[go: up one dir, main page]

JP2004315940A - Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD - Google Patents

Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2004315940A
JP2004315940A JP2003114689A JP2003114689A JP2004315940A JP 2004315940 A JP2004315940 A JP 2004315940A JP 2003114689 A JP2003114689 A JP 2003114689A JP 2003114689 A JP2003114689 A JP 2003114689A JP 2004315940 A JP2004315940 A JP 2004315940A
Authority
JP
Japan
Prior art keywords
conductivity
alloy
strength
amount
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003114689A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ishikawa
泰靖 石川
Hisahiro Niimi
壽宏 新見
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2003114689A priority Critical patent/JP2004315940A/en
Priority to TW093109699A priority patent/TWI247816B/en
Priority to KR1020040025904A priority patent/KR100622320B1/en
Priority to CNB2004100368289A priority patent/CN1291052C/en
Publication of JP2004315940A publication Critical patent/JP2004315940A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/10Pillows
    • A47G9/1009Rigid frame constructions
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/10Pillows
    • A47G9/1081Pillows comprising a neck support, e.g. a neck roll
    • A47G9/109Pillows comprising a neck support, e.g. a neck roll adapted to lie on the side and in supine position

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ni-Si alloy for an electronic material in which high strength and high electrical conductivity are made compatible. <P>SOLUTION: In the Cu-Ni-Si alloy having a composition comprising, by mass, 1.0 to 4.5% Ni and 0.25 to 1.5% Si, and the balance Cu with inevitable impurities, provided that each mass concentration of Ni and Si is defined as [Ni] and [Si], the mass concentration ratio between Ni and Si, [Ni]/[Si] is 4 to 6, and also, χ defined by formula (1) is 0.1 to 0.45: ([Ni]-4χ)<SP>2</SP>([Si]-χ)=1/8 (formula 1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、強度および導電性に優れた電子材料などの電子部品の製造に使用するCu−Ni−Si合金に関するものである。
【0002】
【従来の技術】
リードフレーム、電子機器の各種端子、コネクタなどに使用される銅合金は、高い強度および高い導電性を両立させることが要求される。更に、近年、リードフレーム、電子機器の各種端子、コネクタなどにおいて、リード数などの増加、狭ピッチ化が進み、電子部品の高密度実装性、高信頼性が要求されている。これら、電子部品に使用される材料においても、薄板化、加工性が良いこと、高導電率など、要求される特性は益々厳しくなってきている。
【0003】
リードフレーム、電子機器の各種端子、コネクタなどに使用される材料は、高い強度および高い導電性が必要で、従来のりん青銅、黄銅などに代表される固溶強化型合金に代わり、電子機器類および部品の軽量化、高強度、高導電性の観点から、時効硬化型の銅合金の使用量が増加している。時効硬化型の銅合金は、溶体化処理された過飽和固溶体を時効処理することにより、微細粒子が均一に析出して引張強さや耐力、ばね限界値などの機械的特性が向上し、同時に、銅中の固溶元素量が減少し導電率が向上する。
【0004】
時効硬化型銅合金のうち、Cu−Ni−Si合金は高強度と高導電性を併せ持つ代表的な銅合金である。この銅合金は、微細なNi−Si系金属間化合物粒子が析出して強度と導電性に優れ、リードフレーム、電子機器の各種端子、コネクタなどの材料として実用化されている(例えば特許文献1参照。)。
【0005】
【特許文献1】
特願2000−018319
【0006】
【発明が解決しようとする課題】
Cu−Ni−Si合金はNi−Si系金属間化合物粒子が析出することによって、強度と導電性が向上する。しかしながら、一般的に合金の強度と導電率とは相反する関係であり、強度が高いと導電性は低下し、導電性が高いと強度は低下する。Cu−Ni−Si合金の場合、添加するNi及びSiを低濃度にするとNi−Si系金属間化合物粒子の析出物を形成しない固溶元素が少なくなり十分な導電性は得られるものの、低濃度であるので析出量は少なくなり強度が不十分になる。一方、高濃度にすると析出量が多くなり十分な強度は得られるものの、Ni−Si系金属間化合物粒子の析出物を形成しない固溶元素が多くなり導電性が不十分になるという不具合があった。
本発明は上述した問題解決のためになされたもので、高強度及び高導電性を両立させた電子材料用Cu−Ni−Si合金を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記問題を解決するために本発明者らは、Cu−Ni−Si合金の研究を重ねたところ、高強度および高導電性を両立させたCu−Ni−Si合金の開発に成功した。
【0008】
即ち本発明は、
(1)Niを1.0〜4.5%、Siを0.25〜1.5%含有し、残部がCuおよび不可避的不純物からなる銅基合金で、NiとSiの質量濃度を[Ni]、[Si]とした場合のNiとSiの[Ni]/[Si]が4〜6で、且つ、(式1)で定義するχが0.1〜0.45となるようなうな[Ni]、[Si]であることを特徴とする高強度および高導電性を両立させたCu−Ni−Si合金、
([Ni]−4χ)([Si]−χ)=1/8……(式1)
(2)Mgを0.05〜0.3%含有することを特徴とする上記(1)に記載のCu−Ni−Si合金、
(3)Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeのうち1種類以上を総量で0.005〜2.0%含有することを特徴とする上記(1)または(2)に記載のCu−Ni−Si合金
である。
【0009】
【発明の実施の形態】
次に、本発明において銅合金の組成範囲を上記の通りに限定した理由を具体的に説明する。
Ni及びSi濃度
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる一方、導電性も高く向上する。ただし、Ni濃度が1.0%未満の場合、または、Si濃度が0.25%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が4.5%を超える場合、またはSi濃度が1.5%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性及びめっき性の低下を招く。よって、Ni濃度を1.0〜4.5%、Si濃度を0.25〜1.5%と定めた。
【0010】
Ni Si 質量濃度比
合金中の固溶Ni量および固溶Si量が減少すると導電率が増加する。Cu−Ni−Si合金に時効処理を施すと、NiSiが析出して固溶Ni量および固溶Si量が減少することにより、導電率が向上する。時効後の固溶Ni量および固溶Si量は後述する溶解度積の関係(式1)に従って増減する。例えば、合金中のNi濃度およびSi濃度の比([Ni]/[Si])が増加すると、固溶Ni量が増加し、固溶Si量が減少する。一方、導電率低下への影響度を比較すると、固溶Siの方が固溶Ni量よりかなり大きい。従って、最大の導電率を与える[Ni]/[Si]は、析出物NiSiにおけるNi/Si比(=4.18)とは一致しない。
【0011】
本発明者らは[Ni]/[Si]と送電率との関係を実験により検討し、高い導電率を得る為には[Ni]/[Si]を4〜6の範囲に調整することが必要であり、4.2〜4.7の範囲に調整することが最も好ましいことを明らかにした。この組成は、NiSiの組成に対し、Niが若干過剰となる組成である。
[Ni]/[Si]が4未満では固溶Si量が増えるため、導電率が著しく低下するのに加え、熱処理時に材料表面にSi酸化膜が生成しやすくなり半田付け性およびメッキ性の劣化の原因なる。一方、[Ni]/[Si]が6を超えると固溶Ni量が増えるために所望とする導電率が得られない。
【0012】
(式1)について
Cu−Ni−Si合金はNiSi粒子が析出することによって、強度が向上する。先述したように導電率の観点からは、NiSi組成に対してNi量が若干過剰気味が良い。このようにNiが過剰な場合、NiSi粒子の析出量はSi濃度によって決定されると見なすのが従来の考え方であった。即ち、Ni過剰組成の場合には、時効後の強度がSi濃度によって決定されると考えられてきた。
【0013】
本発明者らは、高導電率が得られるNi過剰組成をベースとして、NiおよびSi濃度と強度との関係について研究を重ねた結果、同じSi濃度でも[Ni]/[Si]が違うと大きい場合で数十MPaもの強度さが生じ、また、Si濃度と強度に必ずしも相関は見られないことを知見した。いいかえれば、Ni2Siの析出量を決定するパラメータは、Si濃度ではないことを見出したのである。
そして、溶解度積の考えに基づき実験データを解析を行った結果、NiおよびSi濃度とNiSiの析出量との関係について、以下の実験式を得た。
([Ni]−4χ)([Si]−χ)=1/8……(式1)
ここで、χは析出量を示すパラメータである。より具体的には、χは析出したし濃度に相当し、4χは析出したNi濃度に相当する。したがって、([Ni]−4χ)は固溶しているに濃度に相当し、([Si]−χ)は固溶したSi濃度に相当する。
時効後の強度はこのχと強い相関を示す。すなわち、χを適正な値に調整することにより所望の強度が得られ、そのためには(式1)を用いて[Ni]および[Si]を適正な値にすればよい。以上のように、χという析出の状態を示すパラメータを導入し、溶解度積の関係に基づいてNiとSi濃度を調整することにより、時効後の強度を制御する技術は、本発明で初めて見出された物である。
【0014】
溶解度積の値((式1)の右辺)は、温度による関数である。低温ではこの値は小さく、即ち、低温にて時効処理を行えば、理論的には析出物の量が多くなり、高強度で高導電率の材料が得られることになるが、これはあくまでも平衡状態での理論である。低温にて金属材料を平衡状態まで時効処理を行うためには、無限に近い時効時間が必要となる。本発明者らは、種々の組成および析出の状態を調べ、工業的な時効処理に対する溶解度積の適正値は1/8であり、この場合におけるχの値が0.1〜0.45であれば、高強度、高導電率の材料が工業的に安定して得られることを明らかにした。
【0015】
Mg濃度
Mgは応力緩和特性を大幅に改善する効果及び熱間加工性を改善する効果があるが、0.05%未満ではその効果が得られず、0.30%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下するためMgの濃度を0.05〜0.3%と定める。
【0016】
Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBe
Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeには、Cu−Ni−Si合金の強度及び耐熱性を改善する作用がある。また、これらの中でZnには、半田接合の耐熱性を改善する効果もあり、Feには組織を微細化する効果もある。更にTi、Zr、Al及びMnは熱間圧延性を改善する効果を有する。この理由は、これらの元素が硫黄との親和性が強いため硫黄と化合物を形成し、熱間圧延割れの原因であるインゴット粒界への硫黄の偏析を軽減するためである。Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeの濃度が総量で0.005%未満であると上記の効果は得られず、総含有量が2.0%を越えると導電性が著しく低下する。そこで、これらの含有量を総量で0.005〜2.0%と定める。
【0017】
【実施例】
次に、本発明の実施例について説明する。大気溶解炉にて表1に示す各種成分組成の銅合金を溶製し、厚さ30mmのインゴットに鋳造した。
【0018】
【表1】

Figure 2004315940
【0019】
次に厚さ9mmまで熱間圧延を行い、表面スケール除去の為面削を施した後、冷間圧延により厚さ1mmの板とした。その後、750℃〜850℃の温度で溶体化処理を行った後、厚さ0.4mmまで冷間圧延した。そして各合金の組成につき、引張強さが最大となる温度で3時間の時効処理を行った。この温度は400〜600℃の範囲であった。更に、冷間圧延で厚さ0.25mmの板とした。最終熱処理後の試料の強度は、引張試験機において引張強さにより評価した。導電性は四端子法にて導電率(%IACS)により評価した。また、[Ni]/[Si]およびχの値が、請求項1の範囲内を(○)、範囲外を(×)として評価した。表1に結果を示す。
【0020】
表1から分かるように発明例No.1〜No.13は[Ni]/[Si]およびχの値を全てが請求項1の範囲内である。従って、発明例は、引張強さで720MPa以上、導電率で45%IACS以上であり、高強度、高導電性を有している。
さらに応力緩和特性を改善するためにMgを添加した発明例No.2、4、6、7、8でも、Mgを添加しないものと同様に、高い強度と導電率が得られている。
また、Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeのうち1種類以上を総量で0.005〜2.0%添加した発明例No.7〜13は添加されていない発明例No.1〜6に比べて導電性はやや劣るものの、強度の面では優れている。
【0021】
一方、比較例を見ると、No.14及び16は、χの値が0.45より高いため、強度はそれほど増加せず、導電率が低くなった。これは、強度に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が生成するためである。No.15は、高い導電率を示したが、析出量を意味するχの値が低いため、強度が低くなった。No.17は、[Ni]/[Si]が低く、Si過剰となり導電率が低くなった。No.18は、[Ni]/[Si]が高く、固溶Niが多く、導電率が低くなった。No.19は、χの値が高く、更に[Ni]/[Si]が低いので、導電率が著しく低下した。
No.20は、Mgの添加量が多すぎるため、熱間圧延での加工性が悪く、割れが発生し、後工程を進めることができなかった。
No.21〜23では、Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeのうち1種類以上の元素が添加された時の総量が2.0%を超えているため、導電率が著しく悪かった。
【0022】
【発明の効果】
以上説明した通り、本発明合金は、優れた強度と導電性を有しており、リードフレーム、端子、コネクターなどの電子材料用銅合金として好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Cu—Ni—Si alloy used for manufacturing electronic components such as electronic materials having excellent strength and conductivity.
[0002]
[Prior art]
Copper alloys used for lead frames, various terminals of electronic devices, connectors, and the like are required to have both high strength and high conductivity. Furthermore, in recent years, in lead frames, various terminals of electronic devices, connectors, and the like, the number of leads and the like have been increased and the pitch has been narrowed, and high-density mountability and high reliability of electronic components have been required. Also in these materials used for electronic parts, required characteristics such as thinning, good workability, and high conductivity are becoming increasingly severe.
[0003]
Materials used for lead frames, various terminals of electronic equipment, connectors, etc. require high strength and high conductivity, and instead of conventional solid solution strengthened alloys such as phosphor bronze and brass, electronic equipment From the viewpoints of weight reduction, high strength, and high conductivity of components, the use of age hardening type copper alloys is increasing. Age-hardened copper alloys are prepared by subjecting a solution-treated supersaturated solid solution to aging, whereby fine particles are uniformly deposited and mechanical properties such as tensile strength, proof stress, and spring limit are improved. The amount of solid solution elements therein decreases and the conductivity improves.
[0004]
Among the age hardening type copper alloys, Cu-Ni-Si alloy is a typical copper alloy having both high strength and high conductivity. This copper alloy has excellent strength and conductivity due to precipitation of fine Ni-Si-based intermetallic compound particles, and has been put to practical use as a material for lead frames, various terminals of electronic devices, connectors, and the like (for example, Patent Document 1). reference.).
[0005]
[Patent Document 1]
Japanese Patent Application No. 2000-018319
[0006]
[Problems to be solved by the invention]
The strength and conductivity of the Cu-Ni-Si alloy are improved by precipitation of Ni-Si-based intermetallic compound particles. However, in general, the strength and the conductivity of an alloy have an opposite relationship, and the higher the strength, the lower the conductivity, and the higher the conductivity, the lower the strength. In the case of a Cu-Ni-Si alloy, if the added Ni and Si are made to have a low concentration, the amount of solid solution elements which do not form precipitates of Ni-Si based intermetallic compound particles is reduced and sufficient conductivity is obtained, but the low concentration is obtained. Therefore, the amount of precipitation decreases and the strength becomes insufficient. On the other hand, when the concentration is increased, the amount of precipitation increases and sufficient strength can be obtained, but there is a problem that the amount of solid solution elements that do not form precipitates of the Ni-Si intermetallic compound particles increases and the conductivity becomes insufficient. Was.
The present invention has been made to solve the above-described problems, and has as its object to provide a Cu—Ni—Si alloy for electronic materials that has both high strength and high conductivity.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present inventors have repeatedly studied a Cu-Ni-Si alloy, and have succeeded in developing a Cu-Ni-Si alloy having both high strength and high conductivity.
[0008]
That is, the present invention
(1) A copper-based alloy containing 1.0 to 4.5% Ni and 0.25 to 1.5% Si, with the balance being Cu and unavoidable impurities, and the mass concentration of Ni and Si is [Ni ], [Ni] / [Si] of Ni and Si when [Si] is 4 to 6, and 6 defined by (Equation 1) is 0.1 to 0.45. Ni] and [Si], a Cu—Ni—Si alloy having both high strength and high conductivity,
([Ni] -4χ) 2 ([Si] -χ) = 1/8 (Equation 1)
(2) The Cu-Ni-Si alloy according to (1), wherein the Cu-Ni-Si alloy contains 0.05 to 0.3% of Mg.
(3) The above-mentioned (1) is characterized in that it contains at least one of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, and Be in a total amount of 0.005 to 2.0%. A Cu-Ni-Si alloy according to 1) or (2).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the reason why the composition range of the copper alloy is limited as described above in the present invention will be specifically described.
Ni and Si concentrations Ni and Si are subjected to an aging treatment, and Ni and Si form fine intermetallic compound precipitate particles mainly composed of Ni 2 Si, thereby significantly increasing the strength of the alloy and at the same time, increasing the conductivity. Highly improve. However, if the Ni concentration is less than 1.0% or the Si concentration is less than 0.25%, the desired strength cannot be obtained even if the other component is added. When the Ni concentration exceeds 4.5% or when the Si concentration exceeds 1.5%, sufficient strength is obtained, but the conductivity is lowered and coarse Ni that does not contribute to improvement in strength is obtained. -Si-based particles (crystals and precipitates) are generated in the matrix, which causes deterioration in bending workability, etching properties, and plating properties. Therefore, the Ni concentration was set to 1.0 to 4.5%, and the Si concentration was set to 0.25 to 1.5%.
[0010]
[ Ni ] / [ Si ] mass concentration ratio As the amount of solid solution Ni and the amount of solid solution Si in the alloy decrease, the conductivity increases. When an aging treatment is applied to a Cu—Ni—Si alloy, Ni 2 Si precipitates and the amount of solid-solution Ni and the amount of solid-solution Si decrease, thereby improving the conductivity. The amount of solid solution Ni and the amount of solid solution Si after aging increase and decrease according to the relationship between solubility products (formula 1) described later. For example, when the ratio of the Ni concentration and the Si concentration ([Ni] / [Si]) in the alloy increases, the amount of solid solution Ni increases and the amount of solid solution Si decreases. On the other hand, when comparing the degree of influence on the decrease in conductivity, the amount of solid solution Si is much larger than the amount of solid solution Ni. Therefore, [Ni] / [Si] that gives the maximum conductivity does not match the Ni / Si ratio (= 4.18) in the precipitate Ni 2 Si.
[0011]
The present inventors examined the relationship between [Ni] / [Si] and the power transmission rate by experiments, and adjusted [Ni] / [Si] to a range of 4 to 6 in order to obtain high conductivity. It was found that it was necessary, and it was most preferable to adjust it to the range of 4.2 to 4.7. This composition is a composition in which Ni is slightly excessive with respect to the composition of Ni 2 Si.
When [Ni] / [Si] is less than 4, the amount of solid solution Si increases, so that the conductivity is remarkably reduced, and in addition, a Si oxide film is easily formed on the material surface during heat treatment, so that the solderability and the plating property deteriorate. Cause. On the other hand, if [Ni] / [Si] exceeds 6, the desired conductivity cannot be obtained because the amount of solid solution Ni increases.
[0012]
Regarding (Equation 1) , the strength of the Cu—Ni—Si alloy is improved by precipitation of Ni 2 Si particles. As described above, from the viewpoint of conductivity, the amount of Ni is slightly excessive with respect to the Ni 2 Si composition. In the conventional concept, when the amount of Ni is excessive, the amount of Ni 2 Si particles deposited is determined by the Si concentration. That is, it has been considered that in the case of a Ni excess composition, the strength after aging is determined by the Si concentration.
[0013]
The present inventors have repeated studies on the relationship between the Ni and Si concentrations and the strength based on the Ni-excess composition that provides high conductivity, and as a result, even if the [Si] / [Si] is different even at the same Si concentration, it is large. In some cases, it was found that a strength of several tens of MPa was generated, and that there was not always a correlation between the Si concentration and the strength. In other words, they found that the parameter that determines the amount of Ni2Si deposited is not the Si concentration.
Then, as a result of analyzing the experimental data based on the concept of the solubility product, the following empirical formula was obtained for the relationship between the Ni and Si concentrations and the amount of Ni 2 Si deposited.
([Ni] -4χ) 2 ([Si] -χ) = 1/8 (Equation 1)
Here, χ is a parameter indicating the amount of precipitation. More specifically, χ corresponds to the precipitated concentration, and 4 相当 corresponds to the precipitated Ni concentration. Therefore, ([Ni] -4χ) corresponds to the solid solution concentration, and ([Si] -χ) corresponds to the solid solution Si concentration.
The strength after aging shows a strong correlation with χ. That is, a desired strength can be obtained by adjusting χ to an appropriate value, and [Ni] and [Si] may be set to appropriate values using (Equation 1). As described above, a technique for controlling the strength after aging by introducing a parameter χ indicating the state of precipitation and adjusting the Ni and Si concentrations based on the relationship between the solubility products was first discovered in the present invention. It was done.
[0014]
The value of the solubility product (right side of (Equation 1)) is a function of temperature. At low temperatures, this value is small.In other words, when aging treatment is performed at low temperatures, the amount of precipitates theoretically increases, and a material with high strength and high electrical conductivity can be obtained. It is a state theory. In order to perform aging treatment of a metal material to an equilibrium state at a low temperature, an infinite aging time is required. The present inventors examined various compositions and the state of precipitation, and found that the appropriate value of the solubility product for industrial aging treatment was 1/8, and the value of Δ in this case was 0.1 to 0.45. For example, it has been clarified that a high-strength, high-conductivity material can be obtained industrially stably.
[0015]
Mg concentration Mg has the effect of significantly improving stress relaxation characteristics and the effect of improving hot workability. However, the effect cannot be obtained if the Mg content is less than 0.05%, and the castability (casting ability) exceeds 0.30%. Deterioration of skin quality), the hot workability and the heat-resistant peeling resistance of the plating are reduced, so that the Mg concentration is set to 0.05 to 0.3%.
[0016]
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag or Be have the effect of improving the strength and heat resistance of the Cu-Ni-Si alloy. Among them, Zn also has an effect of improving the heat resistance of the solder joint, and Fe has an effect of making the structure finer. Further, Ti, Zr, Al and Mn have an effect of improving hot rollability. The reason for this is that these elements have a strong affinity for sulfur and form a compound with sulfur to reduce segregation of sulfur at the ingot grain boundary which causes hot rolling cracking. If the total concentration of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be is less than 0.005%, the above effect cannot be obtained, and the total content is 2.0%. %, The conductivity is significantly reduced. Therefore, their contents are determined to be 0.005 to 2.0% in total.
[0017]
【Example】
Next, examples of the present invention will be described. Copper alloys having various component compositions shown in Table 1 were melted in an air melting furnace and cast into ingots having a thickness of 30 mm.
[0018]
[Table 1]
Figure 2004315940
[0019]
Next, hot rolling was performed to a thickness of 9 mm, and a surface was removed to remove surface scale, followed by cold rolling to obtain a 1 mm thick plate. Then, after performing a solution treatment at a temperature of 750 ° C to 850 ° C, it was cold-rolled to a thickness of 0.4 mm. Then, for each alloy composition, aging treatment was performed for 3 hours at a temperature at which the tensile strength was maximized. This temperature was in the range of 400-600C. Further, a plate having a thickness of 0.25 mm was formed by cold rolling. The strength of the sample after the final heat treatment was evaluated by a tensile strength in a tensile tester. The conductivity was evaluated by conductivity (% IACS) by a four-terminal method. The values of [Ni] / [Si] and Δ were evaluated as (○) in the range of claim 1 and as (x) in the out of range. Table 1 shows the results.
[0020]
As can be seen from Table 1, Invention Example No. 1 to No. 13 is [Ni] / [Si] and all values of χ are within the scope of claim 1. Therefore, the invention example has a tensile strength of 720 MPa or more and a conductivity of 45% IACS or more, and has high strength and high conductivity.
Inventive Example No. 1 in which Mg was added to further improve the stress relaxation characteristics. In 2, 4, 6, 7, and 8, high strength and electrical conductivity were obtained as in the case where Mg was not added.
In addition, Invention Example No. 1 in which at least one of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, and Be was added in a total amount of 0.005 to 2.0%. Inventive Examples Nos. 7 to 13 to which no additives were added. Although the conductivity is slightly inferior to those of Nos. 1 to 6, it is excellent in strength.
[0021]
On the other hand, when looking at the comparative example, In Nos. 14 and 16, since the value of Δ was higher than 0.45, the strength did not increase so much and the conductivity became low. This is because coarse Ni—Si-based particles (crystals and precipitates) that do not contribute to the strength are generated. No. No. 15 showed high conductivity, but the strength was low because the value of χ meaning the amount of precipitation was low. No. In No. 17, [Ni] / [Si] was low, Si was excessive, and the electric conductivity was low. No. Sample No. 18 had a high [Ni] / [Si], a large amount of solid solution Ni, and a low conductivity. No. In No. 19, since the value of Δ was high and [Ni] / [Si] was low, the electrical conductivity was remarkably reduced.
No. In No. 20, since the added amount of Mg was too large, workability in hot rolling was poor, cracks were generated, and the subsequent process could not be advanced.
No. In Nos. 21 to 23, the total amount when one or more elements among Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, and Be is added exceeds 2.0%. Therefore, the conductivity was extremely poor.
[0022]
【The invention's effect】
As described above, the alloy of the present invention has excellent strength and conductivity, and is suitable as a copper alloy for electronic materials such as lead frames, terminals, and connectors.

Claims (3)

Niを1.0〜4.5質量%(以下%とする)、Siを0.25〜1.5%含有し、残部がCuおよび不可避的不純物からなる銅基合金において、NiとSiの質量濃度を[Ni]、[Si]とした場合のNiとSiの質量濃度比(以下[Ni]/[Si]とする)が4〜6で、且つ、(式1)で定義するχが0.1〜0.45となるような[Ni]、[Si]であることを特徴とする高強度および高導電性を両立させたCu−Ni−Si合金、
([Ni]−4χ)([Si]−χ)=1/8……(式1)。
In a copper-based alloy containing 1.0 to 4.5% by mass of Ni (hereinafter referred to as%) and 0.25 to 1.5% of Si, and the balance being Cu and unavoidable impurities, the mass of Ni and Si When the concentrations are [Ni] and [Si], the mass concentration ratio of Ni and Si (hereinafter referred to as [Ni] / [Si]) is 4 to 6, and χ defined by (Equation 1) is 0. A Cu—Ni—Si alloy having both high strength and high conductivity, characterized by being [Ni] and [Si] such that .1 to 0.45;
([Ni] -4χ) 2 ([Si] -χ) = 1/8 (Equation 1).
Mgを0.05〜0.3%含有することを特徴とする請求項1に記載のCu−Ni−Si合金。The Cu-Ni-Si alloy according to claim 1, containing 0.05 to 0.3% of Mg. Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeのうち1種類以上を総量で0.005〜2.0%含有することを特徴とする請求項1または2に記載のCu−Ni−Si合金。3. The composition according to claim 1, wherein one or more of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, and Be are contained in a total amount of 0.005 to 2.0%. The Cu-Ni-Si alloy according to the above.
JP2003114689A 2003-04-18 2003-04-18 Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD Pending JP2004315940A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003114689A JP2004315940A (en) 2003-04-18 2003-04-18 Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
TW093109699A TWI247816B (en) 2003-04-18 2004-04-08 Cu-Ni-Si alloy and production method thereof
KR1020040025904A KR100622320B1 (en) 2003-04-18 2004-04-14 Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
CNB2004100368289A CN1291052C (en) 2003-04-18 2004-04-19 Cu-Ni-Si alloy and its mfg. method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114689A JP2004315940A (en) 2003-04-18 2003-04-18 Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
JP2004315940A true JP2004315940A (en) 2004-11-11

Family

ID=33474187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114689A Pending JP2004315940A (en) 2003-04-18 2003-04-18 Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD

Country Status (4)

Country Link
JP (1) JP2004315940A (en)
KR (1) KR100622320B1 (en)
CN (1) CN1291052C (en)
TW (1) TWI247816B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006249516A (en) * 2005-03-11 2006-09-21 Mitsubishi Electric Corp Copper alloy and its manufacturing method
JP2006274416A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Copper alloy material for electric and electronic components
JP2007246931A (en) * 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
CN106795590A (en) * 2014-09-04 2017-05-31 大冶美有限公司 The manufacture method of Cu bases sintered bearing and Cu base sintered bearings
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386456C (en) * 2005-06-13 2008-05-07 沈阳市振兴电线厂 Special silicon bronze alloy and process for preparing same
JP4655834B2 (en) * 2005-09-02 2011-03-23 日立電線株式会社 Copper alloy material for electrical parts and manufacturing method thereof
JP4143662B2 (en) * 2006-09-25 2008-09-03 日鉱金属株式会社 Cu-Ni-Si alloy
WO2012081571A1 (en) * 2010-12-13 2012-06-21 日本精線株式会社 Copper alloy wire and copper alloy spring
CN102876915A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 High-conductivity copper alloy material and preparation method thereof
CN102925746B (en) * 2012-11-29 2014-09-17 宁波兴业鑫泰新型电子材料有限公司 High-performance Cu-Ni-Si system copper alloy, and preparation method and processing method thereof
CN103014410B (en) * 2012-12-24 2015-03-11 山西春雷铜材有限责任公司 Copper alloy and fabrication method thereof
CN104404295A (en) * 2014-12-25 2015-03-11 春焱电子科技(苏州)有限公司 Copper alloy for electronic material
CN104726744B (en) * 2015-03-17 2016-10-05 太原晋西春雷铜业有限公司 A kind of etching copper alloy frame material band and preparation method thereof
CN106399748B (en) * 2016-10-05 2018-01-23 宁波兴业盛泰集团有限公司 A kind of cupro-nickel Si system alloy material used for lead frame and preparation method thereof
CN108411150B (en) * 2018-01-22 2019-04-05 公牛集团股份有限公司 Sleeve high-performance copper alloy material and manufacturing method
CN111621668B (en) * 2020-05-21 2022-02-15 宁波金田铜业(集团)股份有限公司 Nickel-silicon copper alloy strip and preparation method thereof
CN113322396B (en) * 2021-05-26 2021-12-17 沈阳航空航天大学 Copper-nickel-based medium-entropy alloy with excellent comprehensive mechanical properties and preparation method thereof
KR20220168289A (en) 2021-06-16 2022-12-23 삼성전기주식회사 Printed circuit board
CN114752810B (en) * 2022-03-24 2023-04-11 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125469A (en) * 1991-11-06 1993-05-21 Furukawa Electric Co Ltd:The Copper alloy trolley line
JP3404278B2 (en) 1998-01-29 2003-05-06 日鉱金属株式会社 Cu-Ni-Si based copper base alloy with improved annealing cracking
JPH11264040A (en) 1998-03-18 1999-09-28 Nippon Mining & Metals Co Ltd Copper alloy foil
JP2001207229A (en) * 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006249516A (en) * 2005-03-11 2006-09-21 Mitsubishi Electric Corp Copper alloy and its manufacturing method
JP2006274416A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Copper alloy material for electric and electronic components
JP2007246931A (en) * 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
CN106795590A (en) * 2014-09-04 2017-05-31 大冶美有限公司 The manufacture method of Cu bases sintered bearing and Cu base sintered bearings
US10745780B2 (en) 2014-09-04 2020-08-18 Diamet Corporation Cu-based sintered bearing and production method for Cu-based sintered bearing
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor

Also Published As

Publication number Publication date
KR20040090716A (en) 2004-10-26
KR100622320B1 (en) 2006-09-14
TWI247816B (en) 2006-01-21
CN1291052C (en) 2006-12-20
CN1540013A (en) 2004-10-27
TW200426232A (en) 2004-12-01

Similar Documents

Publication Publication Date Title
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
CN101270423B (en) Cu-Ni-Si based copper alloy for electronic material
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
JP6126791B2 (en) Cu-Ni-Si copper alloy
JP2002180165A (en) Copper base alloy excellent in press punching property and method for producing the same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5619389B2 (en) Copper alloy material
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
EP2270242A1 (en) Copper alloy material for electric and electronic apparatuses, and electric and electronic components
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4175920B2 (en) High strength copper alloy
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
JP2514234B2 (en) Copper alloy for terminals and connectors with excellent strength and conductivity
JP5070772B2 (en) Cu-Ni-Si based copper alloy with excellent hot workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404