JPH05329336A - Filtering method - Google Patents
Filtering methodInfo
- Publication number
- JPH05329336A JPH05329336A JP13671192A JP13671192A JPH05329336A JP H05329336 A JPH05329336 A JP H05329336A JP 13671192 A JP13671192 A JP 13671192A JP 13671192 A JP13671192 A JP 13671192A JP H05329336 A JPH05329336 A JP H05329336A
- Authority
- JP
- Japan
- Prior art keywords
- filtration
- membrane
- backwash
- pressure
- backwashing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title description 23
- 239000012528 membrane Substances 0.000 claims abstract description 112
- 238000011001 backwashing Methods 0.000 claims abstract description 37
- 238000011049 filling Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims description 67
- 239000011550 stock solution Substances 0.000 claims description 40
- 238000001471 micro-filtration Methods 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 28
- 239000000725 suspension Substances 0.000 claims description 23
- 239000011148 porous material Substances 0.000 claims description 19
- 239000012466 permeate Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 14
- 230000000737 periodic effect Effects 0.000 claims description 10
- 230000004907 flux Effects 0.000 abstract description 30
- 125000004122 cyclic group Chemical group 0.000 abstract description 3
- 238000004904 shortening Methods 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 238000000926 separation method Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- -1 organic acid salts Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009295 crossflow filtration Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011027 product recovery Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical class [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical class [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical class [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical class [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000004323 potassium nitrate Chemical class 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- RWMKSKOZLCXHOK-UHFFFAOYSA-M potassium;butanoate Chemical compound [K+].CCCC([O-])=O RWMKSKOZLCXHOK-UHFFFAOYSA-M 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Chemical class 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229940104261 taurate Drugs 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011592 zinc chloride Chemical class 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、全濾過周期逆洗システ
ムに関するものであり、特に高い膜透過流束を維持する
ために逆洗を周期的に行う精密濾過膜カートリッジフィ
ルターを用いた全濾過周期逆洗システムに関するもので
ある。本発明の全濾過周期逆洗システムは、種々の高分
子、微生物、酵母、微粒子を含有あるいは懸濁する液体
の分離、精製、回収、濃縮などに適用され、特に濾過を
必要とする微細な微粒子を含有する液体からその微粒子
を分離する必要のあるあらゆる場合に適用することがで
き、例えば微粒子を含有する各種の懸濁液、発酵液ある
いは培養液などの他、顔料の懸濁液などから微粒子を分
離する場合にも適用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total filtration cycle backwash system, and more particularly to a total filtration using a microfiltration membrane cartridge filter in which backwash is periodically performed in order to maintain a high membrane permeation flux. It relates to a periodic backwash system. The whole filtration cycle backwash system of the present invention is applied to separation, purification, recovery, concentration, etc. of various polymers, microorganisms, yeasts, liquids containing or suspending fine particles, and particularly fine particles requiring filtration. It can be applied to all cases where it is necessary to separate the fine particles from a liquid containing, for example, various suspensions containing fine particles, fermentation liquid or culture liquid, and fine particles from pigment suspensions. It also applies when separating the.
【0002】[0002]
【従来の技術】従来、膜を用いて懸濁物質を含有する液
体から懸濁物質を分離する技術としては、例えば圧力を
駆動力とする逆浸透法、限外濾過法、精密濾過法、電位
差を駆動力とする電気透析法、濃度差を駆動力とする拡
散透析法等がある。これらの方法は、連続操作が可能で
あり、分離操作中に温度やpHの条件を大きく変化させ
ることなく分離、精製あるいは濃縮ができ、粒子、分
子、イオン等の広範囲にわたって分離が可能であり、小
型プラントでも処理能力を大きく保つことができるので
経済的であり、分離操作に要するエネルギーが小さく、
かつ他の分離方法では難しい低濃度液体の処理が可能で
あるなどの理由により広範囲に実施されている。そして
これらの分離技術に用いられる膜としては、酢酸セルロ
ース、硝酸セルロース、再生セルロース、ポリスルホ
ン、ポリアクリロニトリル、ポリアミド、ポリイミド等
の有機高分子等を主体とした高分子膜や耐熱性、耐薬品
性などの耐久性に優れている多孔質セラミック膜などが
あり、主としてコロイドの濾過を対象とする場合は限外
濾過膜が使用され、0.05から10μmの微細な粒子
の濾過を対象とする精密濾過ではそれに適した微孔を有
する精密濾過膜が使用されている。ところで近年、バイ
オテクノロジーの進歩に伴い、高純度化、高性能化、高
精密化が要求されるようになり、精密濾過あるいは限外
濾過技術の応用分野が拡大しつつある。しかしながら、
精密濾過あるいは限外濾過においては膜を用いて微粒子
を分離する場合に、濃度分極の影響により膜面にケーク
層が生じて透過流体の流れに抵抗が生じ、また膜の目詰
まりによる抵抗が大きくなって膜透過流束が急激にかつ
著しく低下してしまうという問題があり、これが精密濾
過あるいは限外濾過の実用化を妨げる最大の原因であっ
た。またそれに用いられる膜は汚染されやすく、その防
止対策が必要である。2. Description of the Related Art Conventionally, as a technique for separating a suspended substance from a liquid containing a suspended substance by using a membrane, for example, a reverse osmosis method using pressure as a driving force, an ultrafiltration method, a microfiltration method, a potential difference. There are an electrodialysis method using a driving force as a driving force, and a diffusion dialysis method using a concentration difference as a driving force. These methods are capable of continuous operation, can be separated, purified or concentrated without greatly changing the temperature and pH conditions during the separation operation, and can be separated over a wide range of particles, molecules, ions, etc., Economical because the processing capacity can be kept large even in a small plant, the energy required for the separation operation is small,
In addition, it is widely used because of the fact that it is possible to treat low-concentration liquids that are difficult with other separation methods. And, as the membrane used in these separation techniques, a polymer membrane mainly composed of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, polyimide, heat resistance, chemical resistance, etc. There are porous ceramic membranes, etc. that have excellent durability, and ultrafiltration membranes are mainly used for colloid filtration, and microfiltration for the filtration of fine particles of 0.05 to 10 μm. Uses a microfiltration membrane having suitable micropores. By the way, in recent years, with the progress of biotechnology, high purification, high performance, and high precision have been required, and the application fields of microfiltration or ultrafiltration technology are expanding. However,
In microfiltration or ultrafiltration, when separating fine particles using a membrane, a cake layer is generated on the membrane surface due to the effect of concentration polarization, and resistance to the flow of the permeated fluid is generated, and resistance due to clogging of the membrane is large. Then, there is a problem that the membrane permeation flux is drastically and remarkably reduced, which is the biggest cause of impeding the practical application of microfiltration or ultrafiltration. Further, the film used for it is easily contaminated, and it is necessary to take preventive measures against it.
【0003】濾過方法としては、濾過されるべき全ての
液体が濾材(濾布や膜など)とケーク層を通過して液体
中に含まれている微粒子を分離するいわゆる全濾過方法
がある。この従来の全濾過方法では液体が通過して懸濁
物質が濾過膜の内部に捕捉されて分離される段階では高
い透過流束が得られるが、濾過膜の表面で捕捉される段
階になるとケーク層が形成され、大量の液体を処理する
場合や形成されるケーク層の比抵抗が極端に高い場合は
大きな濾過抵抗となり、このような全濾過を行うと膜透
過流束が小さくなる。一方排水処理や造水・プール水の
濾過などの分野においては、目詰まりしたフィルターの
濾過流束回復のために逆洗を行うことが知られている。
しかしこの全濾過と逆洗を組み合わせた方法はケーク層
の比抵抗が比較的小さな排水処理の分野で開発された技
術であるため、醗酵液の菌体分離の如き微細で比抵抗の
大きな粒子の濾過にはこのままでは効果がなかった。こ
のため、クロスフロー型濾過方式をすることが考えられ
た。このクロスフロー型濾過方式は、濾過膜の膜表面に
平行に濾過すべき原液体を流し、液体は濾過膜を通って
反対側へ透過し、この原液体と透過液体の流れが直交し
ているためにこのように称されている。このクロスフロ
ー型濾過方法は、膜に平行な原液体の流れによって膜面
上に形成されたケーク層がはぎ取られるので従来の全濾
過方法に比べて膜透過流束が大きく、大量の原液体を直
接連続的に分離、精製、濃縮が可能であるが、純水透過
流束の大きいすなわち0.05から10μmの粒子を除
去する精密濾過領域の膜を用いた場合は急激に膜透過流
束が低下して濾過開始初期の高い膜透過流束を保つこと
は困難であり、結果として全濾過方法と総透過液量を比
較するとその改善効果は小さく経済的な透過流束を得る
には不十分であった。As a filtration method, there is a so-called total filtration method in which all liquids to be filtered pass through a filter material (filter cloth, membrane, etc.) and a cake layer to separate fine particles contained in the liquid. In this conventional total filtration method, a high permeation flux is obtained at the stage where the liquid is passed and the suspended substances are captured and separated inside the filtration membrane, but at the stage when they are captured at the surface of the filtration membrane, the cake is obtained. When a layer is formed and a large amount of liquid is processed, or when the specific resistance of the formed cake layer is extremely high, the filtration resistance becomes large, and such a total filtration reduces the membrane permeation flux. On the other hand, in the field of wastewater treatment, filtration of fresh water, pool water, etc., it is known to perform backwashing in order to recover the filtration flux of a clogged filter.
However, this combined method of total filtration and backwash is a technology developed in the field of wastewater treatment in which the specific resistance of the cake layer is relatively small, and therefore, it is possible to remove fine particles with large specific resistance such as bacterial cell separation of the fermentation liquid. The filtration was ineffective as it was. Therefore, it has been considered to use a cross-flow type filtration method. In this cross-flow type filtration system, the raw liquid to be filtered flows in parallel to the membrane surface of the filtration membrane, the liquid permeates to the opposite side through the filtration membrane, and the flow of the raw liquid and the permeated liquid is orthogonal. This is why it is so called. In this cross-flow type filtration method, since the cake layer formed on the membrane surface is stripped off by the flow of the raw liquid parallel to the membrane, the membrane permeation flux is large compared to the conventional total filtration method, and a large amount of the raw liquid is obtained. Can be directly and continuously separated, purified, and concentrated, but when a membrane in the microfiltration region that removes particles with a large pure water permeation flux, that is, from 0.05 to 10 μm, is used, the membrane permeation flux rapidly increases. It is difficult to maintain a high membrane permeation flux at the initial stage of filtration, and as a result, when comparing the total filtration method with the total permeate amount, the improvement effect is small and it is not possible to obtain an economical permeation flux. Was enough.
【0004】透過流束を高める方法としてはクロスフロ
ー濾過方式と併用して濾過膜への原液体の流入を断続的
に停止したり、濾過膜の透過液側の弁を閉止することに
より、濾過膜の膜面に垂直にかかる圧力を断続的になく
すあるいは減少させたり、また濾過膜の透過液側から圧
力を加え透過液側から原液側へ液を流すことによって、
濾過膜の原液側の膜面上に堆積しているケーク層や付着
層を断続的に取り除く「逆洗」と称する試みがなされて
いるが、これら逆洗が行われた際も濾過膜から脱着した
懸濁物質を濾過系内に残しておくと原液中の懸濁物の濃
度が徐々に増加し、場合によっては原液の粘度も上昇す
るため膜透過流束は徐々に低下して逆洗を行っても透過
流束が十分回復しない等の問題があった。また、透過液
を用いて逆洗を行うと実質上逆洗した量だけ膜透過量は
減少するため、膜透過流束を十分回復するだけの逆洗液
を確保できないという問題があった。一方菌体の活性を
低下させない方法として、クロスフロー循環流速を低下
させ剪断力を小さくすることが行われているが、剪断力
を小さくするとクロスフロー濾過方式の効果が小さくな
るため、実際に菌体活性を低下させない方策をとると膜
透過流束が低下する問題があった。またポンプでの菌体
の破砕を少なくするためダイヤフラムポンプなどの剪断
力の小さいポンプを用いるとポンプの脈動が大きくクロ
スフロー濾過方式の効果が小さくなる等の問題もあっ
た。As a method for increasing the permeation flux, the filtration is carried out by intermittently stopping the inflow of the raw liquid into the filtration membrane or by closing the valve on the permeate side of the filtration membrane in combination with the cross flow filtration method. By intermittently eliminating or reducing the pressure applied perpendicularly to the membrane surface of the membrane, or by applying pressure from the permeate side of the filtration membrane and flowing the liquid from the permeate side to the stock solution side,
An attempt to intermittently remove the cake layer and the adhering layer accumulated on the undiluted solution side of the filtration membrane has been attempted, which is called "backwashing". If the suspended substance left in the filtration system is left in the filtration system, the concentration of the suspension in the stock solution will gradually increase, and in some cases the viscosity of the stock solution will also increase. There was a problem that the permeation flux did not recover sufficiently even if it went. In addition, when backwashing is performed using a permeate, the amount of membrane permeation is substantially reduced by the amount of backwashing, so that there is a problem in that a backwash that can sufficiently restore the membrane permeation flux cannot be secured. On the other hand, as a method that does not reduce the activity of the bacterial cells, it has been attempted to reduce the cross-flow circulation flow rate to reduce the shearing force.However, if the shearing force is reduced, the effect of the cross-flow filtration method will be reduced. There is a problem that the permeation flux of the membrane is reduced if a measure that does not reduce the physical activity is taken. Further, when a pump having a small shearing force such as a diaphragm pump is used to reduce the crushing of bacterial cells by the pump, there is a problem that the pulsation of the pump is large and the effect of the cross-flow filtration system is reduced.
【0005】[0005]
【発明が解決しようとする課題】全濾過方式において、
膜透過流束の低下が著しくなる前に、あるいは濾圧上昇
が著しくなる前に、透過側の圧力を原液側の圧力よりも
高くして逆洗し膜表面および膜内部に捕捉された微粒子
を系外に排出することにより、膜透過流束を初期の高い
水準に復帰しあるいは濾圧を初期の低い水準に復帰させ
る。これを繰り返すことにより平均透過流束を実用性の
ある高い水準にする全濾過周期逆洗濾過方法がある。こ
の全濾過周期逆洗を長期に渡って安定に維持するために
は、捕捉した微粒子が圧密化して膜面に不可逆に付着し
て逆洗性が低下するのを防ぐため、濾過時の膜間差圧あ
るいは膜透過流束をある程度以内に抑える必要がある。
これは濾過時の原液送液量を制御することで実施してい
る。しかしながら、全濾過周期逆洗システムでは濾過操
作前に原液充填操作を行って膜モジュール原液側に原液
を満たす操作が必要であり、原液送液量を抑制すること
は原液充填操作に時間がかかり、1周期に要する時間が
長くなり、懸濁物濃度が高く逆洗周期の短い系ほど平均
濾過流束が低下することになる。DISCLOSURE OF INVENTION Problems to be Solved by the Invention
Before the membrane permeation flux is significantly reduced or the filtration pressure is significantly increased, the pressure on the permeate side is made higher than the pressure on the raw solution side to backwash the fine particles trapped on the membrane surface and inside the membrane. By discharging out of the system, the membrane permeation flux is returned to an initial high level or the filtration pressure is returned to an initial low level. There is a whole filtration cycle backwash filtration method in which the average permeation flux is raised to a practically high level by repeating this. In order to maintain this whole backwash cycle backwashing stably for a long period of time, in order to prevent the captured fine particles from consolidating and irreversibly adhering to the membrane surface and reducing the backwashability, It is necessary to suppress the differential pressure or transmembrane flux within a certain range.
This is performed by controlling the amount of the undiluted solution delivered during filtration. However, in the whole filtration cycle backwash system, it is necessary to perform the undiluted solution filling operation before the filtration operation to fill the undiluted solution in the membrane module undiluted solution side, and suppressing the undiluted solution delivery amount requires a long time in the undiluted solution filling operation, The time required for one cycle becomes longer, and the higher the suspension concentration and the shorter the backwash cycle, the lower the average filtration flux.
【0006】[0006]
【課題を解決するための手段】本発明は上述した先行技
術にあった問題点を解決するためになされたものであっ
て、実用性のある高い平均膜透過流束を保ちつつ、周期
逆洗濾過を長期に渡って安定に維持できる、新規な全濾
過周期逆洗システムを提供することを目的とするもので
ある。すなわち、本発明は、懸濁物を多量に含む液体を
精密濾過膜を用いて濾過し、濾圧上昇を検出してあるい
は一定時間毎に濾過膜の透過液側の圧力を原液側の圧力
よりも大きくして周期的に逆洗を行い、逆洗液と共に濾
過膜から脱着した懸濁物を濾過系外に排出する、1周期
の操作手順が主として、原液充填操作、原液濾過操作、
加圧脱液操作、逆水洗操作、加圧脱液操作からなる全濾
過周期逆洗システムにおいて、原液充填操作時と原液濾
過操作時とでモジュールへの原液送液流量を変化させる
ことを特徴とする全濾過周期逆洗濾過方法、または、懸
濁物を多量に含む液体を精密濾過膜を用いて濾過し、濾
圧上昇を検出してあるいは一定時間毎に濾過膜の透過液
側の圧力を原液側の圧力よりも大きくして周期的に逆洗
を行い、逆洗液と共に濾過膜から脱着した懸濁物を濾過
系外に排出する全濾過周期逆洗システムにおいて、
(1)膜の厚さ方向に孔径の異方性を有しており、
(2)濾過一次側の膜表面の平均孔径が除去すべき原液
中懸濁粒子の平均径に対して2倍から30倍であり、
(3)膜の内部あるいは濾過の二次側膜表面に存在する
最緻密層の平均孔径が除去すべき原液中懸濁粒子の平均
径に対して0.8倍以下である、ことを特徴とする精密
濾過膜を用いる全濾過周期逆洗濾過方法によって達成さ
れた。以下、本発明を詳細に説明する。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the prior art, and it is possible to maintain a practically high average membrane permeation flux while performing periodic backwashing. It is an object of the present invention to provide a novel whole filtration cycle backwash system capable of maintaining stable filtration over a long period of time. That is, the present invention is to filter a liquid containing a large amount of suspension using a microfiltration membrane, detect an increase in filtration pressure, or measure the pressure on the permeate side of the filtration membrane from the pressure on the stock solution side at regular intervals. Is also increased to perform periodic backwashing, and the suspension desorbed from the filtration membrane together with the backwashing liquid is discharged to the outside of the filtration system.
In a total filtration cycle backwash system consisting of pressure deliquoring operation, backwashing operation, and pressure deliquoring operation, the flow rate of the stock solution fed to the module is changed during the stock solution filling operation and the stock solution filtering operation. Full filtration cycle Backwash filtration method or filtration of a liquid containing a large amount of suspension using a microfiltration membrane to detect an increase in filtration pressure or to detect the pressure on the permeate side of the filtration membrane at regular intervals. In a whole filtration cycle backwash system in which the backwash is periodically carried out with the pressure higher than the stock solution side and the suspension desorbed from the filtration membrane together with the backwash solution is discharged out of the filtration system,
(1) Pore diameter anisotropy in the thickness direction of the film,
(2) The average pore diameter of the membrane surface on the primary side of filtration is 2 to 30 times the average diameter of the suspended particles in the stock solution to be removed,
(3) The average pore size of the densest layer existing inside the membrane or on the surface of the secondary membrane for filtration is 0.8 times or less than the average diameter of the suspended particles in the stock solution to be removed. Was achieved by a full filtration cycle backwash filtration method using a microfiltration membrane. Hereinafter, the present invention will be described in detail.
【0007】本発明の全濾過周期逆洗方法は、種々の高
分子、微生物、酵母、微粒子を含有あるいは懸濁する液
体の分離、精製、回収、濃縮など、濾過を必要とする微
細な微粒子を含有する液体からその微粒子を除去する必
要のあるあらゆる場合に適用することができるが、特に
醗酵液・培養液からの酵素、微生物、細胞などの分離、
濃縮、回収など懸濁物質の濾過比抵抗が極端に大きい場
合に効果が大きい。本発明の全濾過周期逆洗方法で行う
逆洗はガスよりも液体で行う方が効果が大きく、系外か
らの異物混入を避ける場合は逆洗液として透過液を用い
ることができる。また透過液を逆流させた分だけ透過量
が減少することを避ける場合は、濾過系外より洗浄液を
供給して必要に応じた逆洗量で逆洗を行うことが好まし
い。濾過系外より供給する逆洗液は濾過膜の特性を低下
させたり原液の特性を低下させたりしなければ基本的に
は何でもよい。原液が水溶液であれば逆洗液としては水
を用いるのが一般的である。また逆洗終了後逆洗液を系
内に残したくない場合は、ガスによる脱液を行う。The backwashing method of the whole filtration cycle of the present invention removes fine particles which require filtration such as separation, purification, recovery and concentration of liquids containing or suspending various polymers, microorganisms, yeasts and particles. It can be applied to all cases where it is necessary to remove the fine particles from the liquid containing it, especially separation of enzymes, microorganisms, cells, etc. from fermentation liquid / culture liquid,
The effect is great when the filtration resistivity of the suspended matter is extremely large, such as concentration and recovery. The backwashing performed by the whole filtration cycle backwashing method of the present invention is more effective when performed with a liquid rather than gas, and a permeate can be used as the backwashing liquid when foreign matter from the outside of the system is avoided. In order to avoid a decrease in permeation amount by the amount of backflow of the permeated liquid, it is preferable to supply a cleaning liquid from the outside of the filtration system and perform backwashing with an appropriate backwashing amount. The backwash liquid supplied from outside the filtration system may be basically any liquid as long as it does not deteriorate the characteristics of the filtration membrane or the characteristics of the stock solution. If the stock solution is an aqueous solution, water is generally used as the backwash solution. If it is not desired to leave the backwash solution in the system after the backwash is finished, the liquid is removed by gas.
【0008】定圧濾過を行う場合は従来の「全濾過逆洗
技術」のように膜透過流束が極端に低くなってから逆洗
を行うと逆洗後の膜透過流束の回復性は悪くなるため、
濾過初期の透過流束の1/50に達する前に逆洗を行
う。好ましくは濾過初期の透過流束の1/10に達する
前に逆洗を行うことにより、さらに高い透過流束が得ら
れる。また、定流束濾過を行う場合は濾過膜間差圧が極
端に高くなってから逆洗を行うと逆洗後の濾過膜間差圧
の回復性すなわち洗浄性が悪くなるため、濾過膜間差圧
が1.0kg/cm2に達する前に逆洗を行うことが好まし
い。さらに好ましくは濾過膜間差圧が0.3kg/cm2に達
する前に逆洗を行うことにより、透過流束の条件をさら
に高くすることができる。逆洗液は高い膜透過流束で多
量に濾過膜内を通過させる方が洗浄性は高くなるので、
逆洗液の透過流束は1×10-4m2/m2/sec以上であ
ることが好ましい。また逆洗液量はフィルターハウジン
グ一次側容量の2倍以上あることが、膜の濾過能力回復
に対して好ましい。しかし透過液量が少ない時は相対的
に逆洗排水量が著しく多くなるため、濾過量と排水量と
のバランスを考えると、ハウジング一次側容量の2倍前
後の逆洗量が適切であろう。When performing constant pressure filtration, when the backwash is performed after the membrane permeation flux becomes extremely low as in the conventional "total filtration backwash technique", the recoverability of the membrane permeation flux after backwash is poor. Because,
Backwash is performed before reaching 1/50 of the initial permeation flux. A higher permeation flux can be obtained by backwashing preferably before reaching 1/10 of the permeation flux at the initial stage of filtration. When performing constant-flux filtration, if backwashing is performed after the pressure difference between the filtration membranes has become extremely high, the recoverability of the pressure difference between the filtration membranes after backwashing, that is, the cleaning property is deteriorated. Backwashing is preferably performed before the differential pressure reaches 1.0 kg / cm 2 . More preferably, by performing backwashing before the differential pressure between filtration membranes reaches 0.3 kg / cm 2 , the condition of permeation flux can be further increased. Since the backwash liquid has a high membrane permeation flux and a large amount of water is passed through the filtration membrane, the washing performance is higher.
The permeation flux of the backwash liquid is preferably 1 × 10 −4 m 2 / m 2 / sec or more. Further, it is preferable that the amount of backwashing liquid is at least twice the volume of the primary side of the filter housing in order to recover the filtration capacity of the membrane. However, when the amount of the permeated liquid is small, the backwashing drainage amount becomes relatively large. Therefore, considering the balance between the filtration amount and the drainage amount, the backwashing amount of about twice the primary side capacity of the housing may be appropriate.
【0009】図1と図2は一般的な精密濾過膜プリーツ
型カートリッジフィルターエレメントの展開図および同
モジュール断面図である。精密濾過膜3は2枚の通液性
シート2、4によってサンドイッチされた状態でひだ折
りされ、コア孔33を多数有するコアー5の廻りに巻き
付けられている。その外側には外周ガード1があり、精
密濾過膜を保護している。円筒の両端にはエンドプレー
ト6a、6bにより、精密濾過膜がシールされている。
エンドプレートはガスケット7を介してフィルターハウ
ジング(図示なし)のシール部と接する。濾過された液
体はコアーが形成する中央通孔32を通って集液口8か
ら集められ、フィルターハウジングの二次側出入口23
から排出される。図3は精密濾過膜円盤積層型カートリ
ッジフィルターエレメントの断面図である。このエレメ
ントは、円盤状の膜支持体(38)の両面に精密濾過膜
(37)を設置してあり、このような円盤が積層されて
全体として円筒状に形成されている。膜支持体の中央部
は同心円状に打ち抜かれてドーナツ状になり、積層され
るとこの打ち抜かれた中央部は中央通孔32を形成す
る。また支持体はその内部に通液手段を有し、膜を透過
した液は膜支持体(38)の内部を伝って中央通孔32
に出る、更に二次側出入口23から排出される。1 and 2 are a developed view of a general microfiltration membrane pleated type cartridge filter element and a sectional view of the same module. The microfiltration membrane 3 is fold-folded in a state of being sandwiched by the two liquid-permeable sheets 2 and 4, and is wound around a core 5 having a large number of core holes 33. An outer peripheral guard 1 is provided on the outer side thereof to protect the microfiltration membrane. Microfiltration membranes are sealed at both ends of the cylinder by end plates 6a and 6b.
The end plate contacts the seal portion of the filter housing (not shown) via the gasket 7. The filtered liquid is collected from the liquid collecting port 8 through the central through hole 32 formed by the core, and the secondary side inlet / outlet port 23 of the filter housing is collected.
Discharged from. FIG. 3 is a sectional view of a microfiltration membrane disc laminated cartridge filter element. In this element, microfiltration membranes (37) are installed on both sides of a disc-shaped membrane support (38), and such discs are laminated to form a cylindrical shape as a whole. The central part of the membrane support is concentrically punched into a donut shape, and when stacked, the punched central part forms a central through hole 32. Further, the support has a liquid passage means inside thereof, and the liquid that has permeated through the membrane is transmitted through the inside of the membrane support (38) to the central through hole 32.
And is discharged from the secondary side inlet / outlet 23.
【0010】懸濁物を含む原液は図4に示す原液タンク
19から濾過ポンプ12を経てフィルターハウジング一
次側出入口22からモジュール11の中に入る。精密濾
過膜エレメント30を透過した液は二次側出入口23か
ら排出され、透過液タンク15に集められる。膜が目詰
まりをおこすと、通常は逆洗液を逆洗タンク16から逆
洗ポンプ13・二次側出入口23を経てエレメント30
に送り、膜状のケークを剥離し堆積していた懸濁物を伴
って、一次側出入口22を経て廃液口18に排出され
る。しかしこの時、モジュール11内に残存する原液や
透過液も共に排出されてしまい生産物の損失が大きくな
るので、逆洗する前にモジュールの一次側ガス入口25
および二次側ガス入口24から加圧ガスを導入し、モジ
ュール内に残存する液を原液タンク19および透過液タ
ンク15に押し出す。更に洗浄液タンク14から洗浄液
をポンプ12・一次側出入口22を経てモジュール11
に送り、モジュール内特に膜カートリッジ中に残存する
液を洗い出し、透過液タンク15に回収するこの操作を
正洗浄と称しているが、正洗浄を十分に行うことによ
り、逆洗して排出される生産物を著しく減少できる。濾
過ポンプ12から原液タンク19へモジュール11をバ
イパスする配管39を設ける。このバイパス39の開閉
によってモジュール11への原液供給量をポンプ流量を
一定にしたまま制御できる。The stock solution containing the suspension enters the module 11 from the stock solution tank 19 shown in FIG. The liquid that has permeated the microfiltration membrane element 30 is discharged from the secondary inlet / outlet port 23 and collected in the permeated liquid tank 15. When the membrane is clogged, the backwash liquid is usually supplied from the backwash tank 16 through the backwash pump 13 and the secondary inlet / outlet 23 to the element 30.
To the waste liquid port 18 through the primary inlet / outlet port 22 together with the suspended matter that has peeled off the filmy cake and accumulated. However, at this time, the undiluted solution and the permeated solution remaining in the module 11 are also discharged and the loss of the product increases, so that the primary side gas inlet 25 of the module before backwashing.
A pressurized gas is introduced from the secondary side gas inlet 24, and the liquid remaining in the module is pushed out to the stock solution tank 19 and the permeate tank 15. Further, the cleaning liquid is supplied from the cleaning liquid tank 14 through the pump 12 and the primary side inlet / outlet 22 to the module 11
The liquid remaining in the module, particularly in the membrane cartridge, is washed out and collected in the permeated liquid tank 15. This operation is called normal cleaning. However, by performing sufficient normal cleaning, it is backwashed and discharged. The production can be significantly reduced. A pipe 39 that bypasses the module 11 from the filtration pump 12 to the stock solution tank 19 is provided. By opening / closing the bypass 39, the amount of the stock solution supplied to the module 11 can be controlled while keeping the pump flow rate constant.
【0011】本発明で使用することのできる精密濾過膜
には、ポリ弗化ビニリデン、ポリアクリロニトリル、ポ
リ塩化ビニルの如きビニルポリマー、ポリスルホン、ポ
リエーテルスルホン、脂肪族ポリアミド、セルローズエ
ステル類等の公知の高分子を単独または混合して原料と
することができる。精密濾過膜の製造は、上記ポリマー
を良溶媒、良溶媒と非溶媒の混合溶媒又はポリマーに対
する溶解性の程度が異なる複数種の溶媒の混合したもの
に溶解して製膜原液を作製し、これを支持体上に、又は
直接凝固液中に流延し、洗浄乾燥して行う。この場合
に、ポリマーを溶解する溶媒の一例としては、ジクロロ
メタン、アセトン、ジメチルホルムアミド、ジメチルア
セトアミド、ジメチルスルホキシド、2−ピロリドン、
N−メチル−2−ピロリドン、スルホラン等を挙げるこ
とができる。上記溶媒に添加する非溶媒の例としては、
セロソルブ類、メタノール、エタノール、イソプロパノ
ールの如きアルコール類、アセトン、メチルエチルケト
ンの如きケトン類、テトラヒドロフラン、ジオキサンの
如きエーテル類、ポリエチレングリコール、グリセリ
ン、エチルグリコールの如きポリオール類等が挙げられ
る。非溶媒の良溶媒に対する割合は、混合液が均一状態
を保てる範囲ならばいかなる範囲でも良いが、5〜50
重量%が好ましい。The microfiltration membrane which can be used in the present invention includes polyvinylidene fluoride, polyacrylonitrile, vinyl polymers such as polyvinyl chloride, polysulfones, polyether sulfones, aliphatic polyamides, cellulose esters, etc. The polymers may be used alone or in combination as a raw material. The production of the microfiltration membrane is carried out by dissolving the polymer in a good solvent, a mixed solvent of a good solvent and a non-solvent, or a mixture of plural kinds of solvents having different degrees of solubility to the polymer to prepare a membrane-forming stock solution, Is cast on a support or directly in a coagulating solution, washed and dried. In this case, examples of the solvent for dissolving the polymer include dichloromethane, acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone,
Examples thereof include N-methyl-2-pyrrolidone and sulfolane. Examples of the non-solvent added to the above solvent,
Examples thereof include cellosolves, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, polyols such as polyethylene glycol, glycerin and ethyl glycol. The ratio of the non-solvent to the good solvent may be any range as long as the mixed solution can maintain a uniform state, but is 5 to 50.
Weight percent is preferred.
【0012】又、多孔構造を制御するものとして膨潤剤
と称される無機電解質、有機電解質、高分子電解質等を
加えることもできる。本発明で使用できる電解質として
は、食塩、硝酸ナトリウム、硝酸カリウム、硫酸ナトリ
ウム、塩化亜鉛、臭化マグネシウム等の無機酸の金属
塩、酢酸ナトリウム、ギ酸ナトリウム、酪酸カリウム等
の有機酸塩類、ポリスチレンスルホン酸ナトリウム、ポ
リビニルピロリドン、ポリビニルベンジルトリメチルア
ンモニウムクロライド等の高分子電解質、ジオクチルス
ルホコハク酸ナトリウム、アルキルメチルタウリン酸ナ
トリウム等のイオン系界面活性剤等が用いられる。これ
らの電解質は単独でポリマー溶液に加えてもある程度の
効果を示すものもあるが、これら電解質を水溶液として
添加する場合には、特に顕著な効果を示すことがある。
電解質水溶液の添加量は添加によって溶液の均一性が失
われることがない限り特に制限はないが、通常溶媒に対
して0.5容量%から10容量%である。また電解質水
溶液の濃度についても特に制限はなく、濃度の大きい方
が効果は大きいが、通常用いられる濃度としては1重量
%から60重量%である。製膜原液とてのポリマー濃度
は5から35重量%、好ましくは10から30重量%で
ある。35重量%を越える時は得られる微孔性膜の透水
性が実用的な意味を持たない程小さくなり、5重量%よ
りも小さい時は充分な分離能力を持った精密濾過膜は得
られない。In addition, an inorganic electrolyte called an swelling agent, an organic electrolyte, a polymer electrolyte or the like may be added to control the porous structure. Examples of the electrolyte that can be used in the present invention include salt, sodium nitrate, potassium nitrate, sodium sulfate, zinc chloride, metal salts of inorganic acids such as magnesium bromide, sodium acetate, sodium formate, organic acid salts such as potassium butyrate, polystyrene sulfonic acid. Polymer electrolytes such as sodium, polyvinylpyrrolidone and polyvinylbenzyltrimethylammonium chloride, and ionic surfactants such as sodium dioctyl sulfosuccinate and sodium alkylmethyl taurate are used. Although some of these electrolytes show some effect when added alone to the polymer solution, particularly when these electrolytes are added as an aqueous solution, they may show particularly remarkable effects.
The addition amount of the electrolyte aqueous solution is not particularly limited as long as the addition does not lose the homogeneity of the solution, but it is usually 0.5% by volume to 10% by volume with respect to the solvent. The concentration of the electrolyte aqueous solution is not particularly limited, and the higher the concentration, the greater the effect, but the concentration usually used is 1% by weight to 60% by weight. The polymer concentration of the stock solution for film formation is 5 to 35% by weight, preferably 10 to 30% by weight. When it exceeds 35% by weight, the water permeability of the obtained microporous membrane becomes so small as to have no practical meaning, and when it is less than 5% by weight, a microfiltration membrane having sufficient separation ability cannot be obtained. ..
【0013】上記のようにして調製した製膜原液を支持
体の上に流延し、流延直後あるいは一定時間をおいて凝
固液中に支持体ごとポリマー溶液膜を浸漬する。凝固液
としては水が最も一般的に用いられるが、ポリマーを溶
解しない有機溶媒を用いても良く、またこれら非溶媒を
2種以上混合して用いてもよい。支持体としては、通常
精密濾過膜を製造する場合に支持体として使用できるも
のの中から任意に選択することができるが、特に不織布
を使用した場合には支持体を剥がす必要がないので好ま
しい。本発明で使用できる不織布はポリプロピレン、ポ
リエステル等からなる一般的なものであり、材質の制限
を受けるものではない。凝固浴中でポリマーが析出した
流延膜はこの後水洗、温水洗浄、溶剤洗浄等を行い、乾
燥する。この様にしてつくられた精密濾過膜3は公知の
方法でひだ折り加工される。保護シート2、4としては
不織布、濾紙およびまたは網状体等が用いられる。逆洗
効果を高めるために、不織布はめつけ量が18g/m2か
ら200g/m2、好ましくは30g/m2から100g/
m2で、厚さが0.1mmから1mmの、ポリエステル、ポリ
プロピレンあるいはナイロンの如き合成繊維でできたも
のがしばしば用いられる。網状体とはポリエステル、ポ
リプロピレンあるいはナイロンの如き合成ポリマーのモ
ノフィラメントを格子状に交互に編みあげた網状シート
を指し、編み目の大きさは12メッシュから500メッ
シュのものが適している。特に好ましくは25メッシュ
から250メッシュのものがよい。The stock solution for film formation prepared as described above is cast on a support, and the polymer solution film is immersed together with the support in a coagulating liquid immediately after casting or after a certain time. Water is most commonly used as the coagulation liquid, but an organic solvent that does not dissolve the polymer may be used, or two or more of these non-solvents may be mixed and used. The support may be arbitrarily selected from those which can be used as a support in the case of producing a microfiltration membrane, but it is preferable to use a non-woven fabric because the support need not be peeled off. The non-woven fabric that can be used in the present invention is generally made of polypropylene, polyester, etc., and is not limited by the material. After that, the casting film on which the polymer is precipitated in the coagulation bath is washed with water, washed with warm water, washed with a solvent, and dried. The microfiltration membrane 3 thus produced is pleated by a known method. As the protective sheets 2 and 4, non-woven fabric, filter paper, and / or a net-like body is used. In order to enhance the backwash effect, the amount of non-woven fabric applied is 18 g / m 2 to 200 g / m 2 , preferably 30 g / m 2 to 100 g /
Often used are those made of synthetic fibers, such as polyester, polypropylene or nylon, of m 2 and having a thickness of 0.1 mm to 1 mm. The reticulated body refers to a reticulated sheet in which monofilaments of synthetic polymer such as polyester, polypropylene or nylon are alternately knitted in a lattice shape, and the size of the stitches is preferably 12 mesh to 500 mesh. Particularly preferably, the mesh size is 25 to 250 mesh.
【0014】ひだ折り加工された濾材は両端部を揃える
ためにカッターナイフ等で両端部の不揃い部分を切り落
とし、円筒状に丸めてその合わせ目のひだ部を、ヒート
シールあるいは接着剤を用いて液密にシールする。エン
ドシール工程はエンドプレート材質によって方法がいく
つかあるが、いずれも従来知られた公知技術によって行
われる。エンドプレートに熱硬化性のエポキシ樹脂を使
用する時は、ポッティング型中に調合したエポキシ樹脂
接着剤の液体を流し込み、予備硬化させて接着剤の粘度
が適度に高くなってから、円筒状濾材の片端面をこのエ
ポキシ接着剤中に挿入する。その後加熱して完全に硬化
させる。エンドプレートの材質がポリプロピレンやポリ
エステルの如き熱可塑性樹脂の時は、熱溶融した樹脂を
型に流し込んだ直後に円筒状濾材の片端面を樹脂の中に
挿入する方法が行われる。一方、既に成型されたエンド
プレートのシール表面のみを赤外線ヒーターで溶融し、
円筒状濾材の片端面を溶着する方法も行われる。In order to align both ends of the fold-folded filter medium, the uneven portions of both ends are cut off with a cutter knife or the like, and the folds of the seam are rolled into a cylindrical shape and heat-sealed or an adhesive is used to apply liquid. Seal tightly. There are several methods for the end-sealing step depending on the material of the end plate, but all of them are carried out by known techniques known in the art. When using a thermosetting epoxy resin for the end plate, pour the liquid of the prepared epoxy resin adhesive into the potting mold and pre-cure it to increase the viscosity of the adhesive to an appropriate degree. Insert one end into this epoxy adhesive. Then, it is heated and completely cured. When the material of the end plate is a thermoplastic resin such as polypropylene or polyester, a method of inserting one end surface of the cylindrical filter medium into the resin immediately after the molten resin is poured into the mold is used. On the other hand, only the seal surface of the already molded end plate is melted with an infrared heater,
A method of welding one end surface of the cylindrical filter medium is also performed.
【0015】本全濾過周期逆洗方法による高懸濁物濃度
液の濾過に対しては、特開昭62−27006号、特公
昭55−6406号や特公平1−43619号で開示さ
れている如き膜の厚さ方向に孔径の異方性を有する膜を
用いると、液中の生産物回収率の向上に更に効果があ
る。これは、このような異方性膜の孔径の大きな面から
孔径の小さな面へ原液を濾過すると、懸濁物が膜表面だ
けで捕捉されるのではなく、膜内部にも入り込んで分散
して捕捉されるため、懸濁物による密なケークの形成が
遅れるためである。このため厚さ方向で孔径の均一な等
方性膜を用いるよりも異方性膜を用いる方が、濾過開始
から逆洗を行うまでの間の原液の濾過量は2倍以上に増
加する。1回の逆洗で排出される生産物量は濾過量に関
係なく同等なので、結果としては異方性膜を用いた方が
生産物回収率が高くなり、生産物損失率は等方性膜の半
分以下になる。用いる異方性膜の最大孔径層の平均孔径
が除去したい懸濁物粒子径(桿菌の場合はその円筒直
径)の2倍から30倍である時は特に生産物回収率が高
くなって好ましい。最も好ましい最大孔径層の平均孔径
の範囲は、懸濁物粒子径の4倍から16倍の範囲であ
る。異方性膜はその膜の一方の表面に最大孔径層を有
し、その反対表面あるいは膜内部に最緻密層を有する構
造をしている。最緻密層において原液中の懸濁物粒子は
完全に除去できなければならない。従って最緻密層の平
均孔径は除去すべき懸濁物粒子の平均粒子径よりも小さ
い必要があり、好ましくは懸濁物粒子平均径の0.8倍
以下である。Filtration of a high suspension concentration liquid by the backwashing method of the whole filtration cycle is disclosed in JP-A-62-27006, JP-B-55-6406 and JP-B-1-43619. The use of such a film having anisotropy of pore diameter in the thickness direction is further effective in improving the product recovery rate in the liquid. This is because when the undiluted solution is filtered from the surface with a large pore size of such an anisotropic membrane to the surface with a small pore size, the suspension is not trapped only on the membrane surface but also enters and disperses inside the membrane. This is because the formation of a dense cake by the suspension is delayed because it is captured. For this reason, the filtration amount of the stock solution between the start of filtration and backwashing is more than doubled by using an anisotropic membrane rather than using an isotropic membrane having a uniform pore size in the thickness direction. Since the amount of product discharged in one backwash is the same regardless of the filtration amount, as a result, the product recovery rate is higher when the anisotropic membrane is used, and the product loss rate is higher than that of the isotropic membrane. Less than half. When the average pore size of the maximum pore size layer of the anisotropic membrane used is 2 to 30 times the particle size of the suspension to be removed (in the case of bacillus, its cylindrical diameter), the product recovery rate is particularly high, which is preferable. The most preferable range of the average pore size of the maximum pore size layer is 4 to 16 times the suspension particle size. The anisotropic film has a structure having a maximum pore size layer on one surface of the film and a densest layer on the opposite surface or inside the film. In the densest layer, the suspension particles in the stock solution must be completely removable. Therefore, the average pore size of the densest layer needs to be smaller than the average particle size of the suspension particles to be removed, and is preferably 0.8 times or less the average particle size of the suspension particles.
【0016】[0016]
【実施例】以下に濾過の具体例を挙げて本発明をさらに
詳しく説明するが、発明の主旨を越えない限り本発明は
実施例に限定されるものではない。 実施例1 緻密層の平均孔径0.4μm、最大孔径層の平均孔径
3.8μmのポリスルホン製異方性膜約3400平方セ
ンチメートルが組み込まれたプリーツ型カートリッジモ
ジュールを用いて下記実験を行った。濾過原液には体積
濃度で14%のパン酵母を有する模擬醗酵液を用いた。
濾過ポンプにて初期流量毎分2リットルでプリーツ型カ
ートリッジモジュールに原液を送液した。原液供給操作
に0.3分を要した。原液供給操作終了後、バイパスバ
ルブを開き、プリーツ型カートリッジモジュールへの原
液送液量0.5リットルにして4分間濾過し、その後膜
の一次側と二次側両側に0.5kg/cm2の空気圧力をかけ
て、一次側に残留している液は原液タンクに、二次側に
残留している液は透過液にそれぞれ回収する加圧脱液操
作を0.2分行った。次いで逆洗ポンプで洗浄水1リッ
トルを膜ホルダーに送り膜の目詰まりを洗浄し回復する
逆洗操作を0.5分行い、逆洗洗浄水は廃液タンクに収
容した。再び膜の両側に空気圧をかけて膜ホルダー中に
残留している逆洗水を排出廃却する加圧脱液操作を行っ
た。最初の濾過から最後の排水までを1周期とし、合計
5.2分で終了した。周期逆洗を繰り返し行ったが経時
的な濾圧上昇も認められず安定した濾過が実現できた。
また1周期の所用時間を短縮できた。濾過データを図7
に示す。EXAMPLES The present invention will be described in more detail with reference to specific examples of filtration, but the present invention is not limited to the examples as long as the gist of the invention is not exceeded. Example 1 The following experiment was carried out using a pleated cartridge module in which an anisotropic membrane made of polysulfone having an average pore size of 0.4 μm of the dense layer and an average pore size of the maximum pore layer of 3.8 μm was incorporated. A simulated fermentation broth containing 14% by volume of baker's yeast was used as the stock solution for filtration.
The stock solution was sent to the pleated cartridge module with an initial flow rate of 2 liters per minute by a filtration pump. It took 0.3 minutes to supply the stock solution. After the stock solution supply operation is completed, the bypass valve is opened, the stock solution feed amount to the pleated cartridge module is adjusted to 0.5 liter, and the solution is filtered for 4 minutes, and then 0.5 kg / cm 2 on both the primary side and the secondary side of the membrane. A pressure dewatering operation was performed for 0.2 minutes by applying air pressure to collect the liquid remaining on the primary side into the stock solution tank and the liquid remaining on the secondary side into the permeate. Then, 1 liter of wash water was sent to the membrane holder by the backwash pump, and the backwash operation for washing and recovering the clogging of the membrane was performed for 0.5 minutes, and the backwash wash water was stored in the waste liquid tank. A pressure deliquoring operation was performed in which air pressure was applied to both sides of the membrane again to discharge and discard the backwash water remaining in the membrane holder. One cycle from the first filtration to the final drainage was completed, and the process was completed in a total of 5.2 minutes. Cyclic backwashing was repeated, but stable filtration could be realized without any increase in filtration pressure with time.
Moreover, the time required for one cycle was shortened. Figure 7 shows the filtration data
Shown in.
【0017】[0017]
【表1】 [Table 1]
【0018】比較例1 濾過ポンプの初期濾過流量2リットルで原液充填操作と
原液濾過操作を行い、以下の操作を実施例1と同じで周
期逆洗を行った。1周期の所用時間は短いが経時的な濾
圧上昇が起こり、周期逆洗を継続できなかった。濾過デ
ータを図5に示す。Comparative Example 1 A stock solution filling operation and a stock solution filtering operation were carried out with an initial filtration flow rate of 2 liters of a filtration pump, and the following operations were carried out in the same manner as in Example 1 to carry out periodic backwashing. Although the time required for one cycle was short, the filtration pressure increased with time, and the cycle backwash could not be continued. The filtration data is shown in FIG.
【0019】比較例2 濾過ポンプの初期濾過流量0.5リットルで原液充填操
作と原液濾過操作を行い、以下の操作を実施例1と同じ
で周期逆洗を行った。経時的な濾圧上昇は認められず安
定した周期逆洗を行うことができたが、1周期の所用時
間は6.1分も要し、平均濾過流速が低くなった。濾過
データを図6に示す。Comparative Example 2 A stock solution filling operation and a stock solution filtering operation were carried out at an initial filtration flow rate of 0.5 liter of a filtration pump, and the following operations were carried out in the same manner as in Example 1 to carry out periodic backwashing. The filtration pressure was not increased with time, and stable cycle backwash could be performed, but the required time for one cycle was 6.1 minutes, and the average filtration flow rate was low. Filtration data is shown in FIG.
【0020】[0020]
【発明の効果】懸濁物を多量に含む液体を精密濾過膜を
用いて濾過し、濾圧上昇を検出してあるいは一定時間毎
に濾過膜の透過液側の圧力を原液側の圧力よりも大きく
して周期的に逆洗を行い、逆洗液と共に濾過膜から脱着
した懸濁物を濾過系外に排出する全濾過周期逆洗システ
ムにおいて、1周期の操作手順が主として、原液充填操
作、原液濾過操作、加圧脱液操作、逆水洗操作、加圧脱
液操作からなる全濾過周期逆洗システムにおいて、原液
充填操作時と原液濾過操作時とでモジュールへの原液送
液流量を変化させることにより、1周期の所用時間を短
縮して高い平均濾過流束が維持できると同時に濾圧上昇
を抑えて周期逆洗濾過を長期に渡って安定に維持でき
る。EFFECTS OF THE INVENTION A liquid containing a large amount of a suspension is filtered using a microfiltration membrane, and a rise in filtration pressure is detected or the pressure on the permeate side of the filtration membrane is set to be higher than that on the raw liquid side at regular intervals. In a whole filtration cycle backwashing system in which the suspension that has been desorbed from the filtration membrane together with the backwash solution is discharged to the outside of the filtration system after a large backwash is performed, one cycle of the operation procedure is mainly the stock solution filling operation, In a total filtration cycle backwash system consisting of stock solution filtration operation, pressurized dewatering operation, backwashing operation, and pressure dewatering operation, the flow rate of the undiluted solution to the module is changed between the undiluted solution filling operation and the undiluted solution filtration operation. As a result, the time required for one cycle can be shortened and a high average filtration flux can be maintained, and at the same time, the increase in filtration pressure can be suppressed and the cycle backwash filtration can be stably maintained for a long period of time.
【図1】一般的なプリーツ型カートリッジフィルターの
構造を表す図面である。FIG. 1 is a view showing a structure of a general pleat type cartridge filter.
【図2】本発明に用いるプリーツ型カートリッジフィル
ターモジュール全体図。FIG. 2 is an overall view of a pleated cartridge filter module used in the present invention.
【図3】本発明に用いる円盤積層型カートリッジフィル
ターモジュール全体図。FIG. 3 is an overall view of a disc laminated cartridge filter module used in the present invention.
【図4】本発明に用いる濾過フロー図。FIG. 4 is a filtration flow chart used in the present invention.
【図5】比較例1の周期逆洗濾過実験データFIG. 5: Periodic backwash filtration experiment data of Comparative Example 1
【図6】比較例1の周期逆洗濾過実験データFIG. 6 Periodic backwash filtration experiment data of Comparative Example 1
【図7】実施例1の周期逆洗濾過実験データFIG. 7: Periodic backwash filtration experiment data of Example 1
1 外周ガード 2 保護シート 3 濾過膜 4 保護シート 5 コア 6 エンドプレート 7 ガスケット 8 集液口 11 フィルターハウジング 12 濾過ポンプ 13 逆洗ポンプ 14 洗浄液タンク 15 透過液タンク 16 逆洗水タンク 17 加圧ガス源 18 廃液口 19 原液タンク 22 一次側出入口 23 二次側出入口 24 二次側加圧ガス入口 25 一次側加圧ガス入口 26 パッキン 27 ハウジングヘッド 28 ハウジングボール 30 フィルターエレメント 31 プリーツ部 32 中央通孔 33 コア孔 35 膜支持体外周突起 36 膜支持体外周突起 37 精密濾過膜 38 膜支持体 39 バイパス配管 1 Peripheral Guard 2 Protective Sheet 3 Filtration Membrane 4 Protective Sheet 5 Core 6 End Plate 7 Gasket 8 Liquid Collection Port 11 Filter Housing 12 Filtration Pump 13 Backwash Pump 14 Wash Solution Tank 15 Permeate Tank 16 Backwash Water Tank 17 Pressurized Gas Source 18 Waste Liquid Port 19 Undiluted Liquid Tank 22 Primary Side Inlet / Outlet 23 Secondary Side Inlet / Outlet 24 Secondary Side Pressurized Gas Inlet 25 Primary Side Pressurized Gas Inlet 26 Packing 27 Housing Head 28 Housing Ball 30 Filter Element 31 Pleated Part 32 Center Hole 33 Core Hole 35 Membrane Support Peripheral Protrusion 36 Membrane Support Perimeter Protrusion 37 Microfiltration Membrane 38 Membrane Support 39 Bypass Piping
Claims (2)
用いて濾過し、濾圧上昇を検出してあるいは一定時間毎
に濾過膜の透過液側の圧力を原液側の圧力よりも大きく
して周期的に逆洗を行い、逆洗液と共に濾過膜から脱着
した懸濁物を濾過系外に排出する、1周期の操作手順が
主として、原液充填操作、原液濾過操作、加圧脱液操
作、逆水洗操作、加圧脱液操作からなる全濾過周期逆洗
システムにおいて、原液充填操作時と原液濾過操作時と
でモジュールへの原液送液流量を変化させることを特徴
とする全濾過周期逆洗濾過方法。1. A liquid containing a large amount of a suspension is filtered using a microfiltration membrane, and an increase in filtration pressure is detected, or the pressure on the permeate side of the filtration membrane is set to be lower than the pressure on the stock solution side at regular intervals. The cycle is increased to perform periodic backwash, and the suspension desorbed from the filtration membrane together with the backwash solution is discharged to the outside of the filtration system. In a total filtration cycle backwash system consisting of liquid operation, backwashing operation, and pressure dewatering operation, total filtration characterized by changing the flow rate of the raw solution to the module during the stock solution filling operation and the stock solution filtering operation. Periodic backwash filtration method.
用いて濾過し、濾圧上昇を検出してあるいは一定時間毎
に濾過膜の透過液側の圧力を原液側の圧力よりも大きく
して周期的に逆洗を行い、逆洗液と共に濾過膜から脱着
した懸濁物を濾過系外に排出する全濾過周期逆洗システ
ムにおいて、(1)膜の厚さ方向に孔径の異方性を有し
ており、(2)濾過一次側の膜表面の平均孔径が除去す
べき原液中懸濁粒子の平均径に対して2倍から30倍で
あり、(3)膜の内部あるいは濾過の二次側膜表面に存
在する最緻密層の平均孔径が除去すべき原液中懸濁粒子
の平均径に対して0.8倍以下である、ことを特徴とす
る精密濾過膜を用いる全濾過周期逆洗濾過方法。2. A liquid containing a large amount of a suspension is filtered using a microfiltration membrane, and an increase in filtration pressure is detected, or the pressure on the permeate side of the filtration membrane is set to be lower than the pressure on the stock solution side at regular intervals. In a total filtration cycle backwash system in which the suspension desorbed from the filtration membrane together with the backwash solution is discharged to the outside of the filtration system by increasing the size of the backwash solution periodically, and (1) the pore size varies in the thickness direction of the membrane. (2) the average pore size of the membrane surface on the primary side of filtration is 2 to 30 times the average diameter of the suspended particles in the stock solution to be removed, and (3) inside the membrane or All using a microfiltration membrane, characterized in that the average pore size of the densest layer present on the surface of the secondary membrane of the filtration is 0.8 times or less than the average diameter of the suspended particles in the stock solution to be removed. Filtration cycle backwash filtration method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13671192A JPH05329336A (en) | 1992-05-28 | 1992-05-28 | Filtering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13671192A JPH05329336A (en) | 1992-05-28 | 1992-05-28 | Filtering method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05329336A true JPH05329336A (en) | 1993-12-14 |
Family
ID=15181702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13671192A Pending JPH05329336A (en) | 1992-05-28 | 1992-05-28 | Filtering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05329336A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007330916A (en) * | 2006-06-16 | 2007-12-27 | Fuji Electric Holdings Co Ltd | Hollow fiber membrane water treatment method and water treatment apparatus |
CN115382292A (en) * | 2022-08-18 | 2022-11-25 | 杭州科百特过滤器材有限公司 | Filtering film package |
-
1992
- 1992-05-28 JP JP13671192A patent/JPH05329336A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007330916A (en) * | 2006-06-16 | 2007-12-27 | Fuji Electric Holdings Co Ltd | Hollow fiber membrane water treatment method and water treatment apparatus |
CN115382292A (en) * | 2022-08-18 | 2022-11-25 | 杭州科百特过滤器材有限公司 | Filtering film package |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3924926B2 (en) | Hollow fiber membrane filtration membrane module | |
JP2961629B2 (en) | Manufacturing method of microfiltration membrane | |
JP4583671B2 (en) | Operating method and cleaning method of spiral membrane element and spiral membrane module | |
JPH0679147A (en) | Filtration method | |
JPH05329336A (en) | Filtering method | |
JPH0679146A (en) | Filtration method | |
JPH04271817A (en) | Filtering method | |
JP2717458B2 (en) | Filtration method | |
JPH0623239A (en) | Filtration method | |
JPH05228343A (en) | Filtration method | |
JP2000070685A (en) | Cleaning method for solid-liquid separation membrane | |
JPH04271815A (en) | Filtering method | |
JP4820612B2 (en) | Microfiltration membrane cartridge filter | |
JPH0549877A (en) | Production of composite filter membrane | |
JPH05329339A (en) | Filtration system | |
JPH04317708A (en) | New filtration using filtration assistant | |
JPH04267931A (en) | Filtering method | |
JP2001321645A (en) | Filter membrane element and method for manufacturing permeated water | |
JP3358300B2 (en) | Filtration method and filtration device | |
JPH04190834A (en) | Cross-flow type filter | |
JPH0557149A (en) | Filter system | |
JPH06102136B2 (en) | Backwash method in cross-flow type microfiltration | |
JP3589379B2 (en) | Microfiltration membrane cartridge filter | |
JPH04317730A (en) | Composite filtration membrane | |
JPH1147561A (en) | Cartridge filter |