JPH0672277B2 - Copper alloy for conductive material - Google Patents
Copper alloy for conductive materialInfo
- Publication number
- JPH0672277B2 JPH0672277B2 JP61274595A JP27459586A JPH0672277B2 JP H0672277 B2 JPH0672277 B2 JP H0672277B2 JP 61274595 A JP61274595 A JP 61274595A JP 27459586 A JP27459586 A JP 27459586A JP H0672277 B2 JPH0672277 B2 JP H0672277B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- solder
- copper alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は端子、コネクター、自動車ジャンクションブロ
ック等のバスバー、自動車用ヒューズ材、リードフレー
ムやリード材等の溶融したSnおよび半田のなじみ性に優
れた導電部材に適する銅合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has excellent compatibility with molten Sn and solder such as terminals, connectors, bus bars for automobile junction blocks, fuse materials for automobiles, lead frames and lead materials. And a copper alloy suitable for a conductive member.
従来、上記電気部品用部材としては、りん青銅や低合金
銅、あるいは黄銅が用いられている。そしてこれらの部
材に共通して要求される特性は半田付け性に見られるよ
うにSnあるいは半田とのなじみが良いこと、電気伝導率
が高いこと、強度が充分であること、耐食性があること
である。そしてこれらの要求される特性に対して、りん
青銅、低合金銅、黄銅はそれぞれ次のような欠点を有す
る。すなわち、りん青銅は電気伝導率、耐酸化性の面で
問題がある。また、Fe入り銅等の低合金銅は耐食性のう
ちの耐酸化性が劣ること、および時効硬化処理等を要す
るので製造し難いという欠点がある。なお、ここで耐酸
化性とは加熱酸化特性であらわすが酸化皮膜の性状が悪
いと雨水等に対する絶縁抵抗が低下し、マイグレーショ
ンと呼ばれる腐食による短絡現像を起こすことがある。
さらに、黄銅はSnあるいは半田とのなじみ性、電気伝導
率、応力腐食割れ性に問題がある。また、本発明の利用
分野である端子、コネクター、バスバー、リード材等で
は通電によるジュール熱で材料が発熱するが、この時プ
ラスチックのケースに損傷を与えることがあってはなら
ない。しかし、従来材のリン青銅や黄銅では、近年の部
品の軽薄短小化と部品の高性能化に伴う高電流密度化に
対して電気伝導率が低いため発熱が過大になり問題とさ
れている。Conventionally, phosphor bronze, low alloy copper, or brass has been used as the member for electric parts. The characteristics commonly required for these members are that they have good compatibility with Sn or solder as seen in solderability, high electrical conductivity, sufficient strength, and corrosion resistance. is there. With respect to these required characteristics, phosphor bronze, low alloy copper and brass each have the following drawbacks. That is, phosphor bronze has problems in electrical conductivity and oxidation resistance. Further, low alloy copper such as copper containing Fe has the drawbacks that it is inferior in oxidation resistance out of corrosion resistance and that it is difficult to manufacture because it requires age hardening treatment. The term "oxidation resistance" as used herein refers to a heating and oxidation characteristic, but if the oxide film has poor properties, the insulation resistance against rainwater or the like decreases, and short circuit development due to corrosion called migration may occur.
Furthermore, brass has problems in compatibility with Sn or solder, electric conductivity, and stress corrosion cracking. Also, in terminals, connectors, bus bars, lead materials, etc., which are the fields of application of the present invention, the material generates heat due to Joule heat due to energization, but at this time, the plastic case must not be damaged. However, conventional materials such as phosphor bronze and brass have a problem in that heat generation becomes excessive due to their low electrical conductivity in response to the recent trend toward lighter, thinner, shorter, and smaller components and higher current densities associated with higher performance of components.
本発明はこのような問題点に鑑みてなされたもので、従
来の銅合金のもつ欠点を改良し、電気部品用部材として
好適な諸条件を満足する銅合金を提供することを目的と
するものである。The present invention has been made in view of the above problems, and an object thereof is to improve the drawbacks of the conventional copper alloy and to provide a copper alloy satisfying various conditions suitable as a member for electric parts. Is.
本発明は2.0重量%を超え5重量%未満のZn、0.05重量
%を超え1.0重量%以下のFe、0.002重量%以上0.1重量
%以下のPを含有し、残部がCuおよび不可避不純物から
なっており、溶融したSnあるいは半田とのなじみ性が良
く、電気伝導度が比較的高く、強度が強く、耐食性が高
い特長をあわせもつことを合金成分により可能としたも
のである。The present invention contains Zn in an amount of more than 2.0% by weight and less than 5% by weight, Fe in an amount of more than 0.05% by weight and 1.0% by weight or less, P in an amount of 0.002% by weight or more and 0.1% by weight or less, and the balance of Cu and inevitable impurities. However, the alloy component makes it possible to combine the features of molten Sn or solder with good compatibility, relatively high electrical conductivity, high strength, and high corrosion resistance.
ここで特にSnあるい半田とのなじみの良さについて言及
すれば、電気部品用部材は溶融したSnあるいは半田と接
する際、なじみがよいほうが望ましい事は自明であり、
なじみとはSnあるいは半田と銅合金との間の界面張力の
低さを言っておりこれが結果として拡がり面積であらわ
される半田材の拡がり易さとSn中に銅合金材が溶けこむ
速度の速さとしてあらわれる。そして、後者の溶けこみ
の速さは、特開昭60−211027号公報に記載されているSn
を抱合せた銅合金のヒユーズ材においては特に重要な特
性であり、温度上昇から溶断までの時間を短かくするこ
とを可能にするものである。If we mention here the goodness of familiarity with Sn or solder in particular, it is obvious that it is preferable that the electrical component member has good familiarity when making contact with molten Sn or solder,
Familiarity refers to the low interfacial tension between Sn or solder and the copper alloy, which results in the spread of the solder material represented by the spread area and the speed at which the copper alloy material dissolves in Sn. Appears. And, the latter melting speed is the same as that of Sn disclosed in JP-A-60-211027.
This is a particularly important characteristic in a copper alloy high-heat material that is bonded together, and makes it possible to shorten the time from temperature rise to melting.
次に本発明を構成する合金成分の限定理由を説明する。Next, the reasons for limiting the alloy components constituting the present invention will be described.
Zn含有量を2.0重量%を超え5重量%未満に限定してい
るのは、2%以下では耐酸化性が十分でなく溶解鋳造性
も劣ってくるからであり、5重量%以上では電気伝導率
が50%IACSを下回るようになり自動車用ヒユーズ材やバ
スバーや端子などの高電流を流す電気部品には不適当な
結果をもたらしまた耐応力腐食割れ性も劣化するからで
ある。The Zn content is limited to more than 2.0% by weight and less than 5% by weight because if it is 2% or less, the oxidation resistance is insufficient and the melt castability becomes poor. This is because the ratio falls below 50% IACS, which gives unsuitable results for automotive fuses and electrical parts that carry high currents such as bus bars and terminals, and also deteriorates stress corrosion cracking resistance.
Fe含有量0.20を超え1.0重量%以下に限定しているの
は、0.20重量%以下では溶融Snあるいは半田と銅合金と
の界面にFeが集まり界面張力が下がるので、Snあるいは
半田とのなじみを良くして強度をあげるFeの効果が十分
でなく、1.0重量%を超えると導電率の低下と加工性の
低下を招く。The Fe content is limited to more than 0.20 and 1.0% by weight or less because if it is 0.20% by weight or less, Fe gathers at the interface between the molten Sn or the solder and the copper alloy, and the interfacial tension decreases. The effect of Fe for improving the strength is not sufficient, and if it exceeds 1.0% by weight, the conductivity is lowered and the workability is lowered.
P含有量を0.002重量%以上0.1重量%以下と限定したの
は0.002重量%未満ではFeと相乗効果を発揮して強度を
向上させる効果や鋳造性を改善する効果あるいはSnある
いは半田とのなじみを良くする効果が十分でなく、0.1
重量%を超えると導電率および加工性を劣化させる。The P content is limited to 0.002% by weight or more and 0.1% by weight or less because when it is less than 0.002% by weight, the synergistic effect with Fe is exerted to improve the strength, the castability, or the familiarity with Sn or solder. The improvement effect is not enough, 0.1
If it exceeds 5% by weight, the conductivity and workability are deteriorated.
なお本発明合金に0.05重量%以上2重量%以下のCr,Ni,
Co,Mg,Mn,Zrの少なくとも1種を必要によりさらに添加
すれば強度の向上をはかることができる。The alloy of the present invention contains 0.05% by weight or more and 2% by weight or less of Cr, Ni,
The strength can be improved by further adding at least one of Co, Mg, Mn, and Zr if necessary.
以下に実施例を示す。Examples will be shown below.
実施例1 第1表に示される本発明合金および比較合金を高周波溶
解炉で黒鉛るつぼを用いて木炭被覆下で溶解し、金型鋳
造した。得られた35×90×150mmのインゴットを面削し
て厚さ25mmとし、800℃で熱延して厚さ12mmとした。こ
の板を両面面削して厚さ10mmとしたのち、冷間圧延と焼
鈍をくり返して、最終加工率20%で板厚0.4mmの試験材
を製作した。Example 1 The alloys of the present invention and comparative alloys shown in Table 1 were melted in a high-frequency melting furnace under a charcoal coating using a graphite crucible and die-cast. The obtained 35 × 90 × 150 mm ingot was face-polished to a thickness of 25 mm and hot-rolled at 800 ° C. to a thickness of 12 mm. After both sides of this plate were ground to a thickness of 10 mm, cold rolling and annealing were repeated to produce a test material with a final working rate of 20% and a plate thickness of 0.4 mm.
この試験材より試験片を切り出し引張強度、伸び、導電
率を測定した。 A test piece was cut out from this test material, and the tensile strength, elongation and conductivity were measured.
溶融Snあるいは半田とのなじみ性をみるために半田材と
のなじみ性はSnとのなじみ性と同じなのでSnを用いて2
つの試験をした。その1はひろがり性を調べる試験であ
る。各合金の表面をペーパー研磨し、フラックス(MIL
に準拠したRMAタイプ)を塗布してSn(0.13g)をのせ35
0℃雰囲気中で、Snを30秒間溶解し冷却後その拡がり面
積を測定した。その2は溶融Sn中への銅合金の溶解速度
を調べる試験である。0.4×20×50mmの試験片を切り出
し400℃で溶融保持したSn中に同時に30秒間浸漬し、取
り出した後それぞれ樹脂に埋込研磨して30秒経過後の各
合金の厚みを測定し、浸漬前の厚みとの差を測定し溶解
量とした。In order to check the compatibility with molten Sn or solder, the compatibility with solder material is the same as the compatibility with Sn.
I did two tests. The first is a test for examining the spreadability. The surface of each alloy is paper-polished and the flux (MIL
Applying RMA type that complies with the above standards and applying Sn (0.13g) 35
Sn was melted for 30 seconds in an atmosphere of 0 ° C., cooled, and the spread area was measured. The second is a test for investigating the dissolution rate of a copper alloy in molten Sn. A 0.4 x 20 x 50 mm test piece was cut out and immersed in Sn melted and held at 400 ° C for 30 seconds at the same time, and after taking out, embedding and polishing in each resin and measuring the thickness of each alloy after 30 seconds, dipping The difference from the previous thickness was measured and taken as the dissolved amount.
また耐食性を見るために2つの試験をした。その1は高
温酸化減量試験である。30×50mmの大きさに切断した試
料の両面を#1000のエメリー紙で研磨した後、大気中で3
50℃×2Hrの加熱をした。生成した酸化皮膜を10%硫酸
を用いてはくりした後秤量し酸化減量を求めた。その2
は応力腐食割れ試験である。CuSO4・5H2O125g/l,(NH4)2S
O4590g/l,NH4OH71ml/lからなるマトソン氏液中に負荷曲
げ応力20kg/mm2をかけ10Hr保持した。Also, two tests were performed to see the corrosion resistance. The first is a high temperature oxidation weight loss test. After polishing both sides of the sample cut into a size of 30 × 50 mm with # 1000 emery paper, 3 in air
It was heated at 50 ° C x 2 Hr. The produced oxide film was peeled off using 10% sulfuric acid and then weighed to determine the oxidation loss. Part 2
Is a stress corrosion cracking test. CuSO 4 / 5H 2 O 125 g / l, (NH 4 ) 2 S
A bending stress of 20 kg / mm 2 was applied to Matson's liquid consisting of O 4 590 g / l and NH 4 OH 71 ml / l, and the condition was maintained for 10 hours.
これらの結果を第2表に示す。応力腐食割れ試験での
「×」の記載はこの期間に試料が破断しことを示す。The results are shown in Table 2. The "x" in the stress corrosion cracking test indicates that the sample broke during this period.
第2表に見るように本発明合金は強度、導電率、半田と
のなじみ性、耐食性のすべてにおいて良好であるが、比
較合金3(低合金銅)では強度および酸化減量が、4
(丹銅)は強度および溶解量が、5(黄銅)は導電率、
拡がり面積、溶解量、応力腐食割れ性が、6(りん青
銅)は導電率、酸化減量が劣っていることがわかる。 As shown in Table 2, the alloy of the present invention is good in all of strength, conductivity, compatibility with solder, and corrosion resistance, but in Comparative Alloy 3 (low alloy copper), strength and oxidation loss are 4%.
(Red copper) has strength and dissolution amount, 5 (brass) has conductivity,
It can be seen that the spreading area, the amount of dissolution, and the stress corrosion cracking property of 6 (phosphor bronze) are inferior in the conductivity and the oxidation loss.
実施例2 第3表に示すように、本発明の合金と、これに2重量%
のSnを添加した比較合金を溶製し実施例1と同様の方法
で加工し、板厚0.4mmの板とした後、400℃で1時間の焼
鈍を行い導電率を測定した。その結果は表3にあわせて
示す。Example 2 As shown in Table 3, the alloy of the present invention and 2 wt%
A comparative alloy containing Sn was melted and processed in the same manner as in Example 1 to form a plate having a plate thickness of 0.4 mm, and then annealed at 400 ° C. for 1 hour to measure the electrical conductivity. The results are also shown in Table 3.
以上のようにSn導電率を大きく低下させる。 As described above, the Sn conductivity is greatly reduced.
以上のような本発明によれば、電気部品用部材として要
求される、溶融したSnあるいは半田とのなじみが良いこ
と、電気導電率が高いこと、強度が高いこと、耐食性が
あること等の諸特性をすべて満足する導電部材用銅合金
が得られるという効果を有するものである。According to the present invention as described above, various properties such as good compatibility with molten Sn or solder, high electrical conductivity, high strength, and corrosion resistance, which are required as members for electric parts The effect is that a copper alloy for conductive members that satisfies all the characteristics can be obtained.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−197244(JP,A) 特開 昭58−157931(JP,A) 特開 昭59−31839(JP,A) 特開 昭62−136539(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 58-197244 (JP, A) JP 58-157931 (JP, A) JP 59-31839 (JP, A) JP 62- 136539 (JP, A)
Claims (1)
量%を超え1.0重量%以下のFe,0.002重量%以上0.1重量
%以下のPを含有し、残部がCuおよび不可避不純物から
なり、溶融したSnおよび半田とのなじみ性に優れた導電
部材用銅合金。1. A Zn content of more than 2.0% by weight and less than 5% by weight, Fe of more than 0.20% by weight and 1.0% by weight or less, P of 0.002% by weight or more and 0.1% by weight or less, and the balance of Cu and inevitable impurities. , A copper alloy for conductive members that has excellent compatibility with molten Sn and solder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61274595A JPH0672277B2 (en) | 1986-11-17 | 1986-11-17 | Copper alloy for conductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61274595A JPH0672277B2 (en) | 1986-11-17 | 1986-11-17 | Copper alloy for conductive material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63128143A JPS63128143A (en) | 1988-05-31 |
JPH0672277B2 true JPH0672277B2 (en) | 1994-09-14 |
Family
ID=17543927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61274595A Expired - Lifetime JPH0672277B2 (en) | 1986-11-17 | 1986-11-17 | Copper alloy for conductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672277B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2270926B (en) * | 1992-09-23 | 1996-09-25 | Outokumpu Copper Radiator Stri | Alloys for brazing |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58157931A (en) * | 1982-03-16 | 1983-09-20 | Furukawa Electric Co Ltd:The | High-tensile electrically-conductive copper alloy |
JPS58197244A (en) * | 1982-05-12 | 1983-11-16 | Sumitomo Electric Ind Ltd | Alloy wire for wire cut electrical discharge machining electrode wire |
JPS5931839A (en) * | 1982-08-17 | 1984-02-21 | Kobe Steel Ltd | High-strength electrically-conductive copper alloy |
JPS62136539A (en) * | 1985-12-09 | 1987-06-19 | Kobe Steel Ltd | Copper alloy having high electric conductivity and superior migration resistance |
-
1986
- 1986-11-17 JP JP61274595A patent/JPH0672277B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63128143A (en) | 1988-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3699701B2 (en) | Easy-to-process high-strength, high-conductivity copper alloy | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JPS63149344A (en) | High strength copper alloy having high electrical conductivity | |
JP5132467B2 (en) | Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength | |
JP2004315940A (en) | Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD | |
JP2521880B2 (en) | Copper alloy for electronic and electrical equipment and its manufacturing method | |
JPS6160846A (en) | Copper alloy lead material for semiconductor devices | |
JP4813814B2 (en) | Cu-Ni-Si based copper alloy and method for producing the same | |
JPH04311544A (en) | conductive material | |
JPS63307232A (en) | Copper alloy | |
JP2001262297A (en) | Copper-base alloy bar for terminal, and its manufacturing method | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
JP2001279347A (en) | High strength copper alloy excellent in bending workability and heat resistance and its producing method | |
JPS62199741A (en) | Copper alloy for terminal and connector having superior migration resistance | |
JPH05311364A (en) | Manufacture of high strength and high conductivity copper alloy | |
JPH0672277B2 (en) | Copper alloy for conductive material | |
JPH0676630B2 (en) | Copper alloy for wiring connector | |
JPS6338547A (en) | High strength conductive copper alloy | |
JPS63161135A (en) | Copper alloy for electrical parts | |
JPH04231432A (en) | Electrifying material | |
JPH04231433A (en) | Electrifying material | |
JP2514234B2 (en) | Copper alloy for terminals and connectors with excellent strength and conductivity | |
JPH06184678A (en) | Copper alloy for electrical parts | |
JP4728535B2 (en) | Copper-based alloy sheet for wiring components for electronic and electrical equipment | |
JP2945208B2 (en) | Method for producing copper alloy for electrical and electronic equipment |