[go: up one dir, main page]

JP3189516B2 - Gas pressure detector - Google Patents

Gas pressure detector

Info

Publication number
JP3189516B2
JP3189516B2 JP19707493A JP19707493A JP3189516B2 JP 3189516 B2 JP3189516 B2 JP 3189516B2 JP 19707493 A JP19707493 A JP 19707493A JP 19707493 A JP19707493 A JP 19707493A JP 3189516 B2 JP3189516 B2 JP 3189516B2
Authority
JP
Japan
Prior art keywords
pressure
gas
sensor element
lead frame
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19707493A
Other languages
Japanese (ja)
Other versions
JPH0755613A (en
Inventor
利則 新井
幸作 久保
伸二 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19707493A priority Critical patent/JP3189516B2/en
Publication of JPH0755613A publication Critical patent/JPH0755613A/en
Application granted granted Critical
Publication of JP3189516B2 publication Critical patent/JP3189516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LPガス、都市ガスの
ガス圧力検知装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas pressure detecting device for LP gas and city gas.

【0002】[0002]

【従来の技術】従来の半導体式圧力検知装置について図
3に断面図を示し説明する。
2. Description of the Related Art A conventional semiconductor pressure sensing device will be described with reference to a sectional view of FIG.

【0003】図3において1は外枠、2は圧力導入口、
3は半導体センサ素子で、シリコン基板上にエッチング
により設けられた厚み数ミクロンのダイヤフラム膜であ
り、この膜上に機械的歪により抵抗値が変化する半導体
抵抗が形成されている。4は台座で通常、半導体センサ
素子1の熱膨脹率に近い熱膨脹率の金属、ガラスで構成
されており、歪の緩衝材として使用されている。5はリ
ードフレームで半導体センサ素子1と回路基板8を電気
的に接続をしていると共に回路基板8を固定している。
6は接合部で共晶接合等200℃以上の高温での結合が
行なわれている。7は、センサケースで上部に大気に通
ずる差圧孔12を設けている。8は増幅回路等の電気回
路が形成された回路基板、9は外枠1とセンサケース7
を接合する接着剤、10はプラスチック樹脂によりモー
ルドしたもの、また半導体センサ素子3上には、被測定
流体に含まれるゴミや水分を直接接触しないようにゲル
11がコーティングされている。
In FIG. 3, 1 is an outer frame, 2 is a pressure inlet,
Reference numeral 3 denotes a semiconductor sensor element, which is a diaphragm film having a thickness of several microns provided by etching on a silicon substrate, on which a semiconductor resistor whose resistance value changes due to mechanical strain is formed. Reference numeral 4 denotes a pedestal which is usually made of metal or glass having a coefficient of thermal expansion close to the coefficient of thermal expansion of the semiconductor sensor element 1, and is used as a buffer for strain. A lead frame 5 electrically connects the semiconductor sensor element 1 to the circuit board 8 and fixes the circuit board 8.
Numeral 6 denotes a bonding portion where the bonding is performed at a high temperature of 200 ° C. or more, such as eutectic bonding. Numeral 7 denotes a sensor case, in which a differential pressure hole 12 communicating with the atmosphere is provided at an upper portion. 8 is a circuit board on which an electric circuit such as an amplifier circuit is formed, 9 is an outer frame 1 and a sensor case 7
The adhesive 10 is molded with a plastic resin, and the semiconductor sensor element 3 is coated with a gel 11 so as to prevent direct contact with dust and moisture contained in the fluid to be measured.

【0004】上記の構成に基づき、以下動作について説
明する。外枠1下部にある圧力導入口2から加わる圧力
センサケース7の上部の差圧孔12で検知する大気圧と
の差圧により半導体センサ素子3が機械的歪を生じ、そ
の機械的歪は、印加圧力と大気圧の差圧に比例する。半
導体センサ素子3が歪を発生すると半導体センサ素子3
上に形成された半導体抵抗の抵抗値が歪の大きさに比例
して変化する。この抵抗値の変化を検出し、増幅して出
力することにより印加圧力と大気圧の差圧を測定してい
る。
[0004] Based on the above configuration, the operation will be described below. The semiconductor sensor element 3 generates mechanical strain due to a differential pressure from the atmospheric pressure detected by a differential pressure hole 12 in the upper part of the pressure sensor case 7 applied from the pressure inlet 2 in the lower part of the outer frame 1, and the mechanical distortion is It is proportional to the pressure difference between the applied pressure and the atmospheric pressure. When the semiconductor sensor element 3 generates distortion, the semiconductor sensor element 3
The resistance value of the semiconductor resistor formed above changes in proportion to the magnitude of the strain. The change in the resistance value is detected, amplified and output to measure the differential pressure between the applied pressure and the atmospheric pressure.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記した
構成では、ガスが直接触れるのは、センサケース7、接
着剤9、ゲル11であり、このうち接着剤9は、主に高
分子材料で構成されているが、ガスに直接触れる部分に
あたる為、ガスに侵され易く、膨潤してしまいガスを透
過し、最悪の場合樹脂モールド9を介して大気側にガス
が漏洩し続けるという課題があった。また温度変動によ
って、ガスが液化と気化を繰り返すうちに、膨潤と収縮
によって変形、変質をしてしまい、その結果ガス圧と大
気との差圧を正確に測定できなくなるという課題があっ
た。
However, in the above configuration, the gas directly touches the sensor case 7, the adhesive 9, and the gel 11, and the adhesive 9 is mainly made of a polymer material. However, there is a problem in that the gas directly contacts the gas, so that it is easily eroded by the gas, swells and transmits the gas, and in the worst case, the gas continuously leaks to the atmosphere via the resin mold 9. Further, while the gas repeatedly undergoes liquefaction and vaporization due to temperature fluctuations, the gas undergoes deformation and deterioration due to swelling and shrinkage, and as a result, there has been a problem that the differential pressure between the gas pressure and the atmosphere cannot be measured accurately.

【0006】本発明は上記課題を解決するもので、被測
定ガス(LPガス、都市ガス)に直接触れる材料の膨潤
と収縮等による変形、変質を防止することでガス圧力検
知装置の外部へのガス漏洩を防止する。また、万一ガス
漏洩した場合でも、漏洩ガス量を最少限に制限すると共
にガス漏洩時には、必ず検知圧力が低下し、ガス漏洩を
検出できるガス圧力検知装置を実現することを第1の目
的としている。
The present invention solves the above-mentioned problems, and prevents a material directly in contact with a gas to be measured (LP gas, city gas) from being deformed or deteriorated due to swelling and shrinkage, thereby preventing the material from being exposed to the outside of the gas pressure detecting device. Prevent gas leakage. Also, in the event of a gas leak, the first object is to limit the amount of leaked gas to the minimum and to realize a gas pressure detecting device capable of detecting a gas leak by always reducing the detection pressure in the event of a gas leak. I have.

【0007】第2の目的は、被測定ガス通路におけるガ
ス圧力を耐ガス性を有するガス圧力検知装置によって常
時検知し、被測定ガス圧とあらかじめ記憶された所定の
適正ガス圧とを比較判定し、ガス漏洩を正確に検知する
信頼性の高い異常検出装置を提供することにある。
A second object is to constantly detect the gas pressure in the gas passage to be measured by a gas pressure detecting device having gas resistance and compare and judge the gas pressure to be measured with a predetermined appropriate gas pressure stored in advance. Another object of the present invention is to provide a highly reliable abnormality detection device that accurately detects gas leakage.

【0008】[0008]

【課題を解決するための手段】そして、上記した第1の
目的を達成する為に本発明のガス圧力検知装置の手段
は、半導体の圧力センサ素子と、前記圧力センサ素子を
上面で耐ガス性接着剤と下端外周面で樹脂ケースの圧力
導入部の内壁面との間に気密状態に介在された耐ガス性
ゴムシール材により、周囲部材から吊り下げ状態で固定
され、周囲と気密状態で囲まれたガス圧力検知通路を構
成する耐ガス性材料で形成された圧力導入管と、前記圧
力センサ素子とリードを介して電気的に接続されている
リードフレームと、前記圧力導入管とリードフレームを
樹脂で一体成形してなるセンサケースと、このセンサケ
ースと前記リードフレームを介して電気的に接続されて
いる回路基板を収容すると共に、上部に圧力調整孔と、
この圧力調整孔の周囲に接着剤を介して前記センサケー
スを気密状態に保持する事により構成された圧力室とを
備えた耐ガス性材料の樹脂ケースとを備えたものであ
る。
Means for Solving the Problems In order to achieve the above-mentioned first object, a gas pressure detecting device according to the present invention comprises a semiconductor pressure sensor element and a pressure sensor element.
Pressure of gas-resistant adhesive on the upper surface and pressure of the resin case on the outer peripheral surface of the lower end
Gas resistance interposed airtight between the inner wall of the inlet and the inner wall
Fixed by hanging from surrounding members with rubber seal material
And a gas pressure detection passage enclosed in an airtight state with the surroundings.
A pressure introducing tube formed of a gas-resistant material to be formed , a lead frame electrically connected to the pressure sensor element via a lead, and the pressure introducing tube and the lead frame integrally formed of resin. A sensor case, and a circuit board electrically connected to the sensor case and the lead frame via the lead frame;
A resin case made of a gas-resistant material having a pressure chamber formed by holding the sensor case in an airtight state through an adhesive around the pressure adjusting hole.

【0009】[0009]

【0010】[0010]

【作用】本発明は上記構成によって下記の作用が得られ
る。
According to the present invention, the following effects can be obtained by the above configuration.

【0011】第1の課題解決手段の構成により、被測定
流体(LPガス、都市ガス)が樹脂ケース(耐ガス性材
料)の圧力導入部を経て耐ガス性ゴムシール材及び圧力
導入管(耐ガス性材料)、圧力センサ素子の裏面のみに
接触し、他の構成要素には被測定圧力媒体(LPガス、
都市ガス)が接触しないようにしたもので、ガス(LP
ガス、都市ガス)が接触することによる材料劣化を防止
する。又圧力センサ素子下部の耐ガス性接着剤から万
一、ガス漏洩が発生した場合、圧力室にガスが漏洩し、
圧力調整孔の開孔面積に応じたガス量が外部へ漏洩する
と共に、開孔面積に応じた圧力室の圧力が圧力センサ素
子の受圧面と反対の面に印加されることとなる。従っ
て、圧力調整孔の開孔面積を被測定流体(LPガス、都
市ガス)の爆発限界以下の漏洩流量になる様に開度を決
定すれば、ガス爆事故を防止すると共に、圧力室の逆圧
力の印加により、漏洩発生した場合、検知圧力は圧力低
下する事となり異常検知できる。
According to the configuration of the first problem solving means, the fluid to be measured (LP gas, city gas) passes through the pressure introducing portion of the resin case (gas resistant material) and the gas resistant rubber sealing material and the pressure introducing pipe (gas resistant gas). Material), and contacts only the back surface of the pressure sensor element, and the other constituents include the pressure medium to be measured (LP gas,
Gas (LP) is designed to prevent contact with city gas.
(Gas, city gas) to prevent material deterioration. Also, if a gas leak occurs from the gas-resistant adhesive under the pressure sensor element, the gas leaks into the pressure chamber,
The gas amount corresponding to the opening area of the pressure adjusting hole leaks to the outside, and the pressure of the pressure chamber corresponding to the opening area is applied to the surface opposite to the pressure receiving surface of the pressure sensor element. Therefore, if the opening degree is determined so that the opening area of the pressure adjusting hole becomes a leakage flow rate equal to or less than the explosion limit of the fluid to be measured (LP gas, city gas), the gas explosion accident can be prevented and the pressure chamber can be reversed. When leakage occurs due to the application of pressure, the detected pressure decreases, and abnormality can be detected.

【0012】[0012]

【0013】[0013]

【実施例】以下本発明の実施例を図1、図2を参照して
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0014】(実施例1)図1は、実施例1の圧力検知
装置の断面図である。図1において、1は半導体の圧力
センサ素子で、シリコン基板上にエッチングにより設け
られた厚み数ミクロンのダイヤフラム膜であり、この膜
上に機械的歪に抵抗値が変化する半導体抵抗が形成され
ている。この圧力センサ素子1を耐ガス性接着剤2を介
して、リードフレーム3、圧力導入管(耐ガス性材料)
4を一体成形してなるセンサケース5の圧力導入管4の
上面に気密状態で保持し、圧力検知通路を構成してい
る。電気的には、圧力センサ素子1〜リード8〜リード
フレーム3〜回路基板10で接続されており、リードフ
レーム3は回路基板10の保持も行なっている。また回
路基板10は増幅回路等の電気回路が形成されている。
6は樹脂ケースでセンサケース5、回路基板10の表面
をポッティング剤11でコーティングされているものを
収容していると共に、上部に圧力調整孔12とこの圧力
調整孔12の周囲に接着剤9を介してセンサケース5を
気密状態に保持する事によって構成された圧力室13を
備えている。7は耐ガス性ゴムシール材で圧力導入管4
の外壁面と樹脂ケース6の圧力導入部の内壁面との間に
気密状態に介在されている。
(Embodiment 1) FIG. 1 is a sectional view of a pressure detecting device according to Embodiment 1. In FIG. 1, reference numeral 1 denotes a semiconductor pressure sensor element, which is a diaphragm film having a thickness of several microns provided by etching on a silicon substrate, on which a semiconductor resistor whose resistance value changes due to mechanical strain is formed. I have. The pressure sensor element 1 is connected to the lead frame 3 and the pressure introducing pipe (gas-resistant material) via the gas-resistant adhesive 2.
4 is held in a gas-tight state on the upper surface of the pressure introducing pipe 4 of the sensor case 5 formed integrally, and forms a pressure detecting passage. Electrically, they are connected by the pressure sensor element 1 to the lead 8 to the lead frame 3 to the circuit board 10, and the lead frame 3 also holds the circuit board 10. The circuit board 10 has an electric circuit such as an amplifier circuit formed thereon.
Reference numeral 6 denotes a resin case which accommodates the sensor case 5 and a circuit board 10 having a surface coated with a potting agent 11, and a pressure adjusting hole 12 on an upper portion and an adhesive 9 around the pressure adjusting hole 12. A pressure chamber 13 is provided by holding the sensor case 5 in an airtight state via the pressure chamber 13. 7 is a gas-resistant rubber sealing material and a pressure introduction pipe 4
Is airtightly interposed between the outer wall surface of the resin case 6 and the inner wall surface of the pressure introducing portion of the resin case 6.

【0015】上記の構成に基づき、以下動作について説
明する。樹脂ケース6下部にある圧力導入部から加わる
圧力と大気圧との差圧により圧力センサ素子1が機械的
歪を生じ、その機械的歪は、印加圧力と大気圧の差圧に
比例する。圧力センサ素子1が歪を発生すると圧力セン
サ素子1上に形成された半導体抵抗の抵抗値が歪の大き
さに比例して変化する。この抵抗値の変化を検出し、回
路基板10上に設けられた増幅回路で増幅して出力する
ことにより、印加圧力と大気圧の差圧を測定している。
また圧力センサ素子1の下部にある耐ガス性接着剤2か
ら万一、ガス漏洩が発生した場合、圧力室13にガスが
漏洩し、圧力調整孔12の開孔面積に応じたガス量が外
部に漏洩すると共に、開孔面積に応じた圧力室13の圧
力が圧力センサ素子1の受圧面と反対の面に印加され検
知圧力は低下する事となる。
The operation based on the above configuration will be described below. The pressure sensor element 1 generates a mechanical strain due to a differential pressure between the pressure applied from the pressure introducing portion at the lower portion of the resin case 6 and the atmospheric pressure, and the mechanical strain is proportional to the differential pressure between the applied pressure and the atmospheric pressure. When the pressure sensor element 1 generates a strain, the resistance value of the semiconductor resistor formed on the pressure sensor element 1 changes in proportion to the magnitude of the strain. The change in the resistance value is detected, amplified by an amplifier circuit provided on the circuit board 10 and output, thereby measuring the differential pressure between the applied pressure and the atmospheric pressure.
If a gas leaks from the gas-resistant adhesive 2 under the pressure sensor element 1, the gas leaks into the pressure chamber 13, and the gas amount corresponding to the opening area of the pressure adjusting hole 12 becomes outside. At the same time, the pressure of the pressure chamber 13 corresponding to the opening area is applied to the surface of the pressure sensor element 1 opposite to the pressure receiving surface, and the detection pressure is reduced.

【0016】(実施例2)図2は、実施例1のガス圧力
検知装置に異常検出装置を附加した制御ブロック図であ
る。図2においてガス流路21の圧力を検出するガス圧
力検知装置22は、基準流体導入部(圧力調整孔)23
を大気に解放し、大気との差圧を検出するように接続さ
れている。ガス流路21のガス圧力検知装置22取付位
置の下流側には、ガス流量を計量するガスメータ24、
さらにその下流にガスを遮断する遮断弁25が接続され
ている。26は圧力異常検出部で、ガス圧力検知装置2
2から圧力検出信号を入力し、所定の適正圧力と比較
し、適正圧力範囲を外れた時に遮断出力信号を遮断弁5
に出力する様に接続されている。
(Embodiment 2) FIG. 2 is a control block diagram in which an abnormality detection device is added to the gas pressure detection device of the first embodiment. In FIG. 2, a gas pressure detecting device 22 for detecting the pressure of the gas flow path 21 includes a reference fluid introducing portion (pressure adjusting hole) 23.
To the atmosphere, and connected to detect a pressure difference with the atmosphere. A gas meter 24 for measuring a gas flow rate is provided on the gas flow path 21 on the downstream side of the gas pressure detecting device 22 mounting position.
Further, a shutoff valve 25 for shutting off gas is connected downstream of the valve. Reference numeral 26 denotes a pressure abnormality detection unit, and the gas pressure detection device 2
2, a pressure detection signal is input and compared with a predetermined appropriate pressure.
Connected to output.

【0017】上記の構成に基づき、以下動作について説
明する。上記実施例1のガス圧力検知装置22がガス漏
洩した場合、ガス圧力検知装置22は、ガス圧力低下の
検出信号を出力し、圧力異常検出部26に入力され、圧
力異常検出部26より遮断信号が遮断弁に出力され、遮
断する。
The operation based on the above configuration will be described below. When the gas pressure detecting device 22 of the first embodiment leaks gas, the gas pressure detecting device 22 outputs a detection signal of a decrease in gas pressure, is input to the pressure abnormality detection unit 26, and outputs a cutoff signal from the pressure abnormality detection unit 26. Is output to the shutoff valve to shut off.

【0018】[0018]

【発明の効果】以上説明したように本発明のガス圧力検
知装置によれば、以下に示す効果がある。
As described above, the gas pressure detecting device of the present invention has the following effects.

【0019】請求項1では、被測定圧力媒体(LPガ
ス、都市ガス)が接触する部分は耐ガス性処理を行なう
と共に、他構成要素には被測定媒体(LPガス、都市ガ
ス)が接触しないようにすることにより、材料の膨潤に
よるガス漏洩を防止する。また、温度変動によるガスの
液化(収縮)、気化(膨脹)での変形、変質による特性
劣化を防止することができる。万一、ガス漏洩が発生し
た場合でも、ガス漏洩量を被測定流体(LPガス、都市
ガス)の爆発限界以下に制限すると共に、漏洩検知が可
能である。以上のように安全で高信頼性のガス圧力検知
装置を実現できる。
According to the first aspect, the portion in contact with the pressure medium to be measured (LP gas, city gas) is subjected to a gas resistance treatment, and the other components are not contacted by the medium to be measured (LP gas, city gas). By doing so, gas leakage due to swelling of the material is prevented. In addition, it is possible to prevent liquefaction (shrinkage) and deformation due to gasification (expansion) of the gas due to temperature fluctuation and deterioration of characteristics due to deterioration. Even if a gas leak occurs, it is possible to limit the amount of gas leak below the explosion limit of the fluid to be measured (LP gas, city gas) and to detect the leak. As described above, a safe and highly reliable gas pressure detection device can be realized.

【0020】[0020]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1におけるガス圧力検知装置の
構造を示す断面図
FIG. 1 is a cross-sectional view illustrating a structure of a gas pressure detecting device according to a first embodiment of the present invention.

【図2】本発明の実施例2におけるガス圧力検知装置の
制御ブロック図
FIG. 2 is a control block diagram of a gas pressure detecting device according to a second embodiment of the present invention.

【図3】従来の半導体圧力検知装置を示す断面図FIG. 3 is a sectional view showing a conventional semiconductor pressure detecting device.

【符号の説明】[Explanation of symbols]

1 圧力センサ素子 3 リードフレーム 4 圧力導入管(耐ガス性材料) 5 センサケース 6 樹脂ケース(耐ガス性材料) 7 耐ガス性ゴムシール材 8 リード 9 接着剤 10 回路基板 11 ポッティング剤(ゲル状) 12 圧力調整孔 13 圧力室 26 圧力異常検出部 DESCRIPTION OF SYMBOLS 1 Pressure sensor element 3 Lead frame 4 Pressure introduction pipe (gas-resistant material) 5 Sensor case 6 Resin case (gas-resistant material) 7 Gas-resistant rubber sealing material 8 Lead 9 Adhesive 10 Circuit board 11 Potting agent (gelling) 12 Pressure adjustment hole 13 Pressure chamber 26 Pressure abnormality detector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−102036(JP,A) 特開 平5−196532(JP,A) 特開 平2−170032(JP,A) 実開 昭57−6042(JP,U) 実開 平4−47642(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01L 9/04 G01L 19/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-102036 (JP, A) JP-A-5-196532 (JP, A) JP-A-2-170032 (JP, A) 6042 (JP, U) Hira 4-47642 (JP, U) (58) Fields surveyed (Int. Cl. 7 , DB name) G01L 9/04 G01L 19/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体の圧力センサ素子と、前記圧力セ
ンサ素子を上面で耐ガス性接着剤と下端外周面で樹脂ケ
ースの圧力導入部の内壁面との間に気密状態に介在され
た耐ガス性ゴムシール材により、周囲部材から吊り下げ
状態で固定され、周囲と気密状態で囲まれたガス圧力検
知通路を構成する耐ガス性材料で形成された圧力導入管
と、前記圧力センサ素子とリードを介して電気的に接続
されているリードフレームと、前記圧力導入管とリード
フレームを樹脂で一体成形してなるセンサケースと、こ
のセンサケースと前記リードフレームを介して電気的に
接続されている回路基板を収容すると共に、上部に圧力
調整孔とこの圧力調整孔の周囲に接着剤を介して前記セ
ンサケースを気密状態に保持する事により構成された圧
力室とを備えた耐ガス性材料の樹脂ケースとを備えたガ
ス圧力検知装置。
1. A pressure sensor element made of a semiconductor, a gas-resistant adhesive on the upper surface, and a resin cover on a lower peripheral surface.
Airtight between the inner wall of the pressure
Suspended from surrounding members with a gas-resistant rubber seal material
Gas pressure sensor, which is fixed in
Pressure introduction pipe made of gas-resistant material that constitutes the knowledge passage
If, through a lead frame are electrically connected via the pressure sensor element and the lead, a sensor case formed integrally molding the pressure inlet pipe and the lead frame with a resin, said lead frame with the sensor casing And a pressure chamber formed by holding the sensor case in an airtight state through a pressure adjusting hole and an adhesive around the pressure adjusting hole. And a resin case made of a gas-resistant material.
JP19707493A 1993-08-09 1993-08-09 Gas pressure detector Expired - Lifetime JP3189516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19707493A JP3189516B2 (en) 1993-08-09 1993-08-09 Gas pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19707493A JP3189516B2 (en) 1993-08-09 1993-08-09 Gas pressure detector

Publications (2)

Publication Number Publication Date
JPH0755613A JPH0755613A (en) 1995-03-03
JP3189516B2 true JP3189516B2 (en) 2001-07-16

Family

ID=16368289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19707493A Expired - Lifetime JP3189516B2 (en) 1993-08-09 1993-08-09 Gas pressure detector

Country Status (1)

Country Link
JP (1) JP3189516B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044899A (en) * 2017-02-22 2017-08-15 深圳市芯易邦电子有限公司 Baroceptor

Also Published As

Publication number Publication date
JPH0755613A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
JP3182807B2 (en) Multifunctional fluid measurement transmission device and fluid volume measurement control system using the same
JP3431603B2 (en) Pressure sensor
JPS6021330B2 (en) Multifunction pressure sensor
JP2008532041A (en) Absolute pressure sensor separated from the medium
CA2313313C (en) Relative pressure sensor
JP3189516B2 (en) Gas pressure detector
US6257050B1 (en) Evaporative fuel leak diagnosing apparatus
JP3085797B2 (en) Pressure sensor
JPH0868709A (en) Gas pressure detector
JP2782572B2 (en) Pressure sensor and method of manufacturing the same
JP3178564B2 (en) Differential pressure measuring device
JP2776168B2 (en) Pressure sensor application equipment
JPS61240134A (en) Semiconductive substrate
CN222866107U (en) A dual-mode pressure difference air intake structure
JP2001115905A (en) Vaporized fuel leak diagnosis device
JP3185956B2 (en) Differential pressure measuring device
JPH05149821A (en) Absolute pressure sensor and its airtightness inspection method
JP3627302B2 (en) Gas abnormality monitoring device
JP2000002607A (en) Gas pressure detector
JP4292643B2 (en) Gas pressure detector
JPH0783777A (en) Differential pressure measuring device
JP2001134862A (en) Differential heat detector
JP3224292B2 (en) Microsensor and airtightness inspection method thereof
JP2004053429A (en) Flow measurement device
JP3349489B2 (en) Pressure sensor and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

EXPY Cancellation because of completion of term