JPH0669606B2 - Continuous casting method - Google Patents
Continuous casting methodInfo
- Publication number
- JPH0669606B2 JPH0669606B2 JP1120295A JP12029589A JPH0669606B2 JP H0669606 B2 JPH0669606 B2 JP H0669606B2 JP 1120295 A JP1120295 A JP 1120295A JP 12029589 A JP12029589 A JP 12029589A JP H0669606 B2 JPH0669606 B2 JP H0669606B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- rolling
- segregation
- reduction
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 36
- 238000009749 continuous casting Methods 0.000 title claims description 30
- 230000009467 reduction Effects 0.000 claims description 51
- 238000005096 rolling process Methods 0.000 claims description 38
- 239000007787 solid Substances 0.000 claims description 30
- 230000005499 meniscus Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 description 62
- 239000010959 steel Substances 0.000 description 62
- 238000005204 segregation Methods 0.000 description 57
- 238000007711 solidification Methods 0.000 description 51
- 230000008023 solidification Effects 0.000 description 50
- 238000005266 casting Methods 0.000 description 17
- 238000009825 accumulation Methods 0.000 description 15
- 230000002776 aggregation Effects 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 210000001787 dendrite Anatomy 0.000 description 11
- 238000004220 aggregation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000009533 lab test Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910000658 steel phase Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造鋳片の厚み中心部にみられる不純物元
素、即ち鋼鋳片の場合には硫黄、燐、マンガン等の偏析
を防止し均質な金属を得ることのできる連続鋳造方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention prevents segregation of impurity elements found in the center of thickness of continuously cast slabs, that is, in the case of steel slabs, sulfur, phosphorus, manganese and the like. The present invention relates to a continuous casting method capable of obtaining a homogeneous metal.
点〕[Prior art and problems to be solved by the invention]
近年、海洋構造物、貯槽、石油およびガス運搬用鋼管、
高張力線材などの材質特性に対する要求は厳しさを増し
ており、均質な鋼材を提供することが重要課題となって
いる。元来鋼材は、断面内において均質であるべきもの
であるが、鋼は一般に硫黄、燐、マンガン等の不純物元
素を含有しており、これらが鋳造過程において偏析し部
分的に濃化するため鋼が脆弱となる。特に近年生産性や
歩留の向上及び省エネルギー等の目的のために連続鋳造
法が一般に普及しているが、連続鋳造により得られる鋳
片の厚み中心部には通常顕著な成分偏析が観察される。In recent years, offshore structures, storage tanks, steel pipes for oil and gas transportation,
The requirements for material properties such as high-strength wire rods are becoming more and more severe, and it is an important issue to provide homogeneous steel products. Originally, steel should be homogeneous in cross section, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, and these segregate and partially concentrate during the casting process. Becomes vulnerable. Particularly in recent years, continuous casting has been generally used for the purpose of improving productivity, yield, and energy saving, but a remarkable segregation of components is usually observed in the thickness center of the slab obtained by continuous casting. .
上記した成分偏析は最終製品の均質性を著しく損ない、
製品の使用過程や線材の線引き工程等で鋼に作用する応
力により亀裂が発生するなど重大欠陥の原因になるた
め、その低減が切望されている。かかる成分偏析は凝固
末期に残溶鋼が凝固収縮力等によって流動し、固液界面
近傍の濃化溶鋼を洗い出し、残溶鋼が累進的に濃化して
いくことによって生じる。従って成分偏析を防止するに
は、残溶鋼の流動原因を取り除くことが肝要である。The above-mentioned component segregation significantly impairs the homogeneity of the final product,
Reduction in stress is desired because it causes serious defects such as cracks caused by stress acting on steel in the use process of products and the drawing process of wire rods. Such component segregation occurs when the residual molten steel flows at the final stage of solidification due to solidification shrinkage force and the like, the concentrated molten steel near the solid-liquid interface is washed out, and the residual molten steel progressively concentrates. Therefore, in order to prevent the segregation of the components, it is important to eliminate the cause of the flow of the residual molten steel.
このような溶鋼流動原因としては、凝固収縮に起因する
流動のほか、ロール間の鋳片バルジングやロールアライ
メント不整に起因する流動等があるが、これらの内最も
重大な原因は凝固収縮であり、偏析を防止するには、こ
れを補償する量だけ鋳片を圧下することが必要である。Such molten steel flow causes include, in addition to the flow caused by solidification shrinkage, the flow caused by slab bulging between rolls and roll alignment irregularity, but the most serious of these is solidification shrinkage, In order to prevent segregation, it is necessary to roll down the slab by an amount that compensates for this.
鋳片を圧下することにより偏析を改善する試みは従来よ
り行われており、連続鋳造工程において鋳片中心温度が
液相線温度から固相線温度に至るまでの間鋳片の凝固収
縮を補償する量以上の一定の割合で圧下する方法が知ら
れている。Attempts have been made to reduce segregation by rolling down the slab, and in the continuous casting process, the solidification shrinkage of the slab is compensated during the period from the liquidus temperature to the solidus temperature of the slab center temperature. A method is known in which the rolling is carried out at a constant rate equal to or more than the amount to be worked.
しかしながら、従来の連続鋳造方法は、条件によっては
偏析改善効果が殆ど認められなかったり、場合によって
は、偏析がかえって悪化する等の問題があり、成分偏析
を充分に改善することは困難であった。However, the conventional continuous casting method has a problem that the segregation improving effect is hardly recognized depending on the conditions, and in some cases, segregation rather deteriorates, and it is difficult to sufficiently improve the component segregation. .
本発明者らはかかる従来法の問題の発生原因について種
々調査した結果、従来法の場合に偏析改善効果が認めら
れなかったり、あるいは偏析がかえって悪化することが
起こるのは、基本的に圧下すべき凝固時期とその範囲が
不適切であることに起因していることを突止めた。As a result of various investigations on the cause of the problem of the conventional method, the present inventors find that the segregation improving effect is not recognized in the case of the conventional method, or the segregation rather deteriorates. It was found that it was due to improper coagulation timing and its range.
本発明者は、先に、特開昭62−275556号公報において、
鋳片の中心部が固相率0.1ないし0.3に相当する温度とな
る時点から流動限界固相率に相当する温度となる時点ま
での領域を単位時間当り0.5mm/分以上2.5mm/分未満の
割合で連続的に圧下し、鋳片中心部が流動限界固相率に
相当する温度となる時点から固相線温度となるまでの領
域は実質的な圧下を加えないようにした連続鋳造方法を
提案した。The present inventor previously mentioned in JP-A-62-275556,
The area from the time when the central part of the slab reaches the temperature corresponding to the solid fraction of 0.1 to 0.3 to the temperature corresponding to the flow limit solid fraction of 0.5 mm / min or more and less than 2.5 mm / min per unit time The continuous casting method in which the rolling is continuously reduced in a ratio, and the region from the time when the temperature of the slab center reaches the solid phase limit to the solidus temperature is not substantially reduced Proposed.
さらに、本発明者は、数多くの実験結果から、幾つかの
式を仮定し、該実験結果と照合することにより、さらに
進歩した連続鋳造方法を提案するに到った。Furthermore, the present inventor has proposed a further advanced continuous casting method by assuming some formulas from a large number of experimental results and comparing them with the experimental results.
本発明の目的は、連続鋳造鋳片の厚み中心部にみられる
不純物元素の偏析を防止して均質な金属を得ることにあ
る。An object of the present invention is to prevent the segregation of the impurity element found in the thickness center portion of the continuously cast slab and obtain a homogeneous metal.
本発明によれば、鋳片を連続的に引き抜く溶融金属の連
続鋳造方法であって、前記鋳片の厚み中心固相率が0.35
から0.40に相当する温度範囲に1本以上のロールを設置
し、圧下処理を行い、該圧下処理は、該鋳片の中心固相
率が増大する圧下帯の下流に行くに従って圧下力値を増
大し、該鋳片を処理するようになっていることを特徴と
する連続鋳造方法が提供される。According to the present invention, there is provided a continuous casting method for molten metal in which a cast piece is continuously drawn out, and a thickness center solid fraction of the cast piece is 0.35.
To 0.40, one or more rolls are installed in a temperature range corresponding to 0.40 to 0.40, and the reduction treatment is performed. The reduction treatment increases the reduction force value as it goes downstream of the reduction zone where the central solid fraction of the slab increases. However, there is provided a continuous casting method, characterized in that the slab is treated.
本発明の連続鋳造方法によれば、鋳片の厚み中心固相率
が0.35から0.40に相当する温度範囲に1本以上のロール
を設置し、該鋳片に対する圧下処理が行われる。この圧
下処理は、鋳片の中心固相率が増大する圧下帯の下流に
行くに従って圧下力値を増大し、該鋳片を処理するよう
になっている。According to the continuous casting method of the present invention, one or more rolls are installed in a temperature range corresponding to the thickness center solid phase ratio of 0.35 to 0.40, and the rolling treatment is performed on the slab. In this rolling reduction, the rolling force value is increased toward the downstream of the rolling zone where the central solid fraction of the slab increases, and the slab is treated.
これによって、連続鋳造鋳片の厚み中心部にみられる不
純元素の偏析を防止して均質な金属を得ることができ
る。As a result, it is possible to prevent the segregation of the impure element found in the center of the thickness of the continuously cast slab and obtain a homogeneous metal.
まず、第1図を参照にして本発明に係る連続鋳造方法が
適用される連鋳機の一例を概略的に説明する。First, an example of a continuous casting machine to which the continuous casting method according to the present invention is applied will be schematically described with reference to FIG.
第1図は本発明に係る連続鋳造方法が適用される連鋳機
で、具体的には、ツイン・キャスト円弧型の連鋳機の一
例を示す図である。同図に示されるように、本連鋳機に
おいて、溶金を満たした取鍋1はタンディシュ2の上方
に置かれ、取鍋1内の溶鋼が底部のスライディングノズ
ル11を経てダンディシュ2内に注がれるようになされて
いる。ここで、スライディングノズル11は、取鍋1から
注がれた溶鋼を含むタンディシュ2全体の重量に応じて
開度が制御され、メニスカス(タンディシュ内の湯面位
置)Mが一定となるようになされている。FIG. 1 is a diagram showing a continuous casting machine to which the continuous casting method according to the present invention is applied, specifically, an example of a twin cast arc type continuous casting machine. As shown in the figure, in this continuous casting machine, the ladle 1 filled with molten metal is placed above the tundish 2, and the molten steel in the ladle 1 passes through the sliding nozzle 11 at the bottom into the dundish 2. It is designed to be poured. Here, the opening of the sliding nozzle 11 is controlled according to the weight of the entire tundish 2 containing the molten steel poured from the ladle 1 so that the meniscus (the position of the molten metal in the tundish) M becomes constant. ing.
タンディシュ2内の溶鋼は、該タンディシュの底部を塞
ぐストッパ21を上下方向に移動制御することにより、モ
ールド3内に一定の割合で注入されるようになされてい
る。モールド3は、その底部も開放されており、モール
ド3に注入された溶鋼は、冷却水が供給されるモールド
3の側壁で冷却されて外側から凝固(一次冷却)するよ
うになされている。モールド3により一次冷却された溶
鋼(鋳片)は、ローラで連続的に引き出されることにな
る。The molten steel in the tundish 2 is poured into the mold 3 at a constant rate by vertically moving the stopper 21 that closes the bottom of the tundish. The bottom of the mold 3 is also opened, and the molten steel injected into the mold 3 is cooled by the side wall of the mold 3 to which cooling water is supplied and solidified (primary cooling) from the outside. The molten steel (cast slab) primarily cooled by the mold 3 is continuously drawn out by the roller.
モールド3から引き出された鋳片は、スプレー帯(スプ
レーロール)S.R.において、スプレー冷却され、さらに
複数(No.1〜No.5)のグループロールG.R.およびピンチ
ロールP.R.により曲げられて、圧下帯へ供給されるよう
になされている。ここで、No.2のグループロールには、
EMS(Electro Magnetic Stirrer)が設けられていて、
この位置において鋳片の電磁攪拌を行うようになされて
いる。The slab pulled out from the mold 3 is spray-cooled in a spray band (spray roll) SR, and is further bent by a plurality of (No. 1 to No. 5) group rolls GR and pinch rolls PR to a rolling band. It is designed to be supplied. Here, for the No. 2 group role,
EMS (Electro Magnetic Stirrer) is installed,
At this position, the slab is electromagnetically stirred.
本発明の連続鋳造方法が適用される連鋳機では、鋳片の
厚み中心固相率が0.25〜0.50に相当する温度となる位置
が連鋳機の圧下帯(ロールR43からロールR53の位置)に
来るようにして、圧下処理(軽圧下)が行われる。特
に、鋳片の中心固相率が約0.35〜0.4となる位置を圧下
帯に一致させ、すなわち、鋳片の中心固相率が約0.35と
なる位置をロールR43またはロールR44の圧下帯の始端位
置近くとなるようにすれば、ロールR43、ロールR44等の
少ない数のロールだけで、しかも、小さい圧下力(油
圧)で連続鋳造鋳片の中心部における不純物の偏析を防
止することができる。In the continuous casting machine to which the continuous casting method of the present invention is applied, the thickness center solid fraction of the slab is at a position where the temperature becomes a temperature corresponding to 0.25 to 0.50 in the rolling zone of the continuous casting machine (from roll R 43 to roll R 53 . Position), the reduction process (light reduction) is performed. In particular, the position where the central solid fraction of the slab is about 0.35 to 0.4 is matched with the draft zone, that is, the position where the central solid fraction of the slab is about 0.35 is the draft zone of roll R 43 or roll R 44 . By using a small number of rolls, such as rolls R 43 and R 44, with a small rolling down force (hydraulic pressure), it is possible to prevent the segregation of impurities in the center of the continuous cast slab by setting it near the start end position of be able to.
以下、本発明の連続鋳造方法を詳述する。Hereinafter, the continuous casting method of the present invention will be described in detail.
軽圧下はブルーム偏析改善に非常に有効である。軽圧下
により偏析を最大限低減するためには適正な圧下範囲で
圧下量を最適にする必要があることが明らかになってい
る。しかし偏析をさらに極限まで低減し偏析の無い鋳片
を得るためには各ロールごとの圧下時期や圧下量との関
係で偏析改善効果を定量的に把握する必要がある。以上
の定量化を目的に鋳造速度変更試験を実施し、そのデー
タ解析によって中心偏析定式化モデル式を作成した。Light reduction is very effective in improving bloom segregation. It has been clarified that it is necessary to optimize the amount of reduction within an appropriate reduction range in order to reduce segregation to the maximum by light reduction. However, in order to further reduce segregation to the limit and obtain a slab without segregation, it is necessary to quantitatively grasp the effect of improving segregation in relation to the time and amount of reduction of each roll. A casting speed change test was carried out for the purpose of the above quantification, and a central segregation formulation model formula was created by analyzing the data.
解析した試験の鋳造条件 試験を実施した連鋳造機はツインキャスト円弧型(第1
図参照)で解析した試験の鋳造条件を表1に示し、得ら
れた鋳片のエッチプリントに観察される最大偏析粒径
(厚み中心部)と鋳造速度の関係を第2図に示す。Casting conditions of the analyzed test The continuous casting machine that carried out the test is a twin cast arc type (first
Table 1 shows the casting conditions of the test analyzed in Fig. 2), and Fig. 2 shows the relationship between the maximum segregated grain size (thickness center portion) observed in the etch print of the obtained slab and the casting speed.
解析方法 本発明者は偏析をラボ的に現出可能な異形鋳型を用いて
凝固末期にCuをトレーサーとして添加したラボ実験に基
づき、偏析の原因である濃化溶鋼の集積が激しいのは、
鋳片厚み中心部の通液抵抗が増大した後の比較的かぎら
れた凝固時期範囲であるという知見にいたった。本発明
では濃化溶鋼の集積時期と量を定量化するため以下の方
法により解析した。 Analysis method The present inventor is based on a laboratory experiment in which Cu is added as a tracer at the final stage of solidification using a deformed mold that can reveal segregation in a lab, and the concentration of concentrated molten steel that is the cause of segregation is severe.
The present inventors have come to the knowledge that it is a relatively limited solidification timing range after the liquid passage resistance at the center of the thickness of the slab has increased. In the present invention, in order to quantify the accumulation timing and amount of concentrated molten steel, analysis was performed by the following method.
1)モールドからの経過時間による凝固時期のブロック
化と物質バランス式 前述した理由から凝固時期をモールドからの経過時間を
尺度に分割ブロック分けし、各ブロックの物質バランス
式を連結することにより鋳片の厚み中心部に集積する溶
質量を示すマクロ的な連結物質バランス式(以下中心溶
質集積の物質バランス式と略す)を検討した。この中心
溶質集積の物質バランス式をあてはめの式とし、重回帰
により中心偏析定式化モデル式を作成し、この結果に基
づき、各凝固時期の濃化溶鋼集積量および中心偏析にお
よぼす軽圧下の効果を評価した。なおブロック分割方法
の適正化は重回帰により以下の方法で決定し、また各項
の係数は最適分割方法における値を採用した。1) Blocking of solidification timing and material balance formula according to elapsed time from mold For the above-mentioned reasons, the solidification timing is divided into blocks based on the elapsed time from mold as a scale, and the material balance formula of each block is connected to the slab. A macroscopic linked substance balance equation (hereinafter abbreviated as the substance balance equation for central solute accumulation) showing the solute mass accumulated in the central part of the thickness of was investigated. Using this material balance equation for central solute accumulation as a fitting equation, a central segregation formulation model was created by multiple regression, and based on this result, the effect of light reduction on the concentrated molten steel accumulation and central segregation at each solidification time Was evaluated. The optimization of the block division method was determined by the following method by multiple regression, and the coefficient of each term adopted the value in the optimum division method.
2)ブロック分割方法の適正化と係数の決定方法 分割方法が濃化溶鋼の集積の実態に適合した場合、実測
値と重回帰から得られた予測値との相関係数は最大と考
えられるので、ブロック分割方法は予測値と実測値の相
関係数が最大で、かつあてはめの式と矛盾しないよう決
定し係数を算出した。2) Optimization of block division method and determination method of coefficient If the division method is suitable for the actual situation of concentrated molten steel accumulation, the correlation coefficient between the measured value and the predicted value obtained from multiple regression is considered to be the maximum. , The block division method was determined so that the correlation coefficient between the predicted value and the actual measurement value was the maximum and did not contradict the fitting equation, and the coefficient was calculated.
中心偏析定式化モデル式の検討 1)中心部溶質量決定物質バランス式 i)厚み中心部に集積する溶質量 軽圧下帯をモールドからの経過時間を尺度に第3図の例
のごとく分割し、各ブロックの物質バランスを検討す
る。モールドからtj分(モールドからの距離がVc・tj
(m)の残溶鋼断面)経過した鋳片を断面をj断面とす
るとj断面に流入する溶質の成分量は(1)式となる。
またモールドからtj+1分経過したj+1断面から流出
する溶質はj断面からj+1断面の間で(以下jブロッ
クとする)凝固した凝固相と残溶鋼相に含有し、各相の
流出成分量は(2),(3)式で示すことができる。従
って各ブロックの物質バランスは(4)式となる。前ブ
ロックから流出する残溶鋼相中の成分量が次ブロックの
流入成分量となるのでこれらを連結すると、単位時間当
たり厚み中心部に集積する成分量は(5)式で示すこと
ができる。Center segregation formulation Study of model formula 1) Central mass balance determining substance balance formula i) Melt mass accumulating in the center of thickness Light pressure zone is divided as in the example of Fig. 3 with the elapsed time from the mold as a scale, Consider the material balance of each block. Tj minutes from the mold (The distance from the mold is Vc · tj
(M) Residual molten steel cross section) If the cross section of the slab that has passed is taken as j section, the amount of solute components flowing into j section is given by equation (1).
Further, the solute flowing out from the j + 1 cross section after tj + 1 minutes from the mold is contained in the solidified phase solidified between the j cross section and the j + 1 cross section (hereinafter referred to as j block) and the residual molten steel phase, and the outflow component amount of each phase is (2 ), (3) can be shown. Therefore, the material balance of each block is given by equation (4). Since the amount of the component in the residual molten steel phase flowing out from the preceding block becomes the amount of the inflowing component of the next block, if these are connected, the amount of the component accumulated in the thickness center portion per unit time can be expressed by the equation (5).
ブロック流入成分量(残溶鋼) =ρl・(Vc+Uj)・Sj・Cj(g/min)(1) ブロック流出成分量(残溶鋼) =ρl・(Vc+Uj+1)・Sj+1・Cj+1(g/min)
(2) ブロック流出成分量(凝固相) =ρs・Vc・Ssj・▲▼・βsj(g/min)(3) 各ブロックの物質バランス: ρl・(Vc+Uj)・Sj・Cj=ρl・(Vc+Uj+1)・Sj+
1・Cj+1+ρs・Vc・Ssj・▲▼(4) 厚み中心部に単位時間当り集積する成分量: Vc・Se・Ce=(Vc+U1)・S1・C1−M・Vc・ΣSsj・βs
j・▲▼(g/min)(5) Vc:鋳造速度(cm/min) Uj:残溶鋼流速(cm/min) ρs:凝固相密度(g/cm3) Sj:j断面残溶鋼面積(cm2) ρl:溶鋼密度(g/cm3) Ssj:jブロックでの凝固面積(cm2) M=ρs/ρl Cj=j面積残溶鋼相の平均成分濃度 ▲▼:Jブロック凝固相の平均成分濃度 βsj:Jブロック凝固相の平均固相体積率 Ce:偏析内平均成分濃度 Se:偏析のC断面面積(cm2) 軽圧下との関係で(5)式を考えるためには▲
▼,Ssjの定量化が必要である。そこでまず▲▼に
ついて検討する。Block inflow component amount (remaining molten steel) = ρ l · (Vc + Uj) · Sj · Cj (g / min) (1) Block outflow component amount (remaining molten steel) = ρ l · (Vc + Uj + 1) · Sj + 1 · Cj + 1 (g / min) )
(2) Block outflow component amount (solidification phase) = ρ s · Vc · Ssj · ▲ · βsj (g / min) (3) Material balance of each block: ρ l · (Vc + Uj) · Sj · Cj = ρ l・ (Vc + Uj + 1) ・ Sj +
1 ・ Cj + 1 + ρ s・ Vc ・ Ssj ・ ▲ ▼ (4) Amount of component accumulated in the thickness center per unit time: Vc ・ Se ・ Ce = (Vc + U 1 ) ・ S 1・ C 1 -M ・ Vc ・ ΣSsj ・ βs
j ・ ▲ ▼ (g / min) (5) Vc: Casting speed (cm / min) Uj: Residual molten steel flow rate (cm / min) ρ s : Solidified phase density (g / cm 3 ) Sj: j Section residual molten steel area (Cm 2 ) ρ l : Molten steel density (g / cm 3 ) Solidification area in Ssj: j block (cm 2 ) M = ρ s / ρ l Cj = j area Average component concentration of residual molten steel phase ▲ ▼: J block Average component concentration of solidification phase βsj: Average solid phase volume fraction of J block solidification phase Ce: Average component concentration in segregation Se: C cross-sectional area of segregation (cm 2 ) To consider equation (5) in relation to light reduction Is ▲
▼, It is necessary to quantify Ssj. Therefore, first consider ▲ ▼.
ii)jブロック凝固相平均濃度(▲▼) j断面の凝固相濃度(CSj) 軽圧下試験の適正圧下時期や異形鋳型によるCu添加ラボ
実験結果に基づくと、濃化溶鋼の集積時期は鋳片の厚み
中心部に固相が発生する凝固末期と推定され、中心偏析
は、厚み中心部の通液抵抗が増大した後、デンドライト
樹間等の濃化溶鋼がデンドライト樹間や分岐デンドライ
ト樹間およびV偏析等の通液抵抗が小さい部位を流動集
積し発生したと考えられる。一方中心偏析の上下面には
第4図の如く負偏析帯の発生が認められる。この負偏析
発生原因を凝固末期における残溶鋼流動によるデンドラ
イト樹間の洗浄の結果と考え、デンドライト樹間洗浄モ
デルにより凝固末期(凝固収縮流速≒0.049cm/sec、と
凝固速度≒0.0039cm/sec)について検討すると実効分
配係数は約1となり中心近傍の負偏析は説明できない。
この中心近傍の負偏析の発生原因は前述した本発明者の
Cu添加ラボ実験結果に基づくと、凝固末期に樹間の濃化
溶鋼が凝固収縮吸引力により厚み中心に持ち去られた痕
跡と推定され、この樹間からの流出濃化溶鋼が中心部集
積量に相当すると考えられ、この濃化溶鋼の中心部集積
量は凝固収縮量が大きいほど多い。これらのことからCs
jはデンドライト樹間等を流動する濃化溶鋼量が多い場
合ほど小さくなりやすいと推定され、j断面の凝固相濃
度Csjを(6)式のごとく仮定した。ii) j Block solidification phase average concentration (▲ ▼) j Section solidification phase concentration (CSj) Based on the appropriate reduction time of the light reduction test and the results of the laboratory experiment of Cu addition by the deformed mold, the concentration time of the concentrated molten steel is slab It is presumed that the solid phase is generated in the center of the thickness of the steel, and the center segregation is due to the fact that the concentrated molten steel such as between dendrite trees and between the dendrite trees and between the branch dendrite trees are It is considered that it was generated by fluidized accumulation in a portion having a small liquid passage resistance such as V segregation. On the other hand, negative segregation zones are observed on the upper and lower surfaces of the center segregation as shown in FIG. The cause of this negative segregation is considered to be the result of washing between dendrite trees due to residual molten steel flow at the end of solidification, and the end-of-solidification stage (solidification contraction flow velocity ≈ 0.049 cm / sec and solidification rate ≈ 0.0039 cm / sec) was determined by the dendrite intertree washing model The effective partition coefficient is about 1, and the negative segregation near the center cannot be explained.
The cause of the negative segregation in the vicinity of the center is caused by the inventor described above.
Based on the results of the Cu addition laboratory experiment, it is estimated that the concentrated molten steel between the trees at the end of solidification was carried away to the thickness center by the solidification shrinkage suction force, and the concentrated molten steel flowing out from this tree was used as the central accumulation amount. This is considered to be the case, and the larger the solidification shrinkage amount, the larger the central portion accumulation amount of this concentrated molten steel. From these things Cs
It is estimated that j tends to decrease as the amount of concentrated molten steel flowing between dendrite trees increases, and the solidification phase concentration Csj in the j cross section is assumed as in equation (6).
Csj=−Aj・Vj+Csj0 (6) Vj:j断面より下流の凝固収縮速度(cm3/min) Sj:j断面の残溶鋼面積(cm2) Uj:j断面での残溶鋼平均流速(cm/min) Csj0:Uj=0のj断面凝固濃度 次に従来得られている知見が(6)式により説明できる
かどうか検討してみる。異形鋳型によるCu添加ラボ実験
結果によると濃化溶鋼は鋳片の厚み中心部の固相率が0.
15に相当する温度より低い温度で集積する。この結果に
基づくと、厚み中心固相率が0.15より小さい段階では、
たとえ残溶鋼が流動しても濃化溶鋼は集積せずCsjはCsj
0となり(6)式のAjがゼロに近いと推定される。一方
厚み中心固相率が0.15より大きいある値以上の、デンド
ライト樹間等の濃化溶鋼は凝固収縮吸引力により流動集
積しやすくAjは大きいと考えられる。また凝固が進行し
デンドライト樹間の通液抵抗が大きくなった場合におい
ても濃化溶鋼は集積せず(6)式のAjがゼロに近いと推
定される。このように凝固時期による濃化溶鋼集積の違
いは(6)式のAjの大きさの差で与えられる。また
(6)式におけるCsj0はj断面の残溶鋼の流速がゼロの
場合のCsjで、残溶鋼の流速がゼロの場合実効分配係数
は1と考えられるので、Csj0はj断面の残溶鋼平均濃度
Cjと同一となる。このCjは凝固時期が非常に早い場合、
バルク濃度に等しく、濃化溶鋼が集積する凝固末期の場
合、比較的固相率の高いデンドライト樹間溶鋼の平均濃
度と推定される。各凝固時期のCsj0は同一成分系の場合
ほぼ一定と仮定し解析した。なお(6)式におけるVjは
j断面より下流の凝固収縮速度の総和で後述する。Csj = -Aj ・ Vj + Csj 0 (6) Solidification shrinkage velocity downstream of Vj: j section (cm 3 / min) Sj: j section residual molten steel area (cm 2 ) Uj: j average residual molten steel flow velocity (cm) / Min) Csj 0 : Uj = 0 j-section solidification concentration Next, let us examine whether the conventionally obtained knowledge can be explained by equation (6). According to the results of a Cu addition laboratory experiment using a deformed mold, the concentrated molten steel has a solid fraction of 0 at the thickness center of the slab.
Accumulates at temperatures lower than 15 equivalents. Based on this result, when the thickness center solid fraction is less than 0.15,
Even if the residual molten steel flows, the concentrated molten steel does not accumulate and Csj is Csj.
It becomes 0 , and it is estimated that Aj in equation (6) is close to zero. On the other hand, it is considered that Aj is large because the concentrated molten steel such as dendrite tree having a solid fraction in the center of thickness greater than 0.15 is likely to flow and accumulate due to solidification shrinkage suction force. In addition, it is estimated that Aj in Eq. (6) is close to zero even when the solidification progresses and the liquid resistance between the dendrite trees increases, because the concentrated molten steel does not accumulate. Thus, the difference in concentrated molten steel accumulation depending on the solidification time is given by the difference in the size of Aj in Eq. (6). Csj 0 in Eq. (6) is Csj when the flow velocity of the residual molten steel in the j-section is zero, and the effective distribution coefficient is considered to be 1 when the flow velocity of the residual molten steel is zero, so Csj 0 is the residual molten steel in the j-section. Average concentration
It is the same as Cj. This Cj has a very early coagulation time,
In the final stage of solidification, which is equal to the bulk concentration and where concentrated molten steel accumulates, it is estimated to be the average concentration of dendrite interstitial molten steel with a relatively high solid fraction. The analysis was performed assuming that Csj 0 at each solidification time was almost constant in the case of the same component system. It should be noted that Vj in the equation (6) is the sum of solidification contraction speeds downstream of the j cross section and will be described later.
jブロック凝固相平均濃度(▲▼) 以上の検討に基づきjブロックの凝固相平均濃度はブロ
ック入口と出口断面の凝固相濃度の平気とし、(8)式
のごとく仮定した。Average concentration of solidification phase of j block (▲ ▼) Based on the above examination, the average concentration of solidification phase of the j block was assumed to be equal to the solidification phase concentration of the cross section of the inlet and the outlet of the block, and was assumed as in the equation (8).
▲▼=(Csj+Csj+1)/2={−(Aj・Vj+Aj
+1・Vj+1)+(Csj0+Csj+10}/2 (8) iii)Ssjの定量化 jブロック内での凝固面積Ssjはj断面とj+1の未凝
固面積の差として算出できる。j断面の未凝固面積Sjは
伝熱計算により算出することが可能で、回帰式化するこ
とによりモールドから経過時間の関数として示すことが
できる。▲ ▼ = (Csj + Csj + 1) / 2 = {-(Aj · Vj + Aj
+ 1 · Vj + 1) + (Csj 0 + Csj + 1 0 } / 2 (8) iii) Quantification of Ssj The solidified area Ssj in the j block can be calculated as the difference between the j cross section and the unsolidified area of j + 1. The unsolidified area Sj of the j cross section can be calculated by heat transfer calculation, and can be shown as a function of elapsed time from the mold by making a regression equation.
iv)軽圧下による凝固収縮速度(Vj)の低減 軽圧下がない場合、j断面より下流の単位時間当たりの
凝固収縮量はj断面の残溶鋼平均流速Ujとj断面面積Sj
の積と考えられるので、流動限界固相率を0.7と考え、
j断面より下流の凝固収縮速度は(9)式で示すことが
できる。iv) Reduction of solidification shrinkage rate (Vj) by light reduction When there is no light reduction, the solidification shrinkage amount per unit time downstream from the j-section is the average residual steel flow velocity Uj of the j-section and the j-section area Sj.
It is considered to be the product of
The solidification contraction rate downstream of the j-section can be expressed by equation (9).
Vj=Sj・Vj・α(cm3/min) (9) Vc・α=Uj α=ρs−ρl)/ρl ρs=7.3、ρl=7.0(g/cm3) 一方軽圧下がある場合、残溶鋼流動の原因となる凝固収
縮速度はその一部が軽圧下による固液界面の移動により
すくなくなるので(10)式で示すことができる。Vj = Sj ・ Vj ・ α (cm 3 / min) (9) Vc ・ α = Uj α = ρ s −ρ l ) / ρ l ρ s = 7.3, ρ l = 7.0 (g / cm 3 ) Meanwhile, light pressure reduction If there is, the solidification shrinkage rate that causes the residual molten steel flow can be expressed by Eq. (10) because a part of the solidification shrinkage rate is reduced due to the movement of the solid-liquid interface due to light pressure reduction.
Vj=(Sj・Vc・α−vj)(cm3/min) (10) vj:軽圧下によるj断面より下流の単位時間当たり固液
界面移動総体積(cm3/min) ここでvjはj断面より下流ロールにより鋳片を圧下した
ことにより発生した単位時間当りの固液界面移動体積の
総和で(11)式で示すことができる(以下実効圧下体積
と略す)。Vj = (Sj · Vc · α-vj) (cm 3 / min) (10) vj: Total volume of solid-liquid interface movement per unit time (cm 3 / min) downstream from the j-section under light pressure, where vj is j The total volume of solid-liquid interface movement per unit time generated by pressing down the cast piece with a roll downstream from the cross section can be expressed by equation (11) (hereinafter referred to as effective rolling down volume).
vj=(Σwi・ηi・Δhi)・Vc(cm3/min) (11) i:ロール# Δhi:iロールの圧下量(mm/ロール) ηi:iロールでの圧下効率 wi:iロールでの未凝固幅(mm) 従って軽圧下がある場合、j断面における残溶鋼流動の
原因となる凝固収縮速度は(12)式で示すことができ
る。vj = (Σwi · ηi · Δhi) · Vc (cm 3 / min) (11) i: Roll # Δhi: i Roll reduction amount (mm / roll) ηi: Roll reduction efficiency wi: i Roll Unsolidified width (mm) Therefore, when there is a slight reduction, the solidification shrinkage rate that causes the residual molten steel flow in the j cross section can be expressed by equation (12).
Vj=Sj・Vc・α−(Σwi・ηi・Δhi)・Vc(cm3/mi
n) (12) 以上i)ii)iii)iv)の検討結果に基づき、また
(5)式のUjはVcと比べ小さいことからUjを省略すると
鋳片単位長さ当りの厚み中心に集積する成分量は(13)
式で示すことができ、Csjの値として(8)式を採用す
ると(14)式となる。Vj = Sj ・ Vc ・ α- (Σwi ・ ηi ・ Δhi) ・ Vc (cm 3 / mi
n) (12) Based on the results of i) ii) iii) iv), and since Uj in Eq. (5) is smaller than Vc, if Uj is omitted, the slab accumulates at the thickness center per unit length. The amount of ingredients is (13)
It can be shown by a formula, and if formula (8) is adopted as the value of Csj, formula (14) is obtained.
(13),(14)式において右辺第1項は入口断面を決め
れば定まる値であり右辺第2項は前述したごとく残溶鋼
流動がない場合の各凝固ブロック残溶鋼の濃度と凝固量
の積に相当する値の総和なので定数と考えられ、右辺第
1項と第2項を含め定数となる。この定数を含め、(1
2),(14)式における各項の係数が決定できれば、中
心偏析は各ロールによる鋳片の圧下量、ロール配置等の
軽圧下条件を与えることにより計算が可能となり中心偏
析定式化モデル式が完成する。(12),(14)式におい
てSsjやSjおよび未凝固幅(wi)は伝熱計算により算出
することが可能でβsjは凝固の進行時期や凝固組織が決
まれば定まる値となり、1程度と推定される。また圧下
効率(ηi)は、鋼の高温物性を用いて弾塑性解析によ
り算出可能で凝固が進むほど小さい。またΔhiの値は本
試験の冷片の圧下挙動より算出した(15)式により与え
ることができる。以上の結果によると(14)式において
AjとCsj0が未知のパラメータでありそれ以外の値は鋳造
条件および軽圧下条件が定まれば計算で求められる。 In Eqs. (13) and (14), the first term on the right-hand side is a value determined by determining the inlet cross section, and the second term on the right-hand side is the product of the concentration and the amount of solidification of each solidified block residual molten steel when there is no residual molten steel flow as described above. Is considered to be a constant because it is the sum of the values corresponding to, and is a constant including the first term and the second term on the right side. Including this constant, (1
If the coefficient of each term in Eqs. 2) and (14) can be determined, the center segregation can be calculated by giving the conditions of light reduction such as the amount of reduction of the slab by each roll and the roll arrangement. Complete. In Eqs. (12) and (14), Ssj and Sj and the unsolidified width (wi) can be calculated by heat transfer calculation, and βsj is a value that is determined if the time of solidification progress and solidified tissue are determined, and is estimated to be about 1. To be done. Further, the rolling reduction efficiency (ηi) can be calculated by elasto-plastic analysis using the high temperature physical properties of steel, and becomes smaller as the solidification progresses. The value of Δhi can be given by the equation (15) calculated from the rolling behavior of the cold pieces in this test. According to the above results, in equation (14)
Aj and Csj 0 are unknown parameters, and other values can be found by calculation if casting conditions and light reduction conditions are determined.
Δhi=P2/R・(Ki・Bi)2 Ki・Bi=9.06(l/Vc)1.794 (15) P:ロール反力(kg) R:ロール半径(mm) Ki:iロール位置での鋳片変形抵抗(kg/mm2) Bi:iロール位置での鋳片短辺凝固厚(mm) li:iメニスカスからiロールまでの距離(m) ここで、Ajを含めた各項の係数および定数は(14)式を
あてはめの式とし(15)式で示されるΔhiと未凝固幅
(wi)圧下効率(ηi)およびSj(固相率=0.7で計
算)により計算したVjを用いて、圧下時期を種々変更し
た鋳造速度変更試験の結果を重回帰分析することにより
Vj以外の値を評価決定した。なお解析に用いた偏析は
(14)式に示される鋳片1cm当りの成分量ではなく、最
大偏析粒径とした。Δhi = P 2 / R ・ (Ki ・ Bi) 2 Ki ・ Bi = 9.06 (l / Vc) 1.794 (15) P: Roll reaction force (kg) R: Roll radius (mm) Ki: Casting at i roll position One-sided deformation resistance (kg / mm 2 ) Bi: Solid thickness of short side of cast piece at roll position (mm) li: i Distance from meniscus to i-roll (m) where coefficient of each term including Aj and For the constant, using equation (14) as a fitting equation, and using Vhi calculated from Δhi and uncoagulated width (wi) reduction efficiency (ηi) and Sj (calculated at solid fraction = 0.7) shown in equation (15), By performing multiple regression analysis on the results of casting speed change tests with various reduction times
Values other than Vj were evaluated and determined. The segregation used in the analysis was the maximum segregated grain size, not the component amount per 1 cm of the slab shown in equation (14).
なお(12),(14)式において軽圧下がない場合(vj=
0)の中心部への成分集積量は(16)式となる。If there is no light reduction in equations (12) and (14) (vj =
The amount of components accumulated in the center of 0) is given by equation (16).
Se・Ce=S1・C1−M・ΣSsj・βsj・(CSj0+Csj+1
0) /2+M・ΣSsj・βsj・{Aj・Sj+Aj+1・Sj+1)
・Vc・α}/2 (16) ここで各ブロックのM・Ssj・βsj・{Aj・Sj+Aj+1
・Sj+1)・α}/2(16式の下線)が軽圧下が内場合
のブロックの成分集積量となる。この値をブロック時間
で割った値(以下偏析凝集指標と略す)は軽圧下がない
場合の単位鋳造速度、jブロック単位時間当たりの成分
集積量で、(14)式における未知のパラメータ(AjとCs
j0)が決定できれば偏析凝集指標の大小によって各凝固
時期における偏析凝集程度も評価できる。Se ・ Ce = S 1・ C 1 -M ・ ΣSsj ・ βsj ・ (CSj 0 + Csj + 1
0 ) / 2 + M ・ ΣSsj ・ βsj ・ {Aj ・ Sj + Aj + 1 ・ Sj + 1)
・ Vc ・ α} / 2 (16) where M ・ Ssj ・ βsj ・ {Aj ・ Sj + Aj + 1 of each block
・ Sj + 1) · α} / 2 (underlined in Equation 16) is the component accumulation amount of the block when the light reduction is inside. The value obtained by dividing this value by the block time (hereinafter abbreviated as segregation aggregation index) is the unit casting speed when there is no light reduction, the amount of component accumulation per j block unit time, and the unknown parameter (Aj and Cs
If j 0 ) can be determined, the degree of segregation and aggregation at each solidification time can also be evaluated by the size of the segregation and aggregation index.
2)分割方法の適正化と係数の決定 あてはめの式を(14)式として鋳造速度変更試験結果を
重回帰分析することにより、圧下帯の分割方法と(14)
式における各項の係数を以下に算出した。2) Optimization of division method and determination of coefficient By applying multiple regression analysis of casting speed change test results using equation (14) as the fitting method, and
The coefficient of each term in the formula was calculated below.
i)圧下範囲の適正な分割方法 分割方法が濃化溶鋼の集積の実態に適合した場合、実測
最大偏析粒径と重回帰により得られた予測最大偏析粒径
の相関関数は最大になると考えられるので、分割方法は
最大偏析粒の実測値と予測値の相関関係が最大となるよ
う選択し、結果を表2に示す。表2の結果に基づくと、
最大偏析粒径は(17)式で示すことができる。(17)式
により計算した最大偏析粒径は後述(第5図)するごと
く、実測の最大偏析粒径と非常に良く一致している。i) Appropriate partitioning method of reduction range If the partitioning method is suitable for the actual condition of concentrated molten steel accumulation, it is considered that the correlation function between the actually measured maximum segregated grain size and the predicted maximum segregated grain size obtained by multiple regression is maximized. Therefore, the dividing method was selected so that the correlation between the actual measured value and the predicted value of the maximum segregated grains was maximized, and the results are shown in Table 2. Based on the results in Table 2,
The maximum segregated grain size can be expressed by equation (17). The maximum segregated grain size calculated by Eq. (17) agrees very well with the actually measured maximum segregated grain size, as described later (Fig. 5).
ここで、Vの添え字:モールドからの経過時間(min) E:厚み中心固相率0.7まで要した時間(分) 3)圧下力、ロール配置、鋳造速度等と偏析の関係 (17)式において圧下帯下流ロールによる圧下はそれよ
りも上流の残溶鋼流動にも影響をおよぼしており偏析を
ロール毎の圧下量やロール配置等との関係式として示す
ためにはVjからVcの項を分離し(18)式のごとく変形し
た方が便利であり、またモールドからの経過時間を凝固
の進行状況を示す鋳片の厚み中心固相率で示すことによ
り普遍化できる。(18),(15),(19)式を組合せる
ことにより中心偏析と鋳造速度、圧下力、ロール配置な
ど軽圧下設備条件との関係を定式化することができ、種
々の軽圧下条件における偏析の計算が可能になった。 Here, subscript of V: elapsed time from mold (min) E: time required for solid fraction at the thickness center of 0.7 (minutes) 3) Relationship between rolling force, roll arrangement, casting speed, etc., and segregation In Eq. (17), the rolling by the rolling roll downstream of the rolling belt has an effect on the residual molten steel flow upstream of that, and segregation can be reduced by the amount of rolling by roll or roll. In order to show it as a relational expression with the roll arrangement etc., it is more convenient to separate the term of Vj from Vc and transform it as shown in Eq. (18), and the elapsed time from the mold is It can be generalized by showing the solid fraction at the center of thickness. By combining Eqs. (18), (15), and (19), it is possible to formulate the relationship between center segregation and light reduction equipment conditions such as casting speed, reduction force, roll arrangement, etc. Segregation calculation is now possible.
ここで、vの添え字:鋳片の中心固相率(fcj) vj:vの上下fcj間の実効圧下体積(cm3/min) wi:未凝固幅(cm)、ηi:圧下効率、 Δhi:iロール圧下量(cm)、i:ロールNo ここでΔhiは前述した(15)式で、li/Vcはモールドか
らの経過時間である。 Here, subscript of v: central solid fraction of cast slab (fcj) vj: effective rolling volume between upper and lower fcj of v (cm 3 / min) wi: unsolidified width (cm), ηi: rolling efficiency, Δhi : i Roll reduction amount (cm), i: Roll No where Δhi is the above-mentioned formula (15), and li / Vc is the elapsed time from the mold.
Δhi=Pi2/Ri・(Ki・Bi)2 なおKi・Bi=9.06(li/Vc)1.794 (15) Pi:各ロールの反力(kg) Ri:各ロールの半径(mm) Ki:iロール位置での鋳片変形抵抗(kg/mm2) Bi:iロール位置での鋳片短編凝固厚(mm) li:メニスカスからiロールまでの距離(m) li=Lr+(N−Nr)・Rp (19) Lr:メニスカスから軽圧下開始ロールまでの距離(m) Nr:軽圧下開始ロールNo N:軽圧下ロールのNo Rp:ロールピッチ(m) メニスカスから各ロールまでの距離liはロールピッチを
Rpとすると(19)式となる。式(18)の中心偏析定式化
モデル式を用いて鋳造速度変更試験における最大偏析粒
径と鋳造速度の関係を計算した結果を実測データと比べ
第5図に示す。計算値と実測値は非常に良く一致してい
ることが分かる。Δhi = Pi 2 / Ri ・ (Ki ・ Bi) 2 Ki ・ Bi = 9.06 (li / Vc) 1.794 (15) Pi: Reaction force of each roll (kg) Ri: Radius of each roll (mm) Ki: i Mold slab deformation resistance at roll position (kg / mm 2 ) Bi: Slab solidified thickness at roll position (mm) li: Distance from meniscus to i roll (m) li = Lr + (N-Nr) ・Rp (19) Lr: Distance from meniscus to light reduction start roll (m) Nr: Light reduction start roll No N: Light reduction roll No Rp: Roll pitch (m) Distance li from meniscus to each roll is roll pitch To
If Rp, it becomes the formula (19). Fig. 5 shows the result of calculation of the relationship between the maximum segregation grain size and the casting speed in the casting speed change test using the model formula of the central segregation formula (18) in comparison with the measured data. It can be seen that the calculated value and the measured value agree very well.
4)各凝固時期のAjと濃化溶鋼の集積時期 (17)式における各項の係数を用いて前述したAjおよび
偏析凝集指標を算出した。ここでAjは前述したごとく大
きいほど偏析しやすく(実効分配係数小)、また偏析凝
集指標は大きいほど単位時間当りの濃化溶鋼の凝集量が
多い。Ajと鋳片厚み中心固相率(以下fscと略す)の関
係を第6図に示し、偏析凝集指標とfscの関係を第7図
に示す。Ajは凝固が進行するにつれしだいに増大する傾
向が認められるがAjの挙動変動の理由については今後検
討が必要である。一方偏析凝集指標は厚み中心固相率
(fsc)が0.35〜0.4で大きく、fscが0.37の場合の偏析
凝集指標が最も大きい。これよりfscが小さいか、大き
い場合、偏析凝集指標は小さくfscが0.37no場合の1/
5〜1/10程度となり、濃化溶鋼の集積が激しい凝固時
期は比較的狭いことが分る。厚み中心固相率(fsc)が
0.35〜0.4より小さい場合の偏析凝集指標が小さい理由
は残溶鋼が比較的低固相率部位を流動するため濃化程度
の激しい高固相率デンドライト樹間の濃化溶鋼の流動集
積が少ないためと考えられる。またfscが0.35〜0.4前後
より大きい場合の偏析凝集指標が小さい理由は凝固の進
行につれてブロック内の凝固量が少なくなることと、ま
たデンドライト樹間の通液抵抗が増大するためと考えら
れる。4) Aj at each solidification time and accumulation time of concentrated molten steel The above-mentioned Aj and segregation aggregation index were calculated using the coefficients of each term in Eq. (17). As described above, the larger Aj is, the more segregated (the effective distribution coefficient is small), and the larger the segregation aggregation index is, the larger the aggregation amount of the concentrated molten steel per unit time is. The relationship between Aj and the solid fraction in the thickness center of the slab (hereinafter abbreviated as fsc) is shown in FIG. 6, and the relationship between the segregation aggregation index and fsc is shown in FIG. Aj tends to increase as coagulation progresses, but the reason for the behavioral change of Aj needs further study. On the other hand, the segregation agglomeration index is large when the solid center solid fraction (fsc) is 0.35 to 0.4, and the segregation agglomeration index is the largest when fsc is 0.37. When fsc is smaller or larger than this, the segregation aggregation index is small and 1 / of fsc is 0.37no
It is about 5 to 1/10, and it can be seen that the solidification time at which the concentrated molten steel is intensely accumulated is relatively narrow. Thickness center solid fraction (fsc)
The reason why the segregation aggregation index is smaller when it is smaller than 0.35 to 0.4 is that the residual molten steel flows in a relatively low solid fraction region and the flow accumulation of the concentrated molten steel between the high solid fraction high dendrite trees is small. it is conceivable that. The reason why the segregation aggregation index is small when fsc is larger than about 0.35 to 0.4 is that the solidification amount in the block decreases as the solidification progresses, and the liquid flow resistance between the dendrite trees increases.
以上において、鋳片の厚み中心固相率が0.25から0.50に
相当する温度範囲に圧下ロールを設置し、行う圧下処理
としては、特に厚み中心固相率が0.35〜0.4における凝
固収縮流動を防止できるよう圧下する必要がある。これ
を効率的に実現するためには、濃化溶鋼が集積する直
後、すなわち鋳片の厚み中心固相率が0.35〜0.4近傍を
圧下するのが好ましい。また該鋳片の中心固相率が増大
する圧下帯の下流で圧下する場合、圧下効率が小さくな
るので圧下帯の下流に行くに従って圧下力値を増大し圧
下すればよい。例えば、鋳片がモールドのメニスカスか
ら各圧下ロールまでに要した時間に応じて該各圧下ロー
ルの圧下力値を増大したり、該鋳片がモールドのメニス
カスから各圧下ロールまでの位置に応じて各圧下ロール
の圧力値を増大するように構成することができる。In the above, the thickness center solid fraction of the slab is set to a rolling roll in a temperature range corresponding to 0.25 to 0.50, as the rolling treatment to be performed, especially the solidification shrinkage flow at the thickness center solid fraction of 0.35 to 0.4 can be prevented. Need to be reduced. In order to efficiently achieve this, it is preferable to reduce the concentration immediately after the concentrated molten steel is accumulated, that is, the thickness center solid fraction of the slab is around 0.35 to 0.4. Further, in the case of rolling down the rolling zone downstream of the rolling zone where the central solid fraction of the slab increases, the rolling-down efficiency decreases, so the rolling force value may be increased and rolled down the downstream side of the rolling zone. For example, the slab increases the reduction force value of each reduction roll according to the time required from the meniscus of the mold to each reduction roll, or the slab has a position from the meniscus of the mold to each reduction roll. It can be configured to increase the pressure value of each reduction roll.
以上、詳述したように、本発明に係る連続鋳造方法は、
鋳片の厚み中心固相率が0.35から0.40に相当する温度範
囲に1本以上のロールを設置し、鋳片に対する圧下処理
を該鋳片の中心固相率が増大する圧下帯の下流に行くに
従って圧下力値を増大することによって、連続鋳造鋳片
の厚み中心部にみられる不純物元素の偏析を防止して均
質な金属を得ることができる。As described above in detail, the continuous casting method according to the present invention,
The thickness center solid fraction of the slab is set to one or more rolls in a temperature range corresponding to 0.35 to 0.40, and the rolling treatment for the slab is performed downstream of the rolling zone where the central solid fraction of the slab increases. By increasing the rolling force value in accordance with the above, it is possible to prevent the segregation of the impurity element found in the central portion of the thickness of the continuously cast slab and obtain a homogeneous metal.
第1図は本発明に係る連続鋳造方法が適用される連鋳機
の一例を示す図、 第2図は鋳片における偏析と鋳造速度との関係を示す
図、 第3図は連鋳機における軽圧下帯の分割方法を説明する
ための図、 第4図は鋳片の厚み中心部周辺の負偏析を示す図、 第5図は鋳片における計算最大偏析粒径と鋳造速度との
関係を示す図、 第6図はパラメータAjと鋳片の凝固時期との関係を示す
図、 第7図は鋳片における濃化溶鋼の集積時期を示す図であ
る。 (符号の説明) 1……取鍋、2……タンディシュ、 3……モールド、 11……スライディングノズル、 21……ストッパ。FIG. 1 is a diagram showing an example of a continuous casting machine to which the continuous casting method according to the present invention is applied, FIG. 2 is a diagram showing a relationship between segregation in a cast piece and a casting speed, and FIG. 3 is a diagram showing the continuous casting machine. Fig. 4 is a diagram for explaining a method of dividing the light reduction zone, Fig. 4 is a diagram showing negative segregation around the thickness center of the cast piece, and Fig. 5 is a diagram showing the relationship between the calculated maximum segregated grain size and the casting speed in the cast piece. Fig. 6 is a diagram showing the relationship between the parameter Aj and the solidification timing of the slab, and Fig. 7 is a diagram showing the accumulation timing of the concentrated molten steel in the slab. (Explanation of symbols) 1 ... Ladle, 2 ... Tundish, 3 ... Mold, 11 ... Sliding nozzle, 21 ... Stopper.
Claims (3)
造方法であって、前記鋳片の厚み中心固相率が0.35から
0.40に相当する温度範囲に1本以上のロールを設置し、
圧下処理を行い、該圧下処理は、該鋳片の中心固相率が
増大する圧下帯の下流に行くに従って圧下力値を増大
し、該鋳片を処理するようになっていることを特徴とす
る連続鋳造方法。1. A continuous casting method for molten metal, wherein a slab is continuously drawn out, wherein the slab has a thickness center solid fraction of 0.35 to
Install one or more rolls in the temperature range equivalent to 0.40,
The rolling treatment is carried out, and the rolling treatment is such that the rolling force value is increased as it goes downstream of the rolling zone where the central solid fraction of the slab increases, and the slab is treated. Continuous casting method.
ールドのメニスカスから各圧下ロールまでに要した時間
に応じて該各圧下ロールの圧下力値を増大するようにし
た請求項第1項に記載の連続鋳造方法。2. The reduction treatment for the cast slab is such that the reduction force value of each of the reduction rolls is increased according to the time required for the slab to reach from each meniscus of the mold to each of the reduction rolls. The continuous casting method according to item.
ールドのメニスカスから各圧下ロールまでの位置に応じ
て該各圧下ロールの圧下力値を増大するようにした請求
項第1項に記載の連続鋳造方法。3. The rolling reduction treatment for the slab is performed by increasing the rolling force value of each rolling roll according to the position of the slab from the meniscus of the mold to each rolling roll. The continuous casting method described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1120295A JPH0669606B2 (en) | 1989-05-16 | 1989-05-16 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1120295A JPH0669606B2 (en) | 1989-05-16 | 1989-05-16 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02299754A JPH02299754A (en) | 1990-12-12 |
JPH0669606B2 true JPH0669606B2 (en) | 1994-09-07 |
Family
ID=14782704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1120295A Expired - Lifetime JPH0669606B2 (en) | 1989-05-16 | 1989-05-16 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0669606B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2530522B2 (en) * | 1991-03-08 | 1996-09-04 | 新日本製鐵株式会社 | Continuous casting method |
JP2561180B2 (en) * | 1991-04-09 | 1996-12-04 | 新日本製鐵株式会社 | Continuous casting method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158554A (en) * | 1985-12-30 | 1987-07-14 | Nippon Steel Corp | Continuous casting method |
JPS6233048A (en) * | 1985-08-03 | 1987-02-13 | Nippon Steel Corp | Continuous casting method |
JPS6363561A (en) * | 1986-09-04 | 1988-03-19 | Nippon Steel Corp | Continuous casting method |
-
1989
- 1989-05-16 JP JP1120295A patent/JPH0669606B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02299754A (en) | 1990-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tzavaras et al. | Electromagnetic stirring and continuous casting—Achievements, problems, and goals | |
JP6115735B2 (en) | Steel continuous casting method | |
JP3383647B2 (en) | Continuous cast billet and method of manufacturing the same | |
JPH0669606B2 (en) | Continuous casting method | |
JP3511973B2 (en) | Continuous casting method | |
TOMONO et al. | Mechanism of formation of the v-shaped segregation in the large section continuous cast bloom | |
Isaev | Effectiveness of using large cooling elements to alleviate axial segregation in continuous-cast ingots | |
JP3671872B2 (en) | Continuous casting method of steel | |
Drożdż | The influence of the superheat temperature on the slab structure in the continuous steel casting process | |
NL8000463A (en) | CONTINUALLY CAST STEEL PRODUCTION WITH REDUCED MICROSEGREGATION. | |
JPH0628789B2 (en) | Continuous casting method | |
JP3374761B2 (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JPH04313454A (en) | Continuous casting method | |
KR840001298B1 (en) | Continuous casting method of cast steel product | |
Ullmann et al. | Twin-roll casting defects in light metals | |
Lait | Solidification and heat transfer in the continuous casting of steel | |
JPH078421B2 (en) | Continuous casting method | |
Nosochenko et al. | Reducing Axial Segregation in a Continuous-Cast Semifinished Product by Micro-Alloying. | |
JP2000061602A (en) | Continuous cast slab and continuous casting method | |
JP2001162353A (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
US10994328B2 (en) | Method for casting | |
JP3494136B2 (en) | Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate | |
JPH05185183A (en) | Continuous casting method for steel | |
JPH05293618A (en) | Continuous casting method | |
Chickarev et al. | Improving the casting process of peritectic steel grades |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070907 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080907 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090907 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090907 Year of fee payment: 15 |