ゲル 13 隔壁部 1 Outer Frame 2 Gas Introducing Section (Measured Fluid Introducing Section) 3 Sensor Case 4 Adhesive 5 Air Introducing Section (Reference Fluid Introducing Section) 6 Silicon Substrate 7 Silicon Film (Pressure Detection Section) 8 Gel 13 Partition Section
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 徳良 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新井 利則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 久保 幸作 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宇野 尚 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 中溝 佳幸 富山県上新川郡大沢野町下大久保3158番地 北陸電気工業株式会社内 (72)発明者 福久 孝治 富山県上新川郡大沢野町下大久保3158番地 北陸電気工業株式会社内 (72)発明者 田中 清之 富山県上新川郡大沢野町下大久保3158番地 北陸電気工業株式会社内 (72)発明者 石割 博之 富山県上新川郡大沢野町下大久保3158番地 北陸電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tokuyoshi Ohashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshinori Arai, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Kosaku Kubo 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Takashi Uno 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshiyuki Nakamizo Toyama Prefecture 3158 Shimookubo, Osawano-cho, Kamishinagawa-gun Within Hokuriku Electric Industry Co., Ltd. (72) Inventor Koji Fukuku, 3158 Shimo-Okubo, Osawanocho, Kamishinagawa-gun, Toyama Prefecture In-house Hokuriku Electric Industry Co., Ltd. (72) Kiyoyuki Tanaka, Kamishinagawa-gun, Toyama Prefecture 3158 Okubo Shimo-Osawanocho Hokuriku Electric Industry Co., Ltd. (72) Inventor Hiroyuki Ishiwari Toyama Prefecture Kawagun Osawano Shimookubo 3158 address Hokuriku Electric Industry Co., Ltd. in
Claims (5)
測定するために設けられ、前記被測定流体を導入する被
測定流体導入部と、前記基準圧力となる基準流体を導入
する基準流体導入部と、前記被測定流体導入部と前記基
準流体導入部との間に設けられ前記差圧を検出する圧力
検出部と、前記圧力検出部と前記被測定流体を直接接触
させない隔壁部とで構成された圧力センサ。1. A measured fluid introducing portion, which is provided to measure the differential pressure between the pressure of the measured fluid and the reference pressure, and which introduces the measured fluid, and a reference which introduces the reference fluid serving as the reference pressure. A fluid introduction part, a pressure detection part provided between the measured fluid introduction part and the reference fluid introduction part for detecting the differential pressure, and a partition wall part that does not directly contact the pressure detection part and the measured fluid. A pressure sensor composed of.
測定するために設けられ、前記被測定流体を導入する被
測定流体導入部と、前記基準圧力となる基準流体を導入
する基準流体導入部と、前記被測定流体導入部と前記基
準流体導入部との間に設けられ前記差圧を検出する圧力
検出部と、前記圧力検出部と前記被測定流体導入部との
間に充填された液体隔壁部とで構成された圧力センサ。2. A measured fluid introducing portion, which is provided to measure the differential pressure between the pressure of the measured fluid and the reference pressure, and which introduces the measured fluid, and a reference which introduces the reference fluid serving as the reference pressure. Filling between a fluid introduction part, a pressure detection part provided between the measured fluid introduction part and the reference fluid introduction part for detecting the differential pressure, and between the pressure detection part and the measured fluid introduction part Pressure sensor composed of a liquid partition part.
測定するために設けられ、前記被測定流体を導入する被
測定流体導入部と、前記基準圧力となる基準流体を導入
する基準流体導入部と、前記測定流体導入部と前記基準
流体導入部との間に設けられ前記差圧を検出する圧力検
出部と、前記圧力検出部と前記被測定流体導入部との間
に形成され、前記被測定流体を受圧し、前記圧力検出部
へ圧力伝達する金属材料や樹脂、高分子材料の仕切部と
で構成された圧力センサ。3. A measured fluid introducing portion, which is provided to measure the differential pressure between the pressure of the measured fluid and the reference pressure, and which introduces the measured fluid, and a reference which introduces the reference fluid serving as the reference pressure. A fluid introducing part, a pressure detecting part provided between the measuring fluid introducing part and the reference fluid introducing part for detecting the differential pressure, and formed between the pressure detecting part and the measured fluid introducing part. A pressure sensor including a partition of a metal material, a resin, or a polymer material that receives the fluid to be measured and transmits the pressure to the pressure detection unit.
測定するために設けられ、前記被測定流体を導入する被
測定流体導入部と、前記基準圧力となる基準流体を導入
する基準流体導入部と、前記被測定流体導入部と前記基
準流体導入部との間に設けられ前記差圧を検出する圧力
検出部と、前記圧力検出部と前記被測定流体導入部との
間に形成され、前記被測定流体を受圧し、前記圧力検出
部へ圧力伝達する金属材料や樹脂、高分子材料の仕切部
と、前記圧力検出部と前記仕切部との間に充填された液
体隔壁部とで構成された圧力センサ。4. A measured fluid introducing portion, which is provided for measuring the differential pressure between the pressure of the measured fluid and the reference pressure, and which introduces the measured fluid, and a reference which introduces the reference fluid serving as the reference pressure. A fluid introducing part, a pressure detecting part provided between the measured fluid introducing part and the reference fluid introducing part, for detecting the differential pressure, and formed between the pressure detecting part and the measured fluid introducing part. The pressure-receiving fluid to be measured, a metal material or resin for transmitting pressure to the pressure detection portion, a partition portion of a polymeric material, and a liquid partition wall portion filled between the pressure detection portion and the partition portion. A pressure sensor composed of.
ンサ素子を収容し被測定圧を導入する圧力導入部を有し
た収容部材と、この収容部材の圧力導入部と上記センサ
素子との間に空気を介在させて気密状態に隔離した伸縮
自在の隔膜とを備えた圧力センサ。5. A semiconductor pressure sensor element, an accommodating member that accommodates the pressure sensor element and has a pressure introducing portion that introduces a measured pressure, and between the pressure introducing portion of the accommodating member and the sensor element. A pressure sensor having an expandable and contractible diaphragm which is airtightly isolated by interposing air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04243875A JP3085797B2 (en) | 1992-09-14 | 1992-09-14 | Pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04243875A JP3085797B2 (en) | 1992-09-14 | 1992-09-14 | Pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0694555A true JPH0694555A (en) | 1994-04-05 |
JP3085797B2 JP3085797B2 (en) | 2000-09-11 |
Family
ID=17110283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04243875A Expired - Lifetime JP3085797B2 (en) | 1992-09-14 | 1992-09-14 | Pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3085797B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017514138A (en) * | 2014-04-25 | 2017-06-01 | ローズマウント インコーポレイテッド | Corrosion resistant pressure module for process fluid pressure transmitter |
JP7255943B1 (en) * | 2022-12-02 | 2023-04-11 | コフロック株式会社 | Semiconductor pressure chip sensor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6557357B2 (en) | 2000-02-18 | 2003-05-06 | Toc Technology, Llc | Computer rack heat extraction device |
WO2001062060A1 (en) | 2000-02-18 | 2001-08-23 | Rtkl Associates Inc. | Computer rack heat extraction device |
US6574970B2 (en) | 2000-02-18 | 2003-06-10 | Toc Technology, Llc | Computer room air flow method and apparatus |
US6412292B2 (en) | 2000-05-09 | 2002-07-02 | Toc Technology, Llc | Computer rack heat extraction device |
JP6059692B2 (en) * | 2014-08-22 | 2017-01-11 | 有限会社スギウラクラフト | Seat cushion |
-
1992
- 1992-09-14 JP JP04243875A patent/JP3085797B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017514138A (en) * | 2014-04-25 | 2017-06-01 | ローズマウント インコーポレイテッド | Corrosion resistant pressure module for process fluid pressure transmitter |
JP7255943B1 (en) * | 2022-12-02 | 2023-04-11 | コフロック株式会社 | Semiconductor pressure chip sensor |
WO2024116419A1 (en) * | 2022-12-02 | 2024-06-06 | コフロック株式会社 | Semiconductor pressure chip sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3085797B2 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6076409A (en) | Media compatible packages for pressure sensing devices | |
EP0676628B1 (en) | Stress isolated semiconductive pressure sensor | |
US6311561B1 (en) | Media compatible pressure sensor | |
JP3431603B2 (en) | Pressure sensor | |
US7412894B2 (en) | Pressure sensing device incorporating pressure sensing chip in resin case | |
JP2007513349A (en) | Insulation pressure transducer | |
US8770032B2 (en) | Relative pressure sensor | |
JP2007132946A (en) | Pressure sensor housing and configuration | |
CA2313313C (en) | Relative pressure sensor | |
JPH0694555A (en) | Pressure sensor | |
JP3892065B2 (en) | Sensor device and sensor chip fixing method | |
US6955089B2 (en) | Pressure sensor | |
JP2782572B2 (en) | Pressure sensor and method of manufacturing the same | |
JP5699843B2 (en) | Pressure sensor | |
US6425291B1 (en) | Relative-pressure sensor having a gas-filled bellows | |
JP3189516B2 (en) | Gas pressure detector | |
JP3081179B2 (en) | Pressure sensor and method of manufacturing the same | |
JPH0868709A (en) | Gas pressure sensor | |
WO2022180728A1 (en) | Pressure sensor device | |
JPH0650834A (en) | Pressure sensor | |
JPS6141252Y2 (en) | ||
JPH0783777A (en) | Differential pressure measuring device | |
JPH07306103A (en) | Semiconductor pressure gage | |
JPH095197A (en) | Semiconductor pressure sensor | |
JPH10122990A (en) | Semiconductor pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090707 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090707 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110707 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110707 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 13 |