JPH0679146A - Filtration method - Google Patents
Filtration methodInfo
- Publication number
- JPH0679146A JPH0679146A JP23623692A JP23623692A JPH0679146A JP H0679146 A JPH0679146 A JP H0679146A JP 23623692 A JP23623692 A JP 23623692A JP 23623692 A JP23623692 A JP 23623692A JP H0679146 A JPH0679146 A JP H0679146A
- Authority
- JP
- Japan
- Prior art keywords
- filtration
- liquid
- membrane
- backwash
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 95
- 239000012528 membrane Substances 0.000 claims abstract description 95
- 239000007788 liquid Substances 0.000 claims abstract description 70
- 238000011001 backwashing Methods 0.000 claims abstract description 32
- 239000000725 suspension Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000001471 micro-filtration Methods 0.000 claims description 25
- 239000012466 permeate Substances 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 23
- 239000011148 porous material Substances 0.000 abstract description 19
- 238000000855 fermentation Methods 0.000 abstract description 6
- 230000004151 fermentation Effects 0.000 abstract description 6
- 230000000737 periodic effect Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 2
- 239000011859 microparticle Substances 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 20
- 239000011550 stock solution Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 14
- 239000010419 fine particle Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000000926 separation method Methods 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- -1 organic acid salts Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000011027 product recovery Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009295 crossflow filtration Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical class [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical class [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical class [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical class [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000004323 potassium nitrate Chemical class 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- RWMKSKOZLCXHOK-UHFFFAOYSA-M potassium;butanoate Chemical compound [K+].CCCC([O-])=O RWMKSKOZLCXHOK-UHFFFAOYSA-M 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Chemical class 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229940104261 taurate Drugs 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011592 zinc chloride Chemical class 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、全ろ過周期逆洗システ
ムに関するものであり、特に高い膜透過流束を維持する
ために逆洗を周期的に行う精密ろ過膜カートリッジフィ
ルターを用いた全ろ過周期逆洗システムに関するもので
ある。本発明の全ろ過周期逆洗システムは、種々の高分
子、微生物、酵母、微粒子を含有あるいは懸濁する液体
の分離、精製、回収、濃縮などに適用され、特にろ過を
必要とする微細な微粒子を含有する液体からその微粒子
を分離する必要のあるあらゆる場合に適用することがで
き、例えば微粒子を含有する各種の懸濁液、発酵液ある
いは培養液などの他、顔料の懸濁液などから微粒子を分
離する場合にも適用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total filtration cycle backwash system, and more particularly, a total filtration using a microfiltration membrane cartridge filter that periodically performs backwash to maintain a high membrane permeation flux. It relates to a periodic backwash system. The whole filtration cycle backwash system of the present invention is applied to separation, purification, recovery, concentration, etc. of various polymers, microorganisms, yeasts, liquids containing or suspending fine particles, and particularly fine particles requiring filtration. It can be applied to any case where it is necessary to separate the fine particles from a liquid containing, for example, various suspensions containing the fine particles, a fermentation solution or a culture solution, and fine particles from a suspension of a pigment. It also applies when separating.
【0002】[0002]
【従来の技術】従来、膜を用いて懸濁物質を含有する液
体から懸濁物質を分離する技術としては、例えば圧力を
駆動力とする逆浸透法、限外ろ過法、精密ろ過法、電位
差を駆動力とする電気透析法、濃度差を駆動力とする拡
散透析法等がある。これらの方法は、連続操作が可能で
あり、分離操作中に温度やpHの条件を大きく変化させ
ることなく分離、精製あるいは濃縮ができ、粒子、分
子、イオン等の広範囲にわたって分離が可能であり、小
型プラントでも処理能力を大きく保つことができるので
経済的であり、分離操作に要するエネルギーが小さく、
かつ他の分離方法では難しい低濃度液体の処理が可能で
あるなどの理由により広範囲に実施されている。そして
これらの分離技術に用いられる膜としては、酢酸セルロ
ース、硝酸セルロース、再生セルロース、ポリスルホ
ン、ポリアクリロニトリル、ポリアミド、ポリイミド等
の有機高分子等を主体とした高分子膜や耐熱性、耐薬品
性などの耐久性に優れている多孔質セラミック膜などが
あり、主としてコロイドのろ過を対象とする場合は限外
ろ過膜が使用され、0.05から10μm の微細な粒子
のろ過を対象とする精密ろ過ではそれに適した微孔を有
する精密ろ過膜が使用されている。ところで近年、バイ
オテクノロジーの進歩に伴い、高純度化、高性能化、高
精密化が要求されるようになり、精密ろ過あるいは限外
ろ過技術の応用分野が拡大しつつある。しかしながら、
精密ろ過あるいは限外ろ過においては膜を用いて微粒子
を分離する場合に、濃度分極の影響によりケーク層が生
じて透過流体の流れに抵抗が生じ、また膜の目詰まりに
よる抵抗が大きくなって膜透過流束が急激にかつ著しく
低下してしまうという問題があり、これが精密ろ過ある
いは限外ろ過の実用化を妨げる最大の原因であった。ま
たそれに用いられる膜は汚染されやすく、その防止対策
が必要である。2. Description of the Related Art Conventionally, as a technique for separating a suspended substance from a liquid containing a suspended substance using a membrane, for example, a reverse osmosis method using pressure as a driving force, an ultrafiltration method, a microfiltration method, a potential difference. There are an electrodialysis method that uses the driving force as the driving force, a diffusion dialysis method that uses the concentration difference as the driving force, and the like. These methods are capable of continuous operation, can be separated, purified or concentrated without significantly changing the temperature and pH conditions during the separation operation, and can be separated over a wide range of particles, molecules, ions, etc., Economical because the processing capacity can be kept large even in a small plant, the energy required for the separation operation is small,
In addition, it is widely used because of the fact that it is possible to treat low-concentration liquids that are difficult with other separation methods. And, as the membrane used for these separation techniques, a polymer membrane mainly composed of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, polyimide, heat resistance, chemical resistance, etc. There are porous ceramic membranes, etc. that have excellent durability, and ultrafiltration membranes are mainly used for colloid filtration, and fine filtration for the filtration of fine particles of 0.05 to 10 μm. Uses a microfiltration membrane having micropores suitable for that. By the way, in recent years, with the progress of biotechnology, high purification, high performance, and high precision have been required, and the application fields of microfiltration or ultrafiltration technology are expanding. However,
In microfiltration or ultrafiltration, when fine particles are separated using a membrane, a cake layer is created due to the effect of concentration polarization, which creates a resistance to the flow of the permeated fluid, and the resistance due to clogging of the membrane increases. There is a problem that the permeation flux is drastically and remarkably reduced, and this is the biggest cause of impeding the practical application of microfiltration or ultrafiltration. Further, the film used for it is easily contaminated, and it is necessary to take preventive measures against it.
【0003】ろ過方法としては、ろ過されるべき全ての
液体がろ材(ろ布や膜など)とケーク層を通過して液体
中に含まれている微粒子を分離するいわゆる全ろ過方法
がある。この従来の全ろ過方法では液体が通過して懸濁
物質がろ過膜の内部に捕捉されて分離される段階では高
い透過流束が得られるが、ろ過膜の表面で捕捉される段
階になるとケーク層が形成され、大量の液体を処理する
場合や形成されるケーク層の比抵抗が極端に高い場合は
大きなろ過抵抗となり、このような全ろ過を行うと膜透
過流束が小さくなる。一方排水処理や造水・プール水の
ろ過などの分野においては、目詰まりしたフィルターの
ろ過流束回復のために逆洗を行うことが知られている。
しかしこの全ろ過と逆洗を組み合わせた方法はケーク層
の比抵抗が比較的小さな排水処理の分野で開発された技
術であるため、醗酵液の菌体分離の如き微細で比抵抗の
大きな粒子のろ過にはこのままでは効果がなかった。こ
のため、クロスフロー型ろ過方式をすることが考えられ
た。このクロスフロー型ろ過方式は、ろ過膜の膜表面に
平行にろ過すべき原液体を流し、液体はろ過膜を通って
反対側へ透過し、この原液体と透過液体の流れが直交し
ているためにこのように称されている。このクロスフロ
ー型ろ過方法は、膜に平行な原液体の流れによって膜面
上に形成されたケーク層がはぎ取られるので従来の全ろ
過方法に比べて膜透過流束が大きく、大量の原液体を直
接連続的に分離、精製、濃縮が可能であるが、純水透過
流束の大きいすなわち0.05から10μm の粒子を除
去する精密ろ過領域の膜を用いた場合は急激に膜透過流
束が低下してろ過開始初期の高い膜透過流束を保つこと
は困難であり、結果として全ろ過方法と総透過液量を比
較するとその改善効果は小さく経済的な透過流束を得る
には不十分であった。As a filtration method, there is a so-called total filtration method in which all the liquid to be filtered passes through a filter medium (filter cloth, membrane, etc.) and a cake layer to separate fine particles contained in the liquid. In this conventional total filtration method, a high permeation flux is obtained at the stage where the liquid passes and the suspended substances are trapped inside the filtration membrane to be separated, but at the stage where they are trapped at the surface of the filtration membrane, cake is obtained. When a layer is formed and a large amount of liquid is treated, or when the specific resistance of the formed cake layer is extremely high, the filtration resistance becomes large, and such a total filtration reduces the membrane permeation flux. On the other hand, in fields such as wastewater treatment and fresh water / pool water filtration, it is known to perform backwashing to recover the filtration flux of a clogged filter.
However, this combined method of total filtration and backwash is a technology developed in the field of wastewater treatment in which the specific resistance of the cake layer is relatively small, and therefore, it is possible to remove fine particles with large specific resistance such as bacterial cell separation of the fermentation liquid. The filtration was not effective as it was. For this reason, it was considered to use a cross flow type filtration method. In this cross-flow type filtration method, the raw liquid to be filtered flows in parallel to the membrane surface of the filtration membrane, the liquid permeates to the opposite side through the filtration membrane, and the flow of this raw liquid and the permeated liquid are orthogonal to each other. This is why it is called. In this cross-flow type filtration method, the cake layer formed on the membrane surface is stripped off by the flow of the original liquid parallel to the membrane, so the membrane permeation flux is large compared to the conventional total filtration method, and a large amount of the original liquid is obtained. Can be directly and continuously separated, purified, and concentrated, but when a membrane in the microfiltration area that removes particles with a large pure water permeation flux, that is, from 0.05 to 10 μm, is used, the membrane permeation flux rapidly increases. It is difficult to maintain a high membrane permeation flux at the initial stage of filtration, and as a result, when comparing the total filtration method with the total permeate flow rate, the improvement effect is small and it is not possible to obtain an economical permeation flux. Was enough.
【0004】透過流束を高める方法としてはクロスフロ
ーろ過方式と併用してろ過膜への原液体の流入を断続的
に停止したり、ろ過膜の透過液側の弁を閉止することに
より、ろ過膜の膜面に垂直にかかる圧力を断続的になく
すあるいは減少させたり、またろ過膜の透過液側から圧
力を加え透過液側から原液側へ液を流すことによって、
ろ過膜の原液側の膜面上に堆積しているケーク層や付着
層を断続的に取り除く「逆洗」と称する試みがなされて
いるが、これら逆洗が行われた際もろ過膜から脱着した
懸濁物質をろ過系内に残しておくと原液中の懸濁物の濃
度が徐々に増加し、場合によっては原液の粘度も上昇す
るため膜透過流束は徐々に低下して逆洗を行っても透過
流束が十分回復しない等の問題があった。また、透過液
を用いて逆洗を行うと実質上逆洗した量だけ膜透過量は
減少するため、膜透過流束を十分回復するだけの逆洗液
を確保できないという問題があった。一方菌体の活性を
低下させない方法として、クロスフロー循環流速を低下
させ剪断力を小さくすることが行われているが、剪断力
を小さくするとクロスフローろ過方式の効果が小さくな
るため、実際に菌体活性を低下させない方策をとると膜
透過流束が低下する問題があった。またポンプでの菌体
の破砕を少なくするためダイヤフラムポンプなどの剪断
力の小さいポンプを用いるとポンプの脈動が大きくクロ
スフローろ過方式の効果が小さくなる等の問題もあっ
た。As a method for increasing the permeation flux, the filtration is carried out by intermittently stopping the inflow of the raw liquid into the filtration membrane or by closing the valve on the permeate side of the filtration membrane in combination with the cross flow filtration method. By intermittently eliminating or reducing the pressure applied perpendicularly to the membrane surface of the membrane, or by applying pressure from the permeate side of the filtration membrane and flowing the liquid from the permeate side to the stock solution side,
An attempt to intermittently remove the cake layer and the adhering layer accumulated on the undiluted solution side of the filtration membrane has been attempted, which is called "backwashing". If the suspended substance left in the filtration system is left in the filtration system, the concentration of the suspension in the stock solution will gradually increase, and in some cases the viscosity of the stock solution will also increase, so the membrane permeation flux will gradually decrease and backwash There was a problem that the permeation flux was not fully recovered even if it went. In addition, when backwashing is performed using a permeate, the amount of membrane permeation is substantially reduced by the amount of backwashing, so that there is a problem in that a backwash that can sufficiently restore the membrane permeation flux cannot be secured. On the other hand, as a method that does not reduce the activity of the bacterial cells, it has been attempted to reduce the cross-flow circulation flow rate to reduce the shearing force. However, there is a problem that the permeation flux of the membrane is reduced if a measure that does not reduce the physical activity is taken. Further, if a pump with a small shearing force such as a diaphragm pump is used to reduce the crushing of bacterial cells in the pump, there is a problem that the pulsation of the pump is large and the effect of the cross-flow filtration system is small.
【0005】[0005]
【発明が解決しようとする課題】全ろ過周期逆洗法では
膜透過流束の低下が著しくなる前に、あるいはろ圧上昇
が著しくなる前に、透過側の圧力を原液側の圧力よりも
高くして逆洗し膜表面および膜内部に捕捉された微粒子
を系外に排出することにより、膜透過流束は初期の高い
水準に復帰しあるいはろ圧が初期の低い水準に復帰す
る。これを繰り返すことにより平均透過流束は実用性の
ある高い水準が得られる。本発明者はこの全ろ過周期逆
洗法に(1)膜の厚さ方向に孔径の異方性を有してお
り、(2)ろ過一次側の膜表面の平均孔径が除去すべき
原液中懸濁粒子の平均径に対して2倍から30倍であ
り、(3)膜の内部あるいはろ過の二次側膜表面に存在
する最緻密層の平均孔径が除去すべき原液中懸濁粒子の
平均径に対して0.8倍以下である、ことを特徴とする
精密ろ過膜を用いると更に高い平均透過流束が得られ、
逆洗頻度も少なく従って本全ろ過周期逆洗法の実用性が
増加することを発見した。しかし懸濁物濃度が1〜20
vol%にも達するような高濃度醗酵液から菌体および培地
由来粒子を除去する用途では、逆洗頻度がどうしても多
くなってしまい、従って逆洗排水量が多くなってその処
理に多大の費用がかかるという問題を生じた。In the full filtration cycle backwashing method, the pressure on the permeate side is set higher than the pressure on the stock solution side before the decrease of the membrane permeation flux becomes noticeable or before the increase of the filtration pressure becomes noticeable. Then, by backwashing and discharging the fine particles captured on the membrane surface and inside the membrane to the outside of the system, the membrane permeation flux returns to the initial high level or the filtration pressure returns to the initial low level. By repeating this, the average permeation flux can be obtained at a practically high level. The present inventor has (1) the pore size anisotropy in the thickness direction of the membrane in this total filtration cycle backwashing method, and (2) the average pore size of the membrane surface on the primary side of the filtration in the stock solution to be removed. It is 2 to 30 times the average diameter of the suspended particles, and (3) the average pore diameter of the densest layer present inside the membrane or on the surface of the secondary side membrane of the filtration has 0.8 times or less of the average diameter, a higher average permeation flux can be obtained by using a microfiltration membrane characterized by
It was discovered that the backwashing frequency is low and therefore the practicality of this total filtration cycle backwashing method is increased. However, the suspension concentration is 1-20
In the application of removing cells and medium-derived particles from a high-concentration fermented solution that reaches as high as vol%, the backwashing frequency will inevitably increase, and therefore the backwashing wastewater amount will increase and the treatment will be very expensive. That caused the problem.
【0006】[0006]
【課題を解決するための手段】本発明は、上述した先行
技術にあった問題点を解決するために為されたものであ
って、実用性のある高い平均膜透過流束を長時間に渡っ
て安定的に維持できる、新規な全ろ過周期逆洗システム
を提供することを目的とするものである。つまり、懸濁
物を多量に含む液体を精密ろ過膜を用いてろ過し、一定
時間毎にろ過膜の透過液側の圧力を原液側の圧力よりも
大きくして周期的に逆洗を行い、逆洗液と共にろ過膜か
ら脱着した懸濁物をろ過系外に排出する全ろ過周期逆洗
システムにおいて、液体と気体を組み合わせて逆洗する
ことにより上記問題点は解決できることを見出した。The present invention has been made in order to solve the above-mentioned problems in the prior art, and has a practically high average membrane permeation flux for a long time. It is an object of the present invention to provide a novel whole filtration cycle backwash system that can be maintained stably. That is, a liquid containing a large amount of suspension is filtered using a microfiltration membrane, and the pressure on the permeate side of the filtration membrane is made larger than the pressure on the raw solution side at regular intervals to perform backwashing periodically. It has been found that the above problems can be solved by backwashing by combining a liquid and a gas in a total filtration cycle backwashing system in which the suspension desorbed from the filtration membrane together with the backwash solution is discharged to the outside of the filtration system.
【0007】本発明の全ろ過周期逆洗方法は、種々の高
分子、微生物、酵母、微粒子を含有あるいは懸濁する液
体の分離、精製、回収、濃縮など、ろ過を必要とする微
細な微粒子を含有する液体からその微粒子を除去する必
要のあるあらゆる場合に適用することができるが、特に
醗酵液・培養液からの酵素、微生物、細胞などの分離、
濃縮、回収など懸濁物質のろ過比抵抗が極端に大きい場
合に効果が大きい。本発明の全ろ過周期逆洗方法で行う
逆洗は基本的には液体で行う。系外からの異物混入を避
ける場合は逆洗液として透過液を用いることができる。
また透過液を逆流させた分だけ透過量が減少することを
避ける場合は、ろ過系外より洗浄液を供給して必要に応
じた逆洗量で逆洗を行うことが好ましい。ろ過系外より
供給する逆洗液はろ過膜の特性を低下させたり原液の特
性を低下させたりしなければ基本的には何でもよい。原
液が水溶液であれば逆洗液としては水を用いるのが一般
的である。また逆洗終了後逆洗液を系内に残したくない
場合は、気体による脱液を行う。The whole filtration cycle backwashing method of the present invention removes fine particles requiring filtration such as separation, purification, recovery and concentration of liquids containing or suspending various polymers, microorganisms, yeasts and particles. It can be applied to all cases where it is necessary to remove the fine particles from the liquid containing it, especially separation of enzymes, microorganisms, cells, etc. from the fermentation liquid / culture liquid,
The effect is great when the filtration resistance of suspended solids such as concentration and recovery is extremely large. The backwash performed by the whole filtration cycle backwash method of the present invention is basically performed with a liquid. A permeate can be used as the backwash liquid when foreign matter from the outside of the system is avoided.
Further, in order to avoid a decrease in the permeation amount by the amount of backflow of the permeated liquid, it is preferable to supply the cleaning liquid from the outside of the filtration system and carry out the backwashing with the required backwashing amount. The backwash liquid supplied from outside the filtration system may be basically any liquid as long as it does not deteriorate the characteristics of the filtration membrane or the characteristics of the stock solution. If the stock solution is an aqueous solution, water is generally used as the backwash solution. If it is not desired to leave the backwash solution in the system after the backwash is completed, the liquid is removed by gas.
【0008】液体による逆洗が終わり一定時間ろ過を行
い再び液体逆洗を行うこの間に、何回か繰り返して気体
を使って逆洗を行う。気体の圧力は膜のバブルポイント
よりも0.5から1kg/cm2程度高くする。また膜の一次
側には洗浄液体を常に満たしながら循環させ、気体の噴
出で膜面から剥がれたケークを常に液体に分散除去す
る。この洗浄液体には前の逆洗に用いた懸濁物を含んだ
液体をそのまま用いるようにすれば、少ない逆洗液体量
で効果的な逆洗を達成できる。After backwashing with the liquid is completed, filtration is performed for a certain period of time and liquid backwashing is performed again. During this time, backwashing is performed several times by using gas. The gas pressure should be 0.5 to 1 kg / cm 2 higher than the bubble point of the membrane. Further, the cleaning liquid is constantly circulated on the primary side of the membrane while being circulated, and the cake separated from the membrane surface by jetting gas is always dispersed and removed in the liquid. If the liquid containing the suspension used in the previous backwash is used as it is, the effective backwash can be achieved with a small amount of the backwash liquid.
【0009】図1と図2は一般的な精密ろ過膜プリーツ
型カートリッジフィルターエレメントの展開図および同
モジュール断面図である。精密ろ過膜3は2枚の通液性
シート2、4によってサンドイッチされた状態でひだ折
りされ、コア孔33を多数有するコアー5の廻りに巻き
付けられている。その外側には外周ガード1があり、精
密ろ過膜を保護している。円筒の両端にはエンドプレー
ト6a、6bにより、精密ろ過膜がシールされている。
エンドプレートはガスケット7を介してフィルターモジ
ュール(図示なし)のシール部と接する。ろ過された液
体はコアーが形成する中央通孔32を通って集液口8か
ら集められ、フィルターモジュールの二次側出入口23
から排出される。図3は精密ろ過膜円盤積層型カートリ
ッジフィルターエレメントの断面図である。このエレメ
ントは、円盤状の膜支持体(38)の両面に精密ろ過膜
(37)を設置してあり、このような円盤が積層されて
全体として円筒状に形成されている。膜支持体の中央部
は同心円状に打ち抜かれてドーナツ状になり、積層され
るとこの打ち抜かれた中央部は中央通孔32を形成す
る。また支持体はその内部に通液手段を有し、膜を透過
した液は膜支持体(38)の内部を伝って中央通孔32
に出る、更に二次側出入口23から排出される。1 and 2 are a developed view of a general microfiltration membrane pleated type cartridge filter element and a sectional view of the same module. The microfiltration membrane 3 is fold-folded in a state of being sandwiched by the two liquid-permeable sheets 2 and 4, and wound around a core 5 having a large number of core holes 33. An outer peripheral guard 1 is provided on the outer side thereof to protect the microfiltration membrane. Microfiltration membranes are sealed at both ends of the cylinder by end plates 6a and 6b.
The end plate contacts the seal portion of the filter module (not shown) via the gasket 7. The filtered liquid is collected from the liquid collecting port 8 through the central through hole 32 formed by the core, and the secondary side inlet / outlet port 23 of the filter module is collected.
Emitted from. FIG. 3 is a sectional view of a microfiltration membrane disc laminated cartridge filter element. This element has microfiltration membranes (37) installed on both sides of a disc-shaped membrane support (38), and such discs are laminated to form a cylindrical shape as a whole. The central part of the membrane support is concentrically punched into a donut shape, and when stacked, the punched central part forms a central through hole 32. Further, the support has a liquid-passing means inside, and the liquid that has permeated the membrane is transmitted through the inside of the membrane support (38) and the central through hole 32.
And discharged from the secondary inlet / outlet 23.
【0010】懸濁物を含む原液は図4に示す原液タンク
14からろ過ポンプ12を経てフィルターモジュール一
次側入口22からモジュール11の中に入る。精密ろ過
膜エレメント30を透過した液は二次側出口23から排
出され、透過液タンク15に集められる。膜が目詰まり
をおこすと、通常は逆洗液を逆洗タンク16から逆洗ポ
ンプ13・二次側出口23を経てエレメント30に送
り、膜状のケークを剥離し堆積していた懸濁物を伴っ
て、一次側入口22を経て廃液口18に排出される。気
体による逆洗は、洗浄液を洗浄液タンク19からポンプ
12を経てモジュール11に送りモジュールの一次側出
口25からタンク19に戻して循環しながら、加圧気体
を気体入口24から導入し膜を透過した気体は洗浄液と
共に一次側出口25から排出する。The stock solution containing the suspension enters the module 11 from the stock solution tank 14 shown in FIG. 4 through the filter pump 12 and the filter module primary inlet 22. The liquid that has passed through the microfiltration membrane element 30 is discharged from the secondary outlet 23 and collected in the permeated liquid tank 15. When the membrane is clogged, the backwash liquid is normally sent from the backwash tank 16 to the element 30 via the backwash pump 13 and the secondary outlet 23, and the film-like cake is peeled off and deposited suspension is deposited. Then, the liquid is discharged to the waste liquid port 18 through the primary side inlet 22. In backwashing with gas, the cleaning liquid is sent from the cleaning liquid tank 19 to the module 11 via the pump 12, returned from the primary side outlet 25 of the module to the tank 19, and circulated, while introducing pressurized gas from the gas inlet 24 and permeating the membrane. The gas is discharged from the primary outlet 25 together with the cleaning liquid.
【0011】本発明で使用することのできる精密ろ過膜
には、ポリ弗化ビニリデン、ポリアクリロニトリル、ポ
リ塩化ビニルの如きビニルポリマー、ポリスルホン、ポ
リエーテルスルホン、脂肪族ポリアミド、セルローズエ
ステル類等の公知の高分子を単独または混合して原料と
することができる。精密ろ過膜の製造は、上記ポリマー
を良溶媒、良溶媒と非溶媒の混合溶媒又はポリマ
ーに対する溶解性の程度が異なる複数種の溶媒の混合し
たものに溶解して製膜原液を作製し、これを支持体上
に、又は直接凝固液中に流延し、洗浄乾燥して行う。こ
の場合に、ポリマーを溶解する溶媒の一例としては、ジ
クロロメタン、アセトン、ジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシド、2−ピロリ
ドン、N−メチル−2−ピロリドン、スルホラン等を挙
げることができる。上記溶媒に添加する非溶媒の例とし
ては、セロソルブ類、メタノール、エタノール、イソプ
ロパノールの如きアルコール類、アセトン、メチルエチ
ルケトンの如きケトン類、テトラヒドロフラン、ジオキ
サンの如きエーテル類、ポリエチレングリコール、グリ
セリン、エチルグリコールの如きポリオール類等が挙げ
られる。非溶媒の良溶媒に対する割合は、混合液が均一
状態を保てる範囲ならばいかなる範囲でも良いが、5〜
50重量%が好ましい。The microfiltration membrane that can be used in the present invention includes polyvinylidene fluoride, polyacrylonitrile, vinyl polymers such as polyvinyl chloride, polysulfones, polyether sulfones, aliphatic polyamides, cellulose esters, etc. The polymers may be used alone or in combination as a raw material. The production of the microfiltration membrane is carried out by dissolving the above-mentioned polymer in a good solvent, a mixed solvent of a good solvent and a non-solvent, or a mixture of plural kinds of solvents having different degrees of solubility to the polymer to prepare a membrane-forming stock solution, Is cast on a support or directly in a coagulation solution, washed and dried. In this case, examples of the solvent that dissolves the polymer include dichloromethane, acetone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, 2-pyrrolidone, N-methyl-2-pyrrolidone, and sulfolane. Examples of non-solvents added to the above solvent include cellosolves, alcohols such as methanol, ethanol and isopropanol, acetone, ketones such as methyl ethyl ketone, tetrahydrofuran, ethers such as dioxane, polyethylene glycol, glycerin, ethyl glycol such as ethyl glycol. Examples thereof include polyols. The ratio of the non-solvent to the good solvent may be any range as long as the mixed solution can maintain a uniform state.
50% by weight is preferred.
【0012】又、多孔構造を制御するものとして膨潤剤
と称される無機電解質、有機電解質、高分子電解質等を
加えることもできる。本発明で使用できる電解質として
は、食塩、硝酸ナトリウム、硝酸カリウム、硫酸ナトリ
ウム、塩化亜鉛、臭化マグネシウム等の無機酸の金属
塩、酢酸ナトリウム、ギ酸ナトリウム、酪酸カリウム等
の有機酸塩類、ポリスチレンスルホン酸ナトリウム、ポ
リビニルピロリドン、ポリビニルベンジルトリメチルア
ンモニウムクロライド等の高分子電解質、ジオクチルス
ルホコハク酸ナトリウム、アルキルメチルタウリン酸ナ
トリウム等のイオン系界面活性剤等が用いられる。これ
らの電解質は単独でポリマー溶液に加えてもある程度の
効果を示すものもあるが、これら電解質を水溶液として
添加する場合には、特に顕著な効果を示すことがある。
電解質水溶液の添加量は添加によって溶液の均一性が失
われることがない限り特に制限はないが、通常溶媒に対
して0.5容量%から10容量%である。また電解質水
溶液の濃度についても特に制限はなく、濃度の大きい方
が効果は大きいが、通常用いられる濃度としては1重量
%から60重量%である。製膜原液としてのポリマー濃
度は5から35重量%、好ましくは10から30重量%
である。35重量%を越える時は得られる微孔性膜の透
水性が実用的な意味を持たない程小さくなり、5重量%
よりも小さい時は充分な分離能力を持った精密ろ過膜は
得られない。In addition, an inorganic electrolyte called an swelling agent, an organic electrolyte, a polymer electrolyte, or the like may be added to control the porous structure. Examples of the electrolyte that can be used in the present invention include sodium chloride, sodium nitrate, potassium nitrate, sodium sulfate, zinc chloride, metal salts of inorganic acids such as magnesium bromide, sodium acetate, sodium formate, organic acid salts such as potassium butyrate, and polystyrene sulfonic acid. Polymer electrolytes such as sodium, polyvinylpyrrolidone and polyvinylbenzyltrimethylammonium chloride, and ionic surfactants such as sodium dioctyl sulfosuccinate and sodium alkylmethyl taurate are used. Although some of these electrolytes show some effect when added alone to the polymer solution, particularly when these electrolytes are added as an aqueous solution, they may show particularly remarkable effects.
The addition amount of the electrolyte aqueous solution is not particularly limited as long as the uniformity of the solution is not lost by the addition, but it is usually 0.5% by volume to 10% by volume with respect to the solvent. The concentration of the electrolyte aqueous solution is not particularly limited, and the higher the concentration, the greater the effect, but the concentration usually used is 1% by weight to 60% by weight. Polymer concentration as a film forming stock solution is 5 to 35% by weight, preferably 10 to 30% by weight
Is. When it exceeds 35% by weight, the water permeability of the obtained microporous membrane becomes so small as to have no practical meaning, and it becomes 5% by weight.
When it is smaller than that, a microfiltration membrane having sufficient separation ability cannot be obtained.
【0013】上記のようにして調整した製膜原液を支持
体の上に流延し、流延直後あるいは一定時間をおいて凝
固液中に支持体ごとポリマー溶液膜を浸漬する。凝固液
としては水が最も一般的に用いられるが、ポリマーを溶
解しない有機溶媒を用いても良く、またこれら非溶媒を
2種以上混合して用いてもよい。支持体としては、通常
精密ろ過膜を製造する場合に支持体として使用できるも
のの中から任意に選択することができるが、特に不織布
を使用した場合には支持体を剥がす必要がないので好ま
しい。本発明で使用できる不織布はポリプロピレン、ポ
リエステル等からなる一般的なものであり、材質の制限
を受けるものではない。凝固浴中でポリマーが析出した
流延膜はこの後水洗、温水洗浄、溶剤洗浄等を行い、乾
燥する。この様にしてつくられた精密ろ過膜3は公知の
方法でひだ折り加工される。保護シート2、4としては
不織布、濾紙およびまたは網状体等が用いられる。逆洗
効果を高めるために、不織布はめつけ量が18g/m2
から200g/m2 、好ましくは30g/m2 から10
0g/m2 で、厚さが0.1mmから1mmの、ポリエ
ステル、ポリプロピレンあるいはナイロンの如き合成繊
維でできたものがしばしば用いられる。網状体とはポリ
エステル、ポリプロピレンあるいはナイロンの如き合成
ポリマーのモノフィラメントを格子状に交互に編みあげ
た網状シートを指し、編み目の大きさは12メッシュか
ら500メッシュのものが適している。特に好ましくは
25メッシュから250メッシュのものがよい。The stock solution for film formation prepared as described above is cast on a support, and the polymer solution film together with the support is immersed in the coagulating liquid immediately after casting or after a certain time. Water is most commonly used as the coagulation liquid, but an organic solvent that does not dissolve the polymer may be used, or two or more of these non-solvents may be mixed and used. The support can be arbitrarily selected from those which can be used as a support in the case of producing a microfiltration membrane, but when a non-woven fabric is used, the support need not be peeled off, which is preferable. The non-woven fabric that can be used in the present invention is generally made of polypropylene, polyester, etc., and is not limited by the material. After that, the casting film on which the polymer is precipitated in the coagulation bath is washed with water, washed with warm water, washed with a solvent, and dried. The microfiltration membrane 3 thus produced is pleated by a known method. As the protective sheets 2 and 4, non-woven fabric, filter paper, and / or a net-like body is used. The amount of non-woven fabric attached is 18 g / m 2 to enhance the backwash effect.
To 200 g / m 2 , preferably 30 g / m 2 to 10
Often made of synthetic fibers such as polyester, polypropylene or nylon with a weight of 0 g / m 2 and a thickness of 0.1 mm to 1 mm. The reticulated body refers to a reticulated sheet in which monofilaments of synthetic polymer such as polyester, polypropylene or nylon are alternately knitted in a lattice shape, and the size of the stitches is preferably 12 mesh to 500 mesh. Particularly preferably, the mesh size is 25 to 250 mesh.
【0014】ひだ折り加工されたろ材は両端部を揃える
ためにカッターナイフ等で両端部の不揃い部分を切り落
とし、円筒状に丸めてその合わせ目のひだ部を、ヒート
シールあるいは接着剤を用いて液密にシールする。エン
ドシール工程はエンドプレート材質によって方法がいく
つかあるが、いずれも従来知られた公知技術によって行
われる。エンドプレートに熱硬化性のエポキシ樹脂を使
用する時は、ポッティング型中に調合したエポキシ樹脂
接着剤の液体を流し込み、予備硬化させて接着剤の粘度
が適度に高くなってから、円筒状ろ材の片端面をこのエ
ポキシ接着剤中に挿入する。その後加熱して完全に硬化
させる。エンドプレートの材質がポリプロピレンやポリ
エステルの如き熱可塑性樹脂の時は、熱溶融した樹脂を
型に流し込んだ直後に円筒状ろ材の片端面を樹脂の中に
挿入する方法が行われる。一方、既に成型されたエンド
プレートのシール表面のみを赤外線ヒーターで溶融し、
円筒状ろ材の片端面を溶着する方法も行われる。In order to align both ends of the fold-folded filter medium, the uneven portions of both ends are cut off with a cutter knife or the like, and the folds of the seam are rolled into a cylindrical shape, and the folds of the seam are heat-sealed or liquid-bonded with an adhesive. Seal tightly. There are several methods for the end sealing process depending on the material of the end plate, but all of them are carried out by the conventionally known publicly known technique. When using a thermosetting epoxy resin for the end plate, pour the liquid epoxy resin adhesive compounded into the potting mold and pre-cure it to increase the viscosity of the adhesive to an appropriate degree. Insert one end into this epoxy adhesive. Then, it is heated and completely cured. When the material of the end plate is a thermoplastic resin such as polypropylene or polyester, a method of inserting one end surface of the cylindrical filter medium into the resin immediately after the molten resin is poured into the mold is used. On the other hand, only the seal surface of the already molded end plate is melted with an infrared heater,
A method of welding one end surface of a cylindrical filter medium is also performed.
【0015】本全ろ過周期逆洗方法による高懸濁物濃度
液のろ過に対しては、特開昭62−27006号、特公
昭55−6406号や特公平1−43619号で開示さ
れている如き膜の厚さ方向に孔径の異方性を有する膜を
用いると、液中の生産物回収率の向上に更に効果があ
る。これは、このような異方性膜の孔径の大きな面から
孔径の小さな面へ原液をろ過すると、懸濁物が膜表面だ
けで捕捉されるのではなく、膜内部にも入り込んで分散
して捕捉されるため、懸濁物による密なケークの形成が
遅れるためである。このため厚さ方向で孔径の均一な等
方性膜を用いるよりも異方性膜を用いる方が、ろ過開始
から逆洗を行うまでの間の原液のろ過量は2倍以上に増
加する。1回の逆洗で排出される生産物量はろ過量に関
係なく同等なので、結果としては異方性膜を用いた方が
生産物回収率が高くなり、生産物損失率は等方性膜の半
分以下になる。用いる異方性膜の最大孔径層の平均孔径
が除去したい懸濁物粒子径(桿菌の場合はその円筒直
径)の2倍から30倍である時は特に生産物回収率が高
くなって好ましい。最も好ましい最大孔径層の平均孔径
の範囲は、懸濁物粒子径の4倍から16倍の範囲であ
る。異方性膜はその膜の一方の表面に最大孔径層を有
し、その反対表面あるいは膜内部に最緻密層を有する構
造をしている。最緻密層において原液中の懸濁物粒子は
完全に除去できなければならない。従って最緻密層の平
均孔径は除去すべき懸濁物粒子の平均粒子径よりも小さ
い必要があり、好ましくは懸濁物粒子平均径の0.8倍
以下である。Filtration of a liquid having a high suspension concentration by the backwashing method of the whole filtration cycle is disclosed in JP-A-62-27006, JP-B-55-6406 and JP-B-1-43619. The use of such a film having anisotropy of the pore size in the thickness direction is further effective in improving the product recovery rate in the liquid. This is because when the stock solution is filtered from the large pore surface of such an anisotropic membrane to the small pore surface, the suspension is not trapped only on the membrane surface, but also enters and disperses inside the membrane. This is because the formation of a dense cake due to the suspension is delayed because it is captured. Therefore, the filtration amount of the stock solution from the start of filtration to the backwashing is more than doubled by using the anisotropic membrane rather than using the isotropic membrane having a uniform pore size in the thickness direction. Since the amount of product discharged in one backwash is the same regardless of the filtration amount, the result is that the product recovery rate is higher when the anisotropic membrane is used and the product loss rate is higher than that of the isotropic membrane. Less than half. When the average pore diameter of the maximum pore diameter layer of the anisotropic membrane used is 2 to 30 times the particle diameter of the suspension to be removed (in the case of bacillus, its cylindrical diameter), the product recovery rate becomes particularly high, which is preferable. The most preferable range of the average pore size of the maximum pore size layer is 4 to 16 times the suspension particle size. The anisotropic film has a structure having a maximum pore size layer on one surface of the film and a densest layer on the opposite surface or inside the film. In the densest layer, the suspension particles in the stock solution must be completely removable. Therefore, the average pore size of the densest layer needs to be smaller than the average particle size of the suspension particles to be removed, and is preferably 0.8 times or less the average particle size of the suspension particles.
【0016】[0016]
【実施例】以下にろ過の具体例を挙げて本発明をさらに
詳しく説明するが、発明の主旨を越えない限り本発明は
実施例に限定されるものではない。 実施例1 緻密層の平均孔径0.4μm 、最大孔径層の平均孔径
3.8μm のポリスルホン製異方性膜約0.34平方メ
ートルを有するプリーツ型カートリッジモジュールが組
み込まれた図4に示した如き装置を用いて下記実験を行
った。ろ過原液には体積濃度で14%のパン酵母を分散
させた模擬醗酵液を用いた。ろ過ポンプ流量毎分0.2
リットルでモジュールに原液を送液しながら2.5分間
ろ過し、次いで0.5分間加圧空気を用いて逆洗した。
これを4回繰り返した後更に2.5分間ろ過すると、ろ
過圧力は0.4kg/cm2を越えたので、ここで0.5分間
水を用いて逆洗した。そして更にろ過を2.5分間行っ
てもろ過圧力は約0.1kg/cm2までしか上昇せず、これ
以後も同様の条件でろ過が継続できた。経時圧力変化の
データを図5に示す。EXAMPLES The present invention will be described in more detail with reference to specific examples of filtration, but the present invention is not limited to the examples as long as the gist of the invention is not exceeded. Example 1 A device as shown in FIG. 4 incorporating a pleated cartridge module having about 0.34 square meters of polysulfone anisotropic membrane with a dense layer having an average pore size of 0.4 .mu.m and a maximum layer having an average pore size of 3.8 .mu.m. The following experiment was conducted using A simulated fermentation liquid in which 14% by volume of baker's yeast was dispersed was used as the stock solution for filtration. Filtration pump flow rate 0.2 per minute
It was filtered for 2.5 minutes while feeding the stock solution to the module in liters, then backwashed with pressurized air for 0.5 minutes.
When this was repeated 4 times and further filtered for 2.5 minutes, the filtration pressure exceeded 0.4 kg / cm 2 , so backwashing was carried out here with water for 0.5 minutes. Then, even if the filtration was further performed for 2.5 minutes, the filtration pressure rose only to about 0.1 kg / cm 2 , and the filtration could be continued under the same conditions thereafter. The data of the pressure change over time are shown in FIG.
【0017】比較例1 緻密層の平均孔径0.4μm 、最大孔径層の平均孔径
3.8μm のポリスルホン製異方性膜約0.34平方メ
ートルを有するプリーツ型カートリッジモジュールが組
み込まれた図4に示した如き装置を用いて下記実験を行
った。ろ過原液には体積濃度で14%のパン酵母を分散
させた模擬醗酵液を用いた。ろ過ポンプ流量毎分0.2
リットルでモジュールに原液を送液しながら2.5分間
ろ過し、次いで0.5分間水を用いて逆洗した。これを
これを何度も繰り返したがろ過圧力は約0.1kg/cm2ま
でしか上昇せず、これ以後も同様の条件でろ過が継続で
きた。経時圧力変化のデータを図6に示す。当然のこと
ながら逆洗廃水量は実施例1の5倍量にも達した。COMPARATIVE EXAMPLE 1 A pleated cartridge module having about 0.34 square meters of polysulfone anisotropic membrane having a dense layer having an average pore size of 0.4 μm and a maximum layer having an average pore size of 3.8 μm is shown in FIG. The following experiment was conducted using the apparatus as described above. A simulated fermentation liquid in which 14% by volume of baker's yeast was dispersed was used as the stock solution for filtration. Filtration pump flow rate 0.2 per minute
While feeding the stock solution to the module in liters, it was filtered for 2.5 minutes and then backwashed with water for 0.5 minutes. This was repeated many times, but the filtration pressure increased only to about 0.1 kg / cm 2 , and the filtration could be continued under the same conditions thereafter. The data of the pressure change with time are shown in FIG. As a matter of course, the amount of backwashing wastewater reached 5 times that of Example 1.
【0018】[0018]
【発明の効果】懸濁物を多量に含む液体を精密ろ過膜を
用いてろ過し、一定時間毎にろ過膜の透過液側の圧力を
原液側の圧力よりも大きくして周期的に逆洗を行い、逆
洗液と共にろ過膜から脱着した懸濁物をろ過系外に排出
する全ろ過周期逆洗システムにおいて、液体と気体を組
み合わせて逆洗することにより、逆洗廃水量の大幅な低
減を達成した。EFFECT OF THE INVENTION A liquid containing a large amount of suspension is filtered using a microfiltration membrane, and the pressure on the permeate side of the filtration membrane is made larger than the pressure on the raw solution side at regular intervals to periodically backwash. The total amount of backwashing wastewater is significantly reduced by backwashing a combination of liquid and gas in a full filtration cycle backwash system that discharges the suspension desorbed from the filtration membrane together with the backwash solution to the outside of the filtration system. Was achieved.
【図1】一般的なプリーツ型カートリッジフィルターの
構造を表す図面である。FIG. 1 is a view showing a structure of a general pleat type cartridge filter.
【図2】本発明に用いるプリーツ型カートリッジフィル
ターモジュール全体図。FIG. 2 is an overall view of a pleated cartridge filter module used in the present invention.
【図3】本発明に用いる円盤積層型カートリッジフィル
ターモジュール全体図。FIG. 3 is an overall view of a disc laminated cartridge filter module used in the present invention.
【図4】本発明に用いるろ過フロー図。FIG. 4 is a filtration flow chart used in the present invention.
【図5】実施例1の全ろ過周期逆洗実験における経時圧
力変化を示すグラフ。FIG. 5 is a graph showing changes in pressure over time in a backwashing experiment of the entire filtration cycle of Example 1.
【図6】比較例1の全ろ過周期逆洗実験における経時圧
力変化を示すグラフ。FIG. 6 is a graph showing changes in pressure over time in a backwashing experiment of the entire filtration cycle of Comparative Example 1.
1 外周ガード 2 保護シート 3 ろ過膜 4 保護シート 5 コア 6 エンドプレート 7 ガスケット 8 集液口 11 フィルターモジュール 12 ろ過ポンプ 13 逆洗ポンプ 14 原液タンク 15 透過液タンク 16 逆洗水タンク 17 加圧気体源 18 廃液口 19 洗浄液タンク 22 一次側入口 23 二次側出入口 24 二次側加圧気体入口 25 一次側出口 26 パッキン 27 モジュールヘッド 28 モジュールボール 30 フィルターエレメント 31 プリーツ部 32 中央通孔 33 コア孔 35 膜支持体外周突起 36 膜支持体外周突起 37 精密ろ過膜 38 膜支持体 1 Peripheral Guard 2 Protective Sheet 3 Filtration Membrane 4 Protective Sheet 5 Core 6 End Plate 7 Gasket 8 Liquid Collection Port 11 Filter Module 12 Filtration Pump 13 Backwash Pump 14 Stock Solution Tank 15 Permeate Tank 16 Backwash Water Tank 17 Pressurized Gas Source 18 Waste Liquid Port 19 Cleaning Liquid Tank 22 Primary Side Inlet 23 Secondary Side Inlet / Outlet 24 Secondary Side Pressurized Gas Inlet 25 Primary Side Outlet 26 Packing 27 Module Head 28 Module Ball 30 Filter Element 31 Pleated Part 32 Center Through Hole 33 Core Hole 35 Membrane Support Peripheral protrusion 36 Membrane support Peripheral protrusion 37 Microfiltration membrane 38 Membrane support
Claims (3)
用いてろ過し、一定時間毎にろ過膜の透過液側の圧力を
原液側の圧力よりも大きくして周期的に逆洗を行い、洗
浄液と共にろ過膜から脱着した懸濁物をろ過系外に排出
する全ろ過周期逆洗システムにおいて、液体と気体を組
み合わせて逆洗することを特徴とする、全ろ過周期逆洗
ろ過方法。1. A liquid containing a large amount of a suspension is filtered using a microfiltration membrane, and the pressure on the permeate side of the filtration membrane is made higher than the pressure on the raw solution side at regular intervals to periodically backwash. In the whole filtration cycle backwash system for discharging the suspension desorbed from the filtration membrane together with the washing solution to the outside of the filtration system, backwashing is performed by combining liquid and gas, and the whole filtration cycle backwash filtration method. .
ィルターエレメントの形状で用いることを特徴とする、
請求項1項記載の全ろ過周期逆洗ろ過方法。2. A microfiltration membrane is used in the form of a pleated cartridge filter element.
The full filtration cycle backwash filtration method according to claim 1.
気体で逆洗することを特徴とする、請求項2記載の全ろ
過周期逆洗ろ過方法。3. The full filtration cycle backwash filtration method according to claim 2, wherein backwash with a gas is performed while circulating wash water on the primary side of the filtration membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23623692A JPH0679146A (en) | 1992-09-04 | 1992-09-04 | Filtration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23623692A JPH0679146A (en) | 1992-09-04 | 1992-09-04 | Filtration method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0679146A true JPH0679146A (en) | 1994-03-22 |
Family
ID=16997806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23623692A Pending JPH0679146A (en) | 1992-09-04 | 1992-09-04 | Filtration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0679146A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011025174A (en) * | 2009-07-27 | 2011-02-10 | Japan Organo Co Ltd | Filter cartridge and method for manufacturing the same |
JP2015506826A (en) * | 2011-12-19 | 2015-03-05 | ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング | How to clean the filter |
-
1992
- 1992-09-04 JP JP23623692A patent/JPH0679146A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011025174A (en) * | 2009-07-27 | 2011-02-10 | Japan Organo Co Ltd | Filter cartridge and method for manufacturing the same |
JP2015506826A (en) * | 2011-12-19 | 2015-03-05 | ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング | How to clean the filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3924926B2 (en) | Hollow fiber membrane filtration membrane module | |
JP4382294B2 (en) | Method for producing hollow fiber membrane bundle | |
Sun et al. | Microalgae filtration by UF membranes: influence of three membrane materials | |
JPH04349927A (en) | Preparation of precise filter membrane | |
JPH0679147A (en) | Filtration method | |
JPH0679146A (en) | Filtration method | |
JPH05329336A (en) | Filtering method | |
JPH04271817A (en) | Filtering method | |
JP2717458B2 (en) | Filtration method | |
JP3838689B2 (en) | Water treatment system | |
JPH0623239A (en) | Filtration method | |
KR20180114820A (en) | Antifouling Hollow fiber membrane module, Method for preparing the same and Uses thereof | |
JPH05228343A (en) | Filtration method | |
JPH09174094A (en) | Raw water treatment method | |
JP2001321645A (en) | Filter membrane element and method for manufacturing permeated water | |
JPH04271815A (en) | Filtering method | |
JPH04317708A (en) | New filtration using filtration assistant | |
JP2004130307A (en) | Filtration method of hollow fiber membrane | |
JPH05329339A (en) | Filtration system | |
JPH04267931A (en) | Filtering method | |
JP4820612B2 (en) | Microfiltration membrane cartridge filter | |
JPH0557149A (en) | Filter system | |
JPH0549877A (en) | Production of composite filter membrane | |
JPH04190834A (en) | Cross-flow type filter | |
JPH04317730A (en) | Composite filtration membrane |