[go: up one dir, main page]

JPH0693967B2 - Nitrogen gas separation method - Google Patents

Nitrogen gas separation method

Info

Publication number
JPH0693967B2
JPH0693967B2 JP2004317A JP431790A JPH0693967B2 JP H0693967 B2 JPH0693967 B2 JP H0693967B2 JP 2004317 A JP2004317 A JP 2004317A JP 431790 A JP431790 A JP 431790A JP H0693967 B2 JPH0693967 B2 JP H0693967B2
Authority
JP
Japan
Prior art keywords
tank
adsorption
nitrogen gas
product
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004317A
Other languages
Japanese (ja)
Other versions
JPH03207420A (en
Inventor
恒夫 玄馬
猛 田丸
哲彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2004317A priority Critical patent/JPH0693967B2/en
Publication of JPH03207420A publication Critical patent/JPH03207420A/en
Publication of JPH0693967B2 publication Critical patent/JPH0693967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力変動吸着装置によって窒素ガスを分離する
場合、運転開始後所定の純良の窒素ガスが得られる迄の
時間を短縮する方式に関するものである。
TECHNICAL FIELD The present invention relates to a method for shortening the time until a predetermined pure nitrogen gas is obtained after the start of operation when separating nitrogen gas by a pressure fluctuation adsorption device. Is.

〔従来技術〕[Prior art]

吸着剤としての分子篩炭(以下MSCという)はガス固有
の吸着速度差を利用して、酸素、炭酸ガス、水分等を短
時間のうちに吸着除去し、窒素のみを取出すことが出来
るという窒素ガス分離に関して極めてすぐれた特性をも
っている。MSCを用い圧力変動吸着方式(以下PSA方式と
いう)で空気等の混合ガスから窒素を分離する方法は一
般に加圧吸着、均圧、減圧再生等の各操作を中心に構成
されており、通常2基の吸着槽を用い、両槽において18
0゜の位相差でこれ等の操作を順次切替えて実施するこ
とにより連続的に製品窒素ガスを得ることが可能とな
る。本発明における1サイクルとは片方の吸着槽でこれ
等一連の操作を全て1回実施することをいう。製品槽は
操作の切替えに起因する窒素ガス純度の変動及び圧力変
動の緩和等の効果を主目的として装置に組み込まれてい
る。
Molecular sieve charcoal (hereinafter referred to as MSC) as an adsorbent is a nitrogen gas that can take out only nitrogen by adsorbing and removing oxygen, carbon dioxide gas, water, etc. in a short time by utilizing the difference in adsorption rate peculiar to gas. It has excellent properties for separation. The method of separating nitrogen from a mixed gas such as air by pressure fluctuation adsorption method (hereinafter referred to as PSA method) using MSC is generally composed mainly of operations such as pressure adsorption, pressure equalization, and decompression regeneration. 18 in both tanks using the base adsorption tank
By sequentially switching these operations with a phase difference of 0 ° and performing them, it becomes possible to continuously obtain the product nitrogen gas. One cycle in the present invention means to carry out a series of these operations once in one adsorption tank. The product tank is installed in the device mainly for the purpose of reducing fluctuations in the purity of nitrogen gas and fluctuations in pressure due to switching of operations.

当該装置は長期間に亘って一定量の窒素ガスを継続的に
使用することが最も望ましい。製品窒素ガスの供給が不
要となり、装置を停止する際は通常、2基の吸着槽を大
気と連通状態にしてMSCに吸着されているガスを脱着し
て置く方法がとられている。これは加圧状態で長時間多
量のガスを吸着して置くと、次の運転再開時MSCを直ち
に十分な再生を行うことが困難になることを配慮したも
のである。吸着槽を大気開放状態にし更に製品槽より窒
素ガスを吸着槽内に流入し洗浄して置く方法も提案され
ている。
Most preferably, the device uses a constant amount of nitrogen gas continuously for a long period of time. When supply of product nitrogen gas becomes unnecessary and the equipment is shut down, the two adsorption tanks are normally in communication with the atmosphere and the gas adsorbed by the MSC is desorbed and placed. This is because it is difficult to immediately and sufficiently regenerate the MSC when the next operation is restarted if a large amount of gas is adsorbed and left under pressure for a long time. A method has also been proposed in which the adsorption tank is opened to the atmosphere and nitrogen gas is made to flow from the product tank into the adsorption tank for cleaning.

装置の運転開始に当たっては、窒素の純度が所定の値に
到達するまで製品槽出口で得られた窒素ガスを大気中に
放出し、所定の純度が確認されると放出を止め製品とし
て供給する方法が、一般的である。吸着槽内の置換を促
進するためこの期間サイクル時間をある程度短縮する場
合もある。
When starting operation of the equipment, the nitrogen gas obtained at the product tank outlet is released into the atmosphere until the purity of nitrogen reaches a specified value, and when the specified purity is confirmed, the release is stopped and the product is supplied as a product. However, it is common. The cycle time may be shortened to some extent in order to promote the replacement in the adsorption tank.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

MSCを用いたPSA方式の窒素ガス分離装置の実用化で、安
価な窒素ガス源としての利用分野が急速に拡大して来た
結果、使用量の変動、運転時間の制約等により間けつ運
転を余儀なくされるケースが急増して来た。更に、当該
方式に関する近年の技術開発は著しく、分離される窒素
ガス純度の大巾な向上が可能となった。一方、高純度窒
素ガスを分離する場合、運転開始後得られる窒素ガスが
所定の純度にまで到達する時間(以下、立ち上げ時間と
記す)は等比級数的に増大してくる。従って、この立ち
上げ時間短縮に関する要望が急速に高まっている。
Practical application of the PSA type nitrogen gas separation device using MSC has rapidly expanded the field of use as an inexpensive nitrogen gas source, resulting in intermittent operation due to fluctuations in usage amount, operating time constraints, etc. The number of cases that have been forced is increasing rapidly. Furthermore, the recent technological development related to this method has been remarkable, and it has become possible to greatly improve the purity of the separated nitrogen gas. On the other hand, when separating high-purity nitrogen gas, the time required for the nitrogen gas obtained after the start of operation to reach a predetermined purity (hereinafter, referred to as start-up time) increases geometrically. Therefore, the demand for shortening the startup time is rapidly increasing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はこの装置を運転開始する際、立ち上げ時間
の短縮に関して鋭意研究の結果、次の方法を発明するに
到った。即ち、 (1) 窒素と酸素を主成分とする混合ガスを原料と
し、分子篩炭を充填した吸着槽を含む圧力変動吸着方式
の窒素ガス分離装置において、製品窒素ガスの使用を停
止した後も当該装置の運転を10サイクル以下の範囲内で
継続した後停止することを特徴とする窒素ガス分離方
法。
The inventors of the present invention have invented the following method as a result of earnest research on shortening the start-up time when starting operation of this device. That is, (1) In a nitrogen gas separator of pressure fluctuation adsorption type, which uses a mixed gas containing nitrogen and oxygen as a main material as a raw material and includes an adsorption tank filled with molecular sieve charcoal, even after the use of the product nitrogen gas is stopped. A method for separating nitrogen gas, characterized in that the operation of the apparatus is continued within a range of 10 cycles or less and then stopped.

(2) 窒素と酸素を主成分とする混合ガスを原料と
し、分子篩炭を充填した吸着槽を含む圧力変動吸着方式
の窒素ガス分離装置において、運転開始時吸着槽と製品
槽間の連結配管を閉止した状態で、20サイクル以下の範
囲内の吸着並びに再生操作を行った後、吸着槽と製品槽
間を連結して製品窒素ガスの取出し開始することを特徴
とする窒素ガス分離方法。
(2) In a nitrogen gas separation device of pressure fluctuation adsorption method, which uses a mixed gas mainly composed of nitrogen and oxygen as a raw material and includes an adsorption tank filled with molecular sieve charcoal, a connecting pipe between the adsorption tank and the product tank at the start of operation is connected. A method for separating nitrogen gas, which comprises performing adsorption and regeneration operations within a range of 20 cycles or less in a closed state, and then connecting the adsorption tank and the product tank to start taking out product nitrogen gas.

(3) 窒素と酸素を主成分とする混合ガスを原料と
し、分子篩炭を充填した吸着槽を含む圧力変動吸着方式
の窒素ガス分離装置において、運転開始時吸着槽と製品
槽間の連結配管を閉止した状態で、吸着並びに再生操作
を行い吸着槽と製品槽間の両槽内圧力差が1kg/cm2以内
となった時点で当該吸着槽と製品槽を連結し、製品窒素
ガスの取出しを開始することを特徴とする窒素ガス分離
方法である。(1)項と(2)項、又は(1)項と
(3)項の方法を組み合わすとより効果的となる。
(3) In a pressure fluctuation adsorption type nitrogen gas separation device including an adsorption tank filled with molecular sieve charcoal using a mixed gas containing nitrogen and oxygen as main components, a connecting pipe between the adsorption tank and the product tank at the start of operation. When the adsorption and regeneration operations are performed in the closed state and the pressure difference between the adsorption tank and the product tank becomes less than 1 kg / cm 2 , the adsorption tank and the product tank are connected and the product nitrogen gas is taken out. It is a nitrogen gas separation method characterized by starting. It is more effective to combine the methods of (1) and (2) or (1) and (3).

以下、第1図を用いて本発明を更に詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to FIG.

分子篩炭を用いたPSA方式の窒素ガス分離装置は第1図
に示すように通常2槽の吸着槽により加圧吸着、均圧、
減圧再生の各操作を用いて窒素ガスを分離している。
As shown in Fig. 1, a PSA-type nitrogen gas separation device using molecular sieve charcoal normally uses two adsorption tanks for pressure adsorption, pressure equalization,
Nitrogen gas is separated using each operation of vacuum regeneration.

空気等窒素と酸素を主成分とする加圧状態の原料混合ガ
スは弁5を通って吸着槽1に入り、槽内に充填されてい
るMSCにより吸着除去される成分と吸着されなかった窒
素等の成分に分離され、製品窒素は弁9を経由して製品
槽3に一旦貯蔵される(加圧吸着操作)。
A pressurized raw material mixed gas containing nitrogen and oxygen as main components such as air enters the adsorption tank 1 through the valve 5, and the components that are adsorbed and removed by the MSC filled in the tank and the nitrogen that is not adsorbed And the product nitrogen is temporarily stored in the product tank 3 via the valve 9 (pressurized adsorption operation).

吸着槽1内MSCの分離性能が許容限界に到達する直前に
なるように設定された時間に達すると弁5、弁9、弁8
を閉止し、弁11又は弁11と12を開くことによって両槽を
連通する、加圧吸着操作時の加圧状態に置かれている吸
着槽1内に残存するガスは大気圧近傍、あるいは大気圧
以下まで減圧されている吸着槽2へ弁11又は弁11及び12
を通って両槽の圧力差で移動する(均圧操作)。
When the separation performance of the MSC in the adsorption tank 1 reaches the time set just before the permissible limit is reached, the valve 5, valve 9, and valve 8 are reached.
The gas remaining in the adsorption tank 1 placed in a pressurized state at the time of pressure adsorption operation is close to atmospheric pressure or at a large atmospheric pressure, and the two tanks are communicated by closing the valve and opening the valve 11 or the valves 11 and 12. Valve 11 or valves 11 and 12 to adsorption tank 2 whose pressure is reduced to below atmospheric pressure
Through the pressure difference between the two tanks (equal pressure operation).

吸着槽1は均圧操作により残存ガスの一部を吸着槽2に
移動させた後、弁11又は弁11と12を閉止し、弁6を開に
することにより、大気圧近傍まで減圧しMSCに吸着され
ていたガスは消音器4を通って系外に排出される。この
時オリフィス13で流量規制された製品窒素ガスが吸着槽
1内を通ることによりMSCを洗浄する方法、吸着槽1内
が大気圧近傍になった後、真空ポンプ等を用いて吸着槽
1内を大気圧以下に減圧させる方法等を用いることによ
り、再生効果を更に高めることができる(減圧再生操
作)。
In the adsorption tank 1, after moving a part of the residual gas to the adsorption tank 2 by the pressure equalizing operation, the valve 11 or the valves 11 and 12 are closed, and the valve 6 is opened to reduce the pressure to near atmospheric pressure, and MSC The gas adsorbed on is passed through the silencer 4 and discharged to the outside of the system. At this time, the product nitrogen gas whose flow rate is regulated by the orifice 13 is passed through the adsorption tank 1 to clean the MSC. After the inside of the adsorption tank 1 is close to the atmospheric pressure, the inside of the adsorption tank 1 is adjusted by using a vacuum pump or the like. The regeneration effect can be further enhanced by using a method of reducing the pressure to atmospheric pressure or less (reducing pressure regeneration operation).

これらの操作を吸着槽1及び2で180゜の位相差をもっ
て繰り返すことにより、原料ガスより連続的に窒素を分
離することができる。
By repeating these operations in the adsorption tanks 1 and 2 with a phase difference of 180 °, nitrogen can be continuously separated from the source gas.

この様にして分離された窒素は製品槽3に一旦貯蔵され
た後、弁14を経由して連続的に供給される。
The nitrogen thus separated is once stored in the product tank 3 and then continuously supplied via the valve 14.

一方、製品窒素の使用を停止する時は弁14を閉止し、窒
素の供給を停止する。但し加圧吸着、均圧、減圧再生の
各操作は継続して行ない吸着槽にて窒素を分離し、製品
槽3に貯える。このため製品槽3内の圧力の変動域は窒
素の供給を行なっている通常運転時の圧力変動域よりも
徐々に高くなってくる。窒素の供給後、製品槽3内の圧
力が通常運転時の最高到達圧力を超える状態になった
時、好ましくは製品槽3内の圧力が通常運転時の最高到
達圧力よりも0.1kg/cm2G以上高くなった時点ですべての
操作を停止する。次の装置起動まで製品槽3内の圧力を
この状態で保持しておくことにより、装置起動後所定の
純度の製品窒素が使用可能となるまでの時間は大幅に短
縮される。
On the other hand, when the use of product nitrogen is stopped, the valve 14 is closed and the supply of nitrogen is stopped. However, each operation of pressure adsorption, pressure equalization, and pressure reduction regeneration is continuously performed to separate nitrogen in the adsorption tank and store it in the product tank 3. For this reason, the fluctuation range of the pressure in the product tank 3 becomes gradually higher than the pressure fluctuation range during the normal operation in which nitrogen is supplied. After the supply of nitrogen, when the pressure in the product tank 3 exceeds the maximum ultimate pressure in normal operation, preferably the pressure in the product tank 3 is 0.1 kg / cm 2 higher than the maximum ultimate pressure in normal operation. Stop all operations when the value becomes higher than G. By keeping the pressure in the product tank 3 in this state until the next start of the apparatus, the time until the product nitrogen of a predetermined purity becomes usable after the start of the apparatus is greatly shortened.

但し、窒素の供給停止より装置の停止までのサイクル数
は、原料ガスの圧力、1サイクルの設定時間、製品窒素
の純度等によって異なる。たとえば原料ガスの圧力7kg/
cm2G、1サイクル時間4分、窒素純度が99.9%の場合、
1〜4サイクルで必要条件を満たし、これ以上の操作は
ほとんど効果がない。しかし、製品の純度が高くなる
程、有効なサイクル数は増加する。本発明者らが条件を
変えて試行した結果、10サイクルまでの範囲にわたって
効果が認められた(実施例1〜4)。
However, the number of cycles from the supply stop of nitrogen to the stop of the apparatus depends on the pressure of the raw material gas, the set time of one cycle, the purity of the product nitrogen, and the like. For example, the pressure of the source gas is 7kg /
cm 2 G, 1 cycle time 4 minutes, nitrogen purity 99.9%,
The required conditions are satisfied in 1 to 4 cycles, and further operations have almost no effect. However, the more pure the product, the more effective cycles. As a result of the inventors changing the conditions and conducting trials, the effect was observed over a range of up to 10 cycles (Examples 1 to 4).

又、運転を開始する際、弁9、10を閉止して吸着槽1、
2間で交互に加圧、均圧、減圧を繰り返す。
Also, when the operation is started, the valves 9 and 10 are closed and the adsorption tank 1 and
Pressurization, pressure equalization, and pressure reduction are alternately repeated between the two.

本発明者らは、この操作を運転開始時に数回〜20回程度
の範囲で繰り返した後、製品槽と吸着槽を連結して通常
の加圧吸着、均圧、減圧再生の各操作を行なうことによ
り、運転開始後所定の純度の製品窒素ガスが使用可能と
なるまでの時間(以下、立ち上げ時間という)が大幅に
短縮できることを見いだした。
The present inventors repeat this operation several times to about 20 times at the start of operation, and then perform normal pressure adsorption, pressure equalization, and decompression regeneration operations by connecting the product tank and the adsorption tank. As a result, it was found that the time until the product nitrogen gas of a predetermined purity becomes usable after the start of operation (hereinafter referred to as the start-up time) can be significantly shortened.

運転開始時は吸着槽の圧力が低い状態にあるため、窒素
の分離が不充分であり、このまま製品槽と連結すると製
品槽内に純度が低い窒素ガスが入るため純度の回復に時
間がかかる。そこで吸着槽だけで加圧し、徐々に圧力を
上げていくと共に、吸着槽上部の窒素ガス純度が製品槽
内の純度とほぼ等しくなった時点で両槽を連結し、同時
に製品槽より窒素を供給する。ただし99.999%といった
高純度の窒素を必要とする場合は、両槽を連通した後あ
る程度の時間が経過してから窒素を供給することもあ
る。
Since the pressure in the adsorption tank is low at the start of the operation, the separation of nitrogen is insufficient. If it is connected to the product tank as it is, nitrogen gas of low purity will enter the product tank, so that it takes time to recover the purity. Therefore, pressurize only in the adsorption tank and gradually raise the pressure, and when the nitrogen gas purity in the upper part of the adsorption tank becomes almost equal to the purity in the product tank, connect both tanks and supply nitrogen from the product tank at the same time. To do. However, when high-purity nitrogen of 99.999% is required, nitrogen may be supplied after a certain amount of time has passed after connecting both tanks.

この吸着槽だけでの加圧、減圧に要するサイクル時間
は、原料ガスの圧力等条件によっては通常運転時のサイ
クル時間より短い方が有効な場合もある。
Depending on the conditions such as the pressure of the raw material gas, the cycle time required for pressurization and depressurization in this adsorption tank alone may be shorter than the cycle time during normal operation.

また、吸着槽と製品槽を連結させる場合、両槽間の圧力
差が大きいと急に系内の流れの状態が乱され、分離され
る窒素ガスの濃度が低下する。両槽内圧力差1km/cm2
内となった状態で両槽を連結することが立ち上げ時間短
縮化のために有効である。
Further, when the adsorption tank and the product tank are connected, if the pressure difference between the two tanks is large, the state of the flow in the system is suddenly disturbed, and the concentration of the separated nitrogen gas decreases. It is effective to connect both tanks when the pressure difference between both tanks is within 1km / cm 2 to shorten the startup time.

〔作用・効果〕[Action / effect]

特許請求の範囲第1項に記載した発明はPSA装置を停止
する場合、製品貯槽からの窒素ガスの取出しを停止した
後もしばらくPSA装置の運転を継続して製品貯槽の圧力
を上げてから停止させる方法である。これにより、運転
再開の場合所定純度の窒素ガスが得られる迄の時間、す
なわち立ち上げ時間が著しく短縮できる。運転停止後製
品貯槽は出入口の弁を閉止してその圧力のまま保持され
るが、吸着槽は大気中への放出弁を開放しておくため、
吸着剤は大気と接触した状態となっている。従って、運
転停止中吸着剤には種々の大気中のガス成分が飽和に達
する迄吸着されている。通常の方法で運転再開した場合
は吸着槽内の圧力が次第に上昇し、製品貯槽の圧力に達
すると、吸着槽で分離された窒素ガスが製品貯槽に流入
し始める。しかしてその場合、製品貯槽の内圧が低い
と、貯槽へ流入する窒素ガス純度は正常の場合より著し
く低い。
In the invention described in claim 1, when the PSA device is stopped, the operation of the PSA device is continued for a while even after the removal of nitrogen gas from the product storage tank is stopped, and then the pressure of the product storage tank is increased and then stopped. It is a method to let. As a result, when the operation is restarted, the time until the nitrogen gas having the predetermined purity is obtained, that is, the start-up time can be remarkably shortened. After the operation is stopped, the product storage tank closes the inlet / outlet valve to maintain the pressure, but the adsorption tank keeps the release valve open to the atmosphere.
The adsorbent is in contact with the atmosphere. Therefore, various gas components in the atmosphere are adsorbed on the adsorbent during the operation stop until it reaches saturation. When the operation is resumed by the usual method, the pressure in the adsorption tank gradually rises, and when the pressure in the product storage tank is reached, the nitrogen gas separated in the adsorption tank starts to flow into the product storage tank. However, in this case, when the internal pressure of the product storage tank is low, the purity of nitrogen gas flowing into the storage tank is significantly lower than in the normal case.

この時製品貯槽の内圧を高くしておくと、吸着槽の内圧
がその圧力に達する迄吸着槽から製品貯槽への注入が開
始されない。吸着槽の内圧が高くなればなる程その間に
吸着剤の吸着ガス組成及び槽内ガスの窒素濃度分布がよ
り早く正常な運転状態に近くなってゆくと考えられる。
このため分離された窒素ガスの純度が上昇し、その結果
立ち上げ時間が短縮されるものと考えられる。
If the internal pressure of the product storage tank is increased at this time, injection from the adsorption tank into the product storage tank does not start until the internal pressure of the adsorption tank reaches that pressure. It is considered that the higher the internal pressure of the adsorption tank, the faster the composition of the adsorbed gas of the adsorbent and the nitrogen concentration distribution of the gas in the tank will be closer to the normal operating state.
Therefore, it is considered that the purity of the separated nitrogen gas is increased and, as a result, the startup time is shortened.

また特許請求の範囲第2項に記載した運転再開方法の場
合も、最初は吸着槽・製品貯槽間の弁を閉止したままで
吸着槽の運転をするため吸着槽内の圧力は通常の運転開
始時よりも高くなり、内部の吸着剤の吸着ガス組成及び
槽内ガスの窒素濃度分布がより早く正常な運転状態にな
ると考えられる。そのため分離された窒素ガスの純度が
上昇し、その結果、立ち上げ時間が短縮されたものと考
えられる。
Also, in the case of the operation resuming method described in claim 2, since the adsorption tank is operated with the valve between the adsorption tank and the product storage tank closed at the beginning, the pressure in the adsorption tank starts normal operation. It is considered that the adsorbed gas composition of the internal adsorbent and the nitrogen concentration distribution of the gas in the tank become faster and normal operating conditions occur. Therefore, it is considered that the purity of the separated nitrogen gas is increased and, as a result, the startup time is shortened.

近年PSA方式による窒素ガス分離技術が進歩し、純度99.
99%以上のガスが得られるようになった。このような高
純度ガス用のPSAでは一旦運転を停止した後、再開した
場合の立ち上げ時間が低純度ガス用PSAとくらべて著し
く長くなる欠点がある。本発明はこのような高純度ガス
用PSAに適用した場合顕著な効果を示すものである。特
に特許請求の範囲第1項及び第2項或いは第1項及び第
3項の方式を組合せた場合極めて顕著な効果が得られる
ことは実施例10に示す通りである。
In recent years, the nitrogen gas separation technology using the PSA method has advanced, and the purity is 99.
More than 99% of gas can be obtained. Such a PSA for high-purity gas has a drawback that the startup time when the operation is once stopped and then restarted is significantly longer than that of the PSA for low-purity gas. The present invention shows remarkable effects when applied to such a PSA for high purity gas. In particular, as shown in the tenth embodiment, a very remarkable effect is obtained when the methods of claims 1 and 2 or the methods of claims 1 and 3 are combined.

〔実施例〕〔Example〕

以下実施例をあげて、更に本発明を具体的に説明する
が、本発明を何ら限定するものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

実施例1〜4,比較例1 第1図に示すMSCを充填した2本の吸着槽よりなる、PSA
方式窒素ガス分離装置を用い、高圧空気を原料とし、正
常な運転時における吸着槽の到達圧力6.5kg/cm2G,1サイ
クル4分,窒素純度99.99%になる様、製品窒素を一定
量取り出し、安定した時点で製品の供給を停止した。
Examples 1 to 4 and Comparative Example 1 PSA consisting of two adsorption tanks filled with MSC shown in FIG.
Using a system nitrogen gas separator, using high-pressure air as a raw material, take out a certain amount of product nitrogen so that the ultimate pressure of the adsorption tank during normal operation is 6.5 kg / cm 2 G, 1 cycle 4 minutes, and the nitrogen purity is 99.99%. The product supply was stopped at a stable point.

製品貯槽からの窒素ガスの供給を停止した後、吸着槽の
運転を停止する迄のサイクル数及び製品貯槽到達圧力と
窒素ガス供給停止の24時間後に運転を再開した場合の立
ち上げ時間の関係を第1表に示す。
The relationship between the number of cycles until the operation of the adsorption tank is stopped after the supply of nitrogen gas from the product storage tank is stopped, the ultimate pressure of the product storage tank and the start-up time when the operation is restarted 24 hours after the supply of nitrogen gas is stopped. It is shown in Table 1.

実施例5〜8 上記比較例1において、運転再開始時吸着槽と製品貯槽
間の弁9,10を閉止したまま吸着槽の運転のみ再開した場
合、吸着槽と製品貯槽を連結する迄の吸着槽のサイクル
数と立ち上げ時間の関係を第2表に示す。
Examples 5 to 8 In Comparative Example 1 above, when only the operation of the adsorption tank was restarted while the valves 9 and 10 between the adsorption tank and the product storage tank were closed at the time of restarting the operation, adsorption until the adsorption tank and the product storage tank were connected Table 2 shows the relationship between the number of tank cycles and the startup time.

実施例10 実施例1の条件でPSA装置を停止し、24時間後実施例5
の条件で運転再開した場合、立ち上げ時間は8分であっ
た。
Example 10 The PSA apparatus was stopped under the conditions of Example 1, and after 24 hours Example 5
When the operation was restarted under the condition of, the startup time was 8 minutes.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一例を示すフローシートである。 1,2:吸着槽 3:製品貯槽 4:消音器 5,6,7,8,9,10,11,12,14:弁 13:オリフィス FIG. 1 is a flow sheet showing an example of the present invention. 1,2: Adsorption tank 3: Product storage tank 4: Silencer 5,6,7,8,9,10,11,12,14: Valve 13: Orifice

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒素と酸素を主成分とする混合ガスを原料
とし、分子篩炭を充填した吸着槽を含む圧力変動吸着方
式の窒素ガス分離装置において、製品窒素ガスの使用を
停止した後も当該装置の運転を10サイクル以下の範囲内
で継続した後停止することを特徴とする窒素ガス分離方
法。
1. A nitrogen gas separator of pressure fluctuation adsorption type, which uses a mixed gas containing nitrogen and oxygen as a main component as a raw material and includes an adsorption tank filled with molecular sieve charcoal, after the use of product nitrogen gas is stopped. A method for separating nitrogen gas, characterized in that the operation of the apparatus is continued within a range of 10 cycles or less and then stopped.
【請求項2】窒素と酸素を主成分とする混合ガスを原料
とし、分子篩炭を充填した吸着槽を含む圧力変動吸着方
式の窒素ガス分離装置において、運転開始時吸着槽と製
品槽間の連結配管を閉止した状態で、20サイクル以下の
範囲内の吸着並びに再生操作を行った後、吸着槽と製品
槽間を連結して製品窒素ガスの取出しを開始することを
特徴とする窒素ガス分離方法。
2. A pressure fluctuation adsorption type nitrogen gas separation apparatus comprising an adsorption tank filled with molecular sieve charcoal, which is made of a mixed gas containing nitrogen and oxygen as main ingredients, and is connected between the adsorption tank and the product tank at the start of operation. Nitrogen gas separation method characterized by starting adsorption of product nitrogen gas within a range of 20 cycles or less with the pipe closed and then connecting the adsorption tank and the product tank to start product nitrogen gas extraction .
【請求項3】窒素と酸素を主成分とする混合ガスを原料
とし、分子篩炭を充填した吸着槽を含む圧力変動吸着方
式の窒素ガス分離装置において、運転開始時吸着槽と製
品槽間の連結配管を閉止した状態で、吸着並びに再生操
作を行ない吸着槽と製品槽間の両槽内圧力差が1kg/cm2
以内となった時点で当該吸着槽と製品槽を連結し、製品
窒素ガスの取出しを開始することを特徴とする窒素ガス
分離方法。
3. A pressure fluctuation adsorption type nitrogen gas separation apparatus comprising an adsorption tank filled with molecular sieve charcoal using a mixed gas containing nitrogen and oxygen as main materials, and connecting the adsorption tank and the product tank at the start of operation. Adsorption and regeneration operations are performed with the piping closed, and the pressure difference between the adsorption tank and the product tank is 1 kg / cm 2
A method for separating nitrogen gas, characterized in that the adsorption tank and the product tank are connected to each other at the time when the number becomes less than or equal to and the extraction of product nitrogen gas is started.
JP2004317A 1990-01-10 1990-01-10 Nitrogen gas separation method Expired - Lifetime JPH0693967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317A JPH0693967B2 (en) 1990-01-10 1990-01-10 Nitrogen gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317A JPH0693967B2 (en) 1990-01-10 1990-01-10 Nitrogen gas separation method

Publications (2)

Publication Number Publication Date
JPH03207420A JPH03207420A (en) 1991-09-10
JPH0693967B2 true JPH0693967B2 (en) 1994-11-24

Family

ID=11581099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317A Expired - Lifetime JPH0693967B2 (en) 1990-01-10 1990-01-10 Nitrogen gas separation method

Country Status (1)

Country Link
JP (1) JPH0693967B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262513A (en) * 1990-03-12 1991-11-22 Kanebo Ltd Separation of nitrogen gas
JP4758129B2 (en) * 2005-04-07 2011-08-24 日本特殊陶業株式会社 Oxygen concentrator
JP5009704B2 (en) * 2007-07-02 2012-08-22 山陽電子工業株式会社 Gas separation device and operation method of gas separation device
JP4669506B2 (en) * 2007-12-26 2011-04-13 本田技研工業株式会社 How to stop gas production equipment
CN102905901B (en) 2010-03-18 2016-05-25 株式会社理光 Droplet discharge method, liquid-droplet ejecting apparatus and ink jet recording device
JP5789834B2 (en) * 2011-11-03 2015-10-07 オリオン機械株式会社 Method of purging gas adsorption device and gas adsorption device
JP5939917B2 (en) * 2012-07-20 2016-06-22 株式会社日立産機システム Gas separation device
JP7112446B2 (en) * 2020-03-30 2022-08-03 大陽日酸株式会社 How to operate a gas purifier
WO2025057476A1 (en) * 2023-09-13 2025-03-20 大陽日酸株式会社 Gas separation method and gas separation device

Also Published As

Publication number Publication date
JPH03207420A (en) 1991-09-10

Similar Documents

Publication Publication Date Title
KR100288568B1 (en) Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air
JPS6132243B2 (en)
TW436316B (en) Pressure swing process and system using single adsorber and single blower for separating a gas mixture
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
EP0922481A2 (en) PSA process using simultaneous top and bottom evacuation of adsorbent bed
US5997611A (en) Single vessel gas adsorption system and process
CA2200997A1 (en) Process for treating a gas mixture by pressure swing adsorption
JPH0263520A (en) Method and apparatus for separating oxygen from air
JPH0693967B2 (en) Nitrogen gas separation method
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JP7482627B2 (en) Nitrogen gas separation method and nitrogen gas separation device
JP3654661B2 (en) Oxygen generation method by pressure fluctuation adsorption separation method
CN113041777A (en) Gas purification method and gas purification system
JPH0194915A (en) Separation of gaseous nitrogen by pressure fluctuation absorption system
JP4761635B2 (en) Nitrogen gas generation method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH0523523A (en) Pressure swing adsorbing method separating and recovering carbon monoxide from gaseous mixture containing carbon monoxide
JP2504448B2 (en) Pressure swing adsorption device
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JP3895037B2 (en) Low pressure oxygen enrichment method
JP4195131B2 (en) Single tower type adsorption separation method and apparatus
JPH04322713A (en) Method and equipment for separating gaseous nitrogen
JPH057719A (en) Pressure swinging-type mixed gas separation system
JP4908997B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus