[go: up one dir, main page]

JPH02299754A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH02299754A
JPH02299754A JP12029589A JP12029589A JPH02299754A JP H02299754 A JPH02299754 A JP H02299754A JP 12029589 A JP12029589 A JP 12029589A JP 12029589 A JP12029589 A JP 12029589A JP H02299754 A JPH02299754 A JP H02299754A
Authority
JP
Japan
Prior art keywords
slab
rolling
segregation
roll
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12029589A
Other languages
Japanese (ja)
Other versions
JPH0669606B2 (en
Inventor
Mitsuo Uchimura
光雄 内村
Shigeaki Ogibayashi
荻林 成章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1120295A priority Critical patent/JPH0669606B2/en
Publication of JPH02299754A publication Critical patent/JPH02299754A/en
Publication of JPH0669606B2 publication Critical patent/JPH0669606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent segregation of impurity elements at center part of thickness in a cast slab by executing rolling reduction treatment when solid phase ratio at the center part in the cast slab becomes the specific value in the continuous casting for molten metal continuously drawing the cast slab. CONSTITUTION:In a twin casting type continuous casting machine, the rolling reduction zone is matched with the position where the solid phase ratio of the center part in the cast slab becomes about 0.35. That is, the position where the solid phase ratio of the slab becomes 0.35 is positioned near the starting position of rolling reduction zone of the roll R43 or R44. By this method, with only a few rolls of the roll R43, R44, etc., and with little rolling reduction force (hydraulic pressure), the segregation of impurities at the center part in the continuously cast slab can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造鋳片の厚み中心部にみられる不純物元
素、即ち鋼鋳片の場合には硫黄、燐、マンガン等の偏析
を防止し均質な金属を得ることのできる連続鋳造方法に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention prevents the segregation of impurity elements found in the center of the thickness of continuously cast slabs, such as sulfur, phosphorus, and manganese in the case of steel slabs. This invention relates to a continuous casting method that can produce homogeneous metal.

〔従来の技術、および、発明が解決しようとする課題〕[Prior art and problems to be solved by the invention]

近年、海洋構造物、貯槽、石油およびガス運搬用鋼管、
高張力線材などの材質特性に対する要求は厳しさを増し
ており、均質な鋼材を提供することが重要課題となって
いる。元来鋼材は、断面内において均質であるべきもの
であるが、鋼は一般に硫黄、燐、マンガン等の不純物元
素を含有しており、これらが鋳造過程において偏析し部
分的に濃化するため鋼が脆弱となる。特に近年生産性や
歩留の向上及び省エネルギー等の目的のために連続鋳造
法が一般に普及しているが、連続鋳造により得られる鋳
片の厚み゛中心部には通常顕著な成分偏析が観察される
In recent years, steel pipes for offshore structures, storage tanks, oil and gas transportation,
Requirements for material properties such as high-tensile wire rods are becoming increasingly strict, and providing homogeneous steel materials has become an important issue. Originally, steel should be homogeneous in its cross section, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, and these segregate and become partially concentrated during the casting process. becomes vulnerable. Particularly in recent years, continuous casting methods have become popular for purposes such as improving productivity and yield and saving energy, but noticeable component segregation is usually observed at the center of the thickness of slabs obtained by continuous casting. Ru.

上記した成分偏析は最終製品の均質性を著しく損ない、
製品の使用過程や線材の線引き工程等で鋼に作用する応
力により亀裂が発生するなど重大欠陥の原因になるため
、その低減が切望されている。かかる成分偏析は凝固末
期に残溶鋼が凝固収縮力等によって流動し、固液界面近
傍の濃化溶鋼を洗い出し、残溶鋼が累進的に濃化してい
くことによって生じる。従って成分偏析を防止するには
、残溶鋼の流動原因を取り除(ことが肝要である。
The above-mentioned component segregation significantly impairs the homogeneity of the final product.
Stress acting on steel during the product use process and the wire drawing process can cause serious defects such as cracks, so there is a strong desire to reduce this. Such component segregation occurs when the residual molten steel flows at the final stage of solidification due to solidification contraction force, washes out the concentrated molten steel near the solid-liquid interface, and the residual molten steel progressively becomes concentrated. Therefore, in order to prevent component segregation, it is important to eliminate the cause of residual molten steel flowing.

このような溶鋼流動原因としては、凝固収縮に起因する
流動のほか、ロール間の鋳片バルジングやロールアライ
メント不整に起因する流動等があるが、これらの肉量も
重大な原因は凝固収縮であり、偏析を防止するには、こ
れを補償する量だけ鋳片を圧下することが必要である。
Causes of such molten steel flow include flow caused by solidification shrinkage, as well as flow caused by slab bulging between rolls and roll misalignment, but solidification shrinkage is also an important cause of the amount of steel. In order to prevent segregation, it is necessary to reduce the slab by an amount that compensates for this.

鋳片を圧下することにより偏析を改善する試みは従来よ
り行われており、連続鋳造工程において鋳片中心部温度
が液相線温度から固相線温度に至るまでの間鋳片を凝固
収縮を補償する量販上の一定の割合で圧下する方法が知
られている。
Attempts have been made to improve segregation by compressing the slab, which involves solidifying and shrinking the slab during the period when the temperature at the center of the slab reaches from the liquidus temperature to the solidus temperature during the continuous casting process. A method is known in which the compensation is reduced by a certain percentage on the volume sales.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

しかしながら、従来の連続鋳造方法は、条件によっては
偏析改善効果が殆ど認められなかったり、場合によって
は、偏析がかえって悪化する等の問題があり、成分偏析
を充分に改善することは困難であった。
However, with conventional continuous casting methods, there are problems such as hardly any segregation improvement effect being observed depending on the conditions, and in some cases, segregation may even worsen, making it difficult to sufficiently improve component segregation. .

本発明者らはかかる従来法の問題の発生原因について種
々調査した結果、従来法の場合に偏析改善効果が認めら
れなかったり、あるいは偏析がかえって悪化することが
起こるのは、基本的に圧下すべき凝固時期とその範囲が
不適正であることに起因していることを突止めた。
The present inventors have conducted various investigations into the causes of such problems in the conventional method, and have found that the reason why the conventional method does not have an effect on improving segregation or even worsens segregation is that the pressure It was discovered that this was caused by inappropriate coagulation timing and range.

本発明者は、先に、特開昭62−275556号公報に
おいて、鋳片の中心部が固相率0.工ないし0.3に相
当する温度となる時点から流動限界固相率に相当する温
度となる時点までの領域を単位時間当り0、5 mm 
/分収上2.5 mm /分未満の割合で連続的に圧下
し、鋳片中心部が流動限界固相率に相当する温度となる
時点から固相線温度となるまでの領域は実質的な圧下を
加えないようにした連続鋳造方法を提案した。
The present inventor previously disclosed in Japanese Unexamined Patent Publication No. 62-275556 that the solid phase ratio in the center of the slab is 0. The area from the time when the temperature corresponds to 0.3 to 0.5 mm per unit time to the time when the temperature corresponds to the flow limit solid fraction is 0.5 mm.
The area from the time when the center of the slab reaches a temperature corresponding to the flow limit solid fraction to the solidus temperature is substantially We proposed a continuous casting method that does not require excessive rolling reduction.

さらに、本発明者は、数多くの実験結果から、幾つかの
弐を仮定し、該実験結果と照合することにより、さらに
進歩した連続鋳造方法を提案するに到った。
Furthermore, the present inventor has proposed a more advanced continuous casting method by making several assumptions based on the results of numerous experiments and comparing them with the results of the experiments.

本発明の目的は、連続鋳造片の厚み中心部にみられる不
純物元素の偏析を防止して均質な金属を得ることにある
An object of the present invention is to obtain a homogeneous metal by preventing the segregation of impurity elements found in the center of the thickness of a continuously cast piece.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、鋳片を連続的に引き抜く溶融金属の連
続鋳造方法であって、前記鋳片の中心固相率が0.25
から0.50となるときに、該鋳片に対する圧下処理を
行うようにしたことを特徴とする連続鋳造方法が提供さ
れる。1.で、前記鋳片に対する圧下処理は、該鋳片の
中心固相率が約0.35となるときに行うようにするの
が好ましい。また、前記鋳片に対する圧下処理は、該鋳
片の中心固相率が増大する圧下帯の下流に行くに従って
圧下力値を増大し、該鋳片を一定の圧下率で圧下処理す
るのが好ましい。
According to the present invention, there is provided a method for continuous casting of molten metal in which a slab is continuously drawn, wherein the central solid fraction of the slab is 0.25.
Provided is a continuous casting method characterized in that the slab is subjected to a reduction treatment when the value becomes 0.50 from 0.50. 1. It is preferable that the reduction treatment for the slab be performed when the central solid fraction of the slab is about 0.35. Further, it is preferable that the rolling treatment for the slab is performed by increasing the rolling force value toward the downstream of the rolling zone where the center solid fraction of the slab increases, and rolling the slab at a constant rolling rate. .

〔作 用〕[For production]

本発明の連続鋳造方法によれば、鋳片の中心固相率が0
.25から0.50となるときに、該鋳片に対する圧下
処理が行われる。この鋳片に対する圧下処理は、特に、
該鋳片の中心固相率が約0.35となるときに行うこと
が好ましい。また、鋳片は、該鋳片の中心固相率が増大
する圧下帯の下流に行くに従って圧下力値が増大され、
該鋳片を一定の圧下率で圧下するように処理される。
According to the continuous casting method of the present invention, the central solid fraction of the slab is 0.
.. 25 to 0.50, the slab is subjected to rolling treatment. The reduction treatment for this slab is particularly
It is preferable to carry out this process when the central solid fraction of the slab is about 0.35. Further, the rolling force value of the slab increases as it goes downstream of the rolling zone where the central solid fraction of the slab increases,
The slab is processed to be rolled down at a constant rolling reduction rate.

これによって、連続鋳造鋳片の厚み中心部にみられる不
純物元素の偏析を防止して均質な金属を得ることができ
る。
Thereby, it is possible to prevent the segregation of impurity elements found in the center of the thickness of the continuously cast slab, and to obtain a homogeneous metal.

〔実施例〕〔Example〕

まず、第1図を参照して本発明に係る連続鋳造方法が適
用される連鋳機の一例を概略的に説明する。
First, an example of a continuous casting machine to which the continuous casting method according to the present invention is applied will be schematically explained with reference to FIG.

第1図は本発明に係る連続鋳造方法が適用される連鋳機
、具体的に、ツイン・キャスト円弧型の連鋳機の一例を
示す図である。同図に示されるように、本連鋳機におい
て、溶鋼を満たした取鍋1はタンディシュ2の上方に置
かれ、取鍋1内の溶鋼が底部のスライディングノズル1
1を経てタンディシュ2内に注がれるようになされてい
る。ここで、スライディングノズル11は、取鍋1から
注がれた溶鋼を含むタンディシュ2全体の重量に応じて
開度が制御され、メニスカス(タンディシュ内の場面位
置)Mが一定となるようになされている。
FIG. 1 is a diagram showing an example of a continuous casting machine to which the continuous casting method according to the present invention is applied, specifically a twin cast circular arc type continuous casting machine. As shown in the figure, in this continuous casting machine, a ladle 1 filled with molten steel is placed above a tundish 2, and the molten steel in the ladle 1 is poured into a sliding nozzle 1 at the bottom.
1 and then poured into tundish 2. Here, the opening degree of the sliding nozzle 11 is controlled according to the entire weight of the tundish 2 containing the molten steel poured from the ladle 1, so that the meniscus (the scene position in the tundish) M is kept constant. There is.

タンディシュ2内の溶鋼は、該タンディシュの底部を塞
ぐストッパ21を上下宵闇に移動制御することにより、
モールド3内に一定の割合で注入されるようになされて
いる。モールド3は、その底部も開放されており、モー
ルド3に注入された溶鋼は、冷却水が供給されるモール
ド3の側壁で冷却されて外側から凝固(−次冷却)する
ようになされている。モールド3により一次冷却された
溶鋼(鋳片)は、ローラで連続的に引き出されることに
なる。
The molten steel in the tundish 2 is controlled by moving the stopper 21 that closes the bottom of the tundish upward and downward.
It is injected into the mold 3 at a constant rate. The bottom of the mold 3 is also open, and the molten steel injected into the mold 3 is cooled on the side wall of the mold 3 to which cooling water is supplied, and is solidified from the outside (secondary cooling). The molten steel (slab) that has been primarily cooled by the mold 3 is continuously drawn out by rollers.

モールド3から引き出された鋳片は、スプレー帯(スプ
レーロール)S、R,において、スプレー冷却され、−
さらに、複数(Nα1〜Nα5)のグループロールG、
 R,およびピンチロールP、 R1により曲げられて
、圧下帯へ供給されるようになされている。ここで、N
o、 2のグループクールには、E M S (Ele
ctro Magnetic Smoother)が設
けられていて、この位置において鋳片の電磁撹拌を行う
ようになされている。
The slab pulled out from the mold 3 is spray cooled in spray zones (spray rolls) S, R, and -
Furthermore, a plurality of (Nα1 to Nα5) group roles G,
R, and pinch rolls P and R1 to bend it and supply it to the rolling band. Here, N
o, 2 group courses include E M S (Ele
A magnetic smoother (ctro Magnetic Smoother) is provided to perform electromagnetic stirring of the slab at this position.

本発明の連続鋳造方法が適用される連鋳機では、鋳片の
中心固相率が0.25〜0.50となる位置が連鋳機の
圧下帯(ロールR43からロールR93の位置)に来る
ようにして、圧下処理(軽圧下)が行われる。特に、鋳
片の中心面相率が約0.35となる位置を圧下帯に一致
させ、すなわち、鋳片の中心固相率が約0.35となる
位置をロールRssまたはR44の圧下帯の始端位置近
くとなるようにすれば、ロールR43* R44等の少
ない数のロールだけで、しかも、小さい圧下力(油圧)
で連続鋳造鋳片の中心部における不純物の偏析を防止す
ることができる。
In the continuous casting machine to which the continuous casting method of the present invention is applied, the position where the central solid fraction of the slab is 0.25 to 0.50 is the rolling zone of the continuous casting machine (position from roll R43 to roll R93). Rolling down treatment (light rolling down) is performed in such a way that the In particular, the position where the central solid phase ratio of the slab is approximately 0.35 is aligned with the rolling zone, that is, the position where the central solid phase ratio of the slab is approximately 0.35 is the starting point of the rolling zone of roll Rss or R44. If it is placed close to the position, only a small number of rolls such as roll R43* R44 are required, and a small rolling force (hydraulic pressure) is required.
This can prevent the segregation of impurities in the center of continuously cast slabs.

以下、本発明の連続鋳造方法を詳述する。The continuous casting method of the present invention will be explained in detail below.

軽圧下はブルーム偏析改善に非常に有効である。Light reduction is very effective in improving bloom segregation.

軽圧下により偏析を最大限低減するためには適正な圧下
範囲で圧下量を最適にする必要があることが明らかにな
っている。しかし偏析をさらに極限まで低減し偏析の無
い鋳片を得るためには各ロールごとの圧下時期や圧下量
との関係で偏析改善効果を定量的に把握する必要がある
。以上の定量化を目的に前報で報告した鋳造速度変更試
験データをさらに解析し中心偏析定式化モデル式を作成
した。
It has become clear that in order to reduce segregation to the maximum extent possible through light reduction, it is necessary to optimize the amount of reduction within an appropriate reduction range. However, in order to further reduce segregation to the utmost limit and obtain a slab without segregation, it is necessary to quantitatively understand the segregation improvement effect in relation to the rolling timing and rolling amount of each roll. For the purpose of quantifying the above, we further analyzed the casting speed change test data reported in the previous report and created a model formula for center segregation formulation.

解析した試験の鋳造条件 ツインキャスト円弧型の連鋳機(第1図参照)で解析し
た試験の鋳造条件を表1に示し、得られた鋳片のエッチ
プリントに観察される最大偏析粒径(厚み中心部)と鋳
造速度の関係を第2図に示す。
Casting conditions for the analyzed tests Table 1 shows the casting conditions for the tests analyzed using a twin-cast arc type continuous caster (see Figure 1), and the maximum segregated grain size observed in the etch print of the obtained slab ( Figure 2 shows the relationship between the thickness (center part) and casting speed.

解析方法 軽圧下試験の適正圧下時期や異型鋳型によるCu添加ラ
ボ実験に基づくと、中心偏析は凝固末期にデンドライト
樹間や、等軸晶粒間等の濃化溶鋼がデンドライト樹間等
に発生した通液抵抗の小さい部位を流動し鋳片の中心部
に集積し生成したと考えられる。本発明では濃化溶鋼の
集積時期と量を定量化するため以下の方法により解析し
た。
Analysis methodBased on the appropriate rolling timing of the light rolling test and the Cu addition laboratory experiment using a modified mold, center segregation occurred between the dendrite trees at the final stage of solidification, and concentrated molten steel between equiaxed grains occurred between the dendrite trees, etc. It is thought that the liquid flowed through areas with low flow resistance and accumulated in the center of the slab. In the present invention, the following method was used to quantify the accumulation timing and amount of concentrated molten steel.

■〕上モールドらの経過時間による凝固時期のブロック
化と物質バランス式凝固時期をモールドからの経過時間
を尺度に分割ブロック分けし、各ブロックの物質バラン
ス式を連結することにより鋳片の厚み中心部に集積する
溶質量を示す連結物質バランス式(以下中心部溶質集積
の物質バランス式と略す)を検討し、中心部溶質集積の
物質バランス式をあてはめの式とし、重回帰により中心
偏析定式化モデル式を作成した。なおブロック分割方法
の適正化は重回帰により以下の方法で決定し、また各項
の係数は最適分割方法における値を採用した。
■] Blocking the solidification period based on the elapsed time from the upper mold and material balance method Divide the solidification period into blocks based on the elapsed time from the mold, and connect the material balance formula for each block to achieve the thickness center of the slab. We examined the connected substance balance equation (hereinafter referred to as the substance balance equation for central solute accumulation) that indicates the amount of solute accumulated in the central part, used the substance balance equation for central solute accumulation as the fitting equation, and used multiple regression to formulate the central segregation formulation. A model formula was created. The appropriateness of the block division method was determined by multiple regression using the following method, and the coefficients of each term adopted the values in the optimal division method.

2)ブロック分割方法の適正化と係数の決定方法 濃化溶鋼の集積が最も激しい凝固時期(ブロック)の残
溶鋼流動の大小は中心偏析との相関係数が大きいと考え
られ、また分割方法が濃化溶鋼の集積の実態に適合した
場合、実測値と重回帰から得られた予測値との相関係数
は最大と考えられるので、ブロック分割方法は予測値と
実測値の相関係数が最大で、かつあてほめの式と矛盾し
ないよう決定し係数を算出した。
2) Optimization of the block division method and method for determining the coefficient It is thought that the magnitude of the residual molten steel flow during the solidification period (block) where the accumulation of concentrated molten steel is most intense has a large correlation coefficient with center segregation, and the division method If it is adapted to the actual situation of concentrated molten steel accumulation, the correlation coefficient between the actual measured value and the predicted value obtained from multiple regression is considered to be the maximum, so the block division method is used to maximize the correlation coefficient between the predicted value and the actual measured value. Therefore, the coefficient was determined and calculated so as to be consistent with the formula of Ateihome.

中心偏析定式化モデル式の検討 1)中心部溶質量決定物質バランス式 i)厚み中心部に集積する溶質量 軽圧下帯をモールドからの経過時間を尺度に第3図の例
のごとく分割し、各ブロックの物質バランスを検討する
。モールドからtj分(モールドからの距離がVctj
mの残溶鋼断面)経過した鋳片断面をj断面とするとj
断面に流入する溶質の成分量は(1)式となる。またモ
ールドからt j+1分経過したj+l断面から流出す
る溶質はj断面からj±1断面の間で(以下jブロック
とする)a固した凝固相と残溶鋼相に含有し、各相の流
出成分量は(2)、(3)式で示すことができる。従っ
て各ブロックの物質バランスは(4)式となる。前ブロ
ックから流出する残溶鋼相中の成分量が次ブロックの流
入成分量となるのでこれらを連結すると、単位時間当た
り厚み中心部に集積する成分量は(5)式で示すことが
できる。
Examination of center segregation formulation model equation 1) Center solute mass determining substance balance equation i) Thickness Divide the solute mass that accumulates at the center of the light pressure zone using the time elapsed from molding as in the example in Figure 3, Examine the material balance of each block. tj minutes from the mold (distance from the mold is Vctj
(m) residual molten steel cross section) If the elapsed slab cross section is j cross section, then j
The amount of solute components flowing into the cross section is expressed by equation (1). In addition, the solute flowing out from the j+l cross section after t j+1 minutes has passed from the mold is contained in the solidified phase a and the residual molten steel phase between the j cross section and j±1 cross section (hereinafter referred to as j block), and the outflow components of each phase are The amount can be expressed by equations (2) and (3). Therefore, the material balance of each block is expressed by equation (4). The amount of components in the residual molten steel phase flowing out from the previous block becomes the amount of components flowing into the next block, so if these are connected, the amount of components accumulated at the center of thickness per unit time can be expressed by equation (5).

ブロック流入成分it(残溶鋼) =ρff1(Vc+Uj)ijl:j  (g/m1n
)   (1)ブロック流出成分量(残溶鋼) = pA  ・(Vc+Uj+1) −5j+1 ・C
j+1 (g/m1n) (2)ブロック流出成分量(
凝固相) 一ρ、l/cSsj−宵汀・Ssj  (g/m1n)
  (3)各ブロックの物質バランス: pH・(Vc+1Ij) ・5j−Cj= CJI ・
(Vc+LIj+1) ・Sj+1・Cj+1+ρ、・
Vc−Ssj −Ce汀 (4)厚み中心部に単位時間
当り集積する成分量:Vc−5e−Ce=(Vc+IJ
、) ・S+ ・C,−M ic・ΣSsj・β5j−
Csj  (g/m1n)  (5)vc :鋳造速度
(Cm/m1n) Uj:残溶鋼流速(Cm/m1n) ρ、:凝固相密度(g/cイ) Sj:j断面残溶鋼面積(C−111)ρl:溶鋼密度
(g/c1B) Ssj:jブロックでの凝固面積(d)M=(ρ、/ρ
1) Cj=j断面残溶鋼相の平均成分濃度 Csj:jブロック凝固相の平均成分濃度βsj:jブ
ロック凝固相の平均固相体積率Ce :偏析的平均成分
濃度 Se :偏析のC断面面積(cTM) 軽圧下との慣例で(5)式を考えるためにはCsj 、
 Ssjの定量化が必要である。そこでまず石Jについ
て検討する。
Block inflow component it (residual molten steel) = ρff1 (Vc + Uj) ijl:j (g/m1n
) (1) Block outflow component amount (residual molten steel) = pA ・(Vc+Uj+1) −5j+1 ・C
j+1 (g/m1n) (2) Block outflow component amount (
Solidification phase) 1ρ, l/cSsj-Yoi-Ssj (g/m1n)
(3) Material balance of each block: pH・(Vc+1Ij)・5j−Cj=CJI・
(Vc+LIj+1) ・Sj+1・Cj+1+ρ,・
Vc-Ssj -Ce 汀 (4) Amount of component accumulated per unit time at the center of thickness: Vc-5e-Ce=(Vc+IJ
,) ・S+ ・C, −M ic・ΣSsj・β5j−
Csj (g/m1n) (5) vc: Casting speed (Cm/m1n) Uj: Residual molten steel flow rate (Cm/m1n) ρ,: Solidification phase density (g/c) Sj: J cross-sectional residual molten steel area (C- 111) ρl: Molten steel density (g/c1B) Ssj: Solidification area in j block (d) M = (ρ, /ρ
1) Cj = j average component concentration of cross-sectional residual molten steel phase Csj: j average component concentration of block solidified phase βsj: j average solid phase volume fraction of block solidified phase Ce: Segregative average component concentration Se: Segregation C cross-sectional area ( cTM) To consider equation (5) using the convention of light pressure, Csj,
Quantification of Ssj is necessary. First, let's consider Ishi J.

1f)jブロック凝固相平均濃度(6丁)■j断面の凝
固相濃度(CsD 軽圧下試験の適正圧下時期やダンベル鋳型によるCu添
加ラボ実験結果に基づくと、濃化溶鋼の集積時期は鋳片
の厚み中心部に固相が発生する凝固末期と推定された中
心偏析は、デンドライト樹間等の濃化溶鋼がデンドライ
ト樹間や分岐デンドライト樹間等の通液抵抗が小さい部
位を流動集積し発生したと考えられる。一方中心偏析の
上下面には第4図のごとく負偏析帯の発生が認められる
1f) Average concentration of solidified phase in j block (6 pieces) ■Concentration of solidified phase in j cross section (CsD Based on the appropriate rolling down period of the light rolling test and the results of the Cu addition laboratory experiment using dumbbell molds, the accumulation period of concentrated molten steel is determined by the slab Center segregation, which is estimated to occur at the end of solidification when a solid phase occurs at the center of the thickness, occurs when concentrated molten steel flows and accumulates in areas with low liquid flow resistance, such as between dendrite trees and branched dendrite trees. On the other hand, negative segregation bands are observed on the upper and lower surfaces of the central segregation, as shown in Figure 4.

この負偏析発生原因を凝固末期における残溶鋼流動によ
るデンドライト樹間の洗浄の結果と考え、デンドライト
樹間洗浄モデルにより凝固末期(凝固収縮流速”io、
049cm/sec、と凝固速度#0.0039cm/
5ea)’について検討すると実効分配係数は約1とな
り中心偏析近傍の負偏析は説明できない。この中心近傍
の負偏析帯の発生原因は前述した著者等のCu添加ラボ
実験結果に基づくと、凝固末期に樹間の濃化溶鋼が凝固
収縮吸引力により厚み中心に持ち去られた痕跡と推定さ
れ、この樹間からの流出濃化溶鋼が中心部集積量に相当
すると考えられ、この濃化溶鋼の中心部集積量は凝固収
縮量が大きいほど多い。これらのことからCsj はデ
ンドライト樹間等を流動する濃化溶鋼量が多い場合はど
小さくなりやすいと推、定され、j断面の凝固相濃度C
sjを(6)式のごとく仮定した。
The cause of this negative segregation is thought to be the result of cleaning between the dendrite trees by the flow of residual molten steel at the final stage of solidification, and the dendrite cleaning model was used to calculate the final stage of solidification (solidification contraction flow rate "io",
049cm/sec, and solidification rate #0.0039cm/
5ea)', the effective partition coefficient becomes approximately 1, and the negative segregation in the vicinity of the central segregation cannot be explained. The cause of this negative segregation zone near the center is estimated to be traces of the concentrated molten steel between the trees being carried away to the thickness center by the suction force of solidification shrinkage at the final stage of solidification, based on the results of the Cu addition laboratory experiment by the authors mentioned above. It is thought that this concentrated molten steel flowing out from between the trees corresponds to the amount accumulated in the center, and the amount of concentrated molten steel accumulated in the center increases as the amount of solidification shrinkage increases. From these facts, it is estimated that Csj tends to become smaller when there is a large amount of concentrated molten steel flowing between dendrite trees, etc., and the solidified phase concentration C at cross section j
sj was assumed as shown in equation (6).

Csj =Aj−Vj +C5jo         
  (6)Vj =Sj−Uj (デンドライト樹間の
通液抵抗が小さい場合成立)       (7) Vj:j断面より下流の凝固収縮速度(cn! / m
 i n )Sj:j断面の残溶鋼面積(、ff1)U
j:j断面での残溶鋼平均流速(C1117m1n)C
sj、 : Uj = Oのj断面凝固相濃度法に従来
得られている知見が(6)式により説明できるかどうか
検討してみる。鋳造速度変更試験による適正圧下時期や
ダンベル鋳型によるCu添加ラボ実験結果によると濃化
溶鋼は鋳片の厚み中心部の固相率が概略0.25〜0.
50の範囲で集積する。この結果に基づくと、厚み中心
固相率が0.2より小さい段階では、たとえ残溶鋼が流
動しても濃化溶鋼は集積せずCsjはC5joとなり(
6)式のAjがゼロに近いと推定される。一方厚み中心
固相率が0.25〜0.50の場合、デンドライト樹間
等の濃化溶鋼は凝固収縮吸引力により流動集積しやす<
Aj は大きいと考えられる。また凝固が進行しデンド
ライト樹間の通液抵抗が大きくなった場合においても濃
化溶鋼は集積せず(6)式のAjがゼロに近いと推定さ
れる。このように凝固時期による濃化溶鋼集積の違いは
(6)式のAjの大きさの差で与えられる。また(6)
式におけるCsj。
Csj =Aj-Vj +C5jo
(6) Vj = Sj - Uj (satisfied when the fluid flow resistance between dendrite trees is small) (7) Vj: Solidification contraction rate downstream of the j cross section (cn! / m
i n ) Sj: Residual molten steel area of j cross section (, ff1) U
j: average flow velocity of residual molten steel at j cross section (C1117m1n) C
Let us examine whether the knowledge conventionally obtained in the j-section solidified phase concentration method of sj, : Uj = O can be explained by equation (6). According to the appropriate reduction timing through casting speed change tests and the results of Cu addition laboratory experiments using dumbbell molds, the solid phase ratio of concentrated molten steel at the center of the thickness of the slab is approximately 0.25 to 0.
Accumulate in the range of 50. Based on this result, when the solid fraction at the center of thickness is less than 0.2, even if the residual molten steel flows, the concentrated molten steel does not accumulate and Csj becomes C5jo (
6) It is estimated that Aj in the equation is close to zero. On the other hand, when the solid fraction at the center of thickness is 0.25 to 0.50, concentrated molten steel such as between dendrites tends to flow and accumulate due to the suction force of solidification contraction.
Aj is considered to be large. Furthermore, even if the solidification progresses and the resistance to liquid flow between the dendrite trees increases, the concentrated molten steel does not accumulate and it is estimated that Aj in equation (6) is close to zero. In this way, the difference in concentrated molten steel accumulation depending on the solidification period is given by the difference in the magnitude of Aj in equation (6). Also (6)
Csj in Eq.

はj断面の残溶鋼の流速がゼロの場合のCsjで、残溶
鋼の流速がゼロの場合実効分配係数は1と考えられるの
で、Csj、はj断面の残溶鋼平均濃度Cj と同一と
なる。このCj は凝固時期が非常に早い場合、バルク
濃度に等しく、濃化溶鋼が集積する凝固末期の場合、比
較的固相率の高いデンドライト樹間溶鋼の平均濃度と推
定される。各凝固時期のCsj、は同一成分系の場合は
ぼ一定と仮定し解析した。なお(6)式におけるVj 
はj断面より下流の凝固収縮速度の総和で後述する。
is Csj when the flow velocity of the residual molten steel in the j cross section is zero. Since the effective distribution coefficient is considered to be 1 when the residual molten steel flow velocity in the j cross section is zero, Csj is the same as the average concentration of residual molten steel in the j cross section Cj. This Cj is estimated to be equal to the bulk concentration when the solidification stage is very early, and is estimated to be the average concentration of the molten steel between dendrites, which has a relatively high solid phase ratio, when the solidification stage is at the final stage when concentrated molten steel accumulates. The analysis was performed on the assumption that Csj at each solidification stage is approximately constant in the case of the same component system. Note that Vj in equation (6)
is the sum of solidification shrinkage speeds downstream of the j cross section, which will be described later.

■jブロック凝固相平均濃度(酊) 以上の検討に基づきjブロックの凝固相平均濃度はブロ
ック入口と出口断面の凝固相濃度の平均とし、(8)式
のごとく仮定した。
■J block average concentration of solidified phase (drunk) Based on the above study, the average solidified phase concentration of J block was assumed to be the average of the solidified phase concentrations at the block entrance and exit cross sections, as shown in equation (8).

C5j=(Csj+Csj+1)/2=((Aj−Vj
+Aj+iVj+1)+(Csjo +Csj+1o)
) / 2     (8)ij ) Ssjの定量化 jブロック内での凝固面積Ssj はj断面とj+1の
未凝固面積の差として算出できる。j断面の未凝固面積
Sj は伝熱計算により算出することが可能で、回帰式
化することによりモールドから経過時間の関数として示
すことができる。
C5j=(Csj+Csj+1)/2=((Aj-Vj
+Aj+iVj+1)+(Csjo +Csj+1o)
) / 2 (8) ij ) Quantification of Ssj The solidified area Ssj within the j block can be calculated as the difference between the j cross section and the unsolidified area of j+1. The unsolidified area Sj of the j cross section can be calculated by heat transfer calculation, and can be expressed as a function of the elapsed time from the mold by using a regression equation.

tv)軽圧下による凝固収縮速度(Vj)の低減軽圧下
がない場合、j断面より下流の単位時間当たりの凝固収
縮量はj断面の残溶鋼平均流速Uj とj断面面積Sj
の積と考えられるので、流動限界固相率を0.7と考え
、j断面より下流の凝固収縮速度は(9)式で示すこと
ができる。
tv) Reduction of solidification shrinkage rate (Vj) due to light reduction When there is no light reduction, the amount of solidification shrinkage per unit time downstream of section j is the average flow velocity of residual molten steel at section j, Uj, and the cross-sectional area of j, Sj.
Since it is considered to be the product of

Vj =Sj −Vc ・tx  (cIIY/!l1
n)        (9)Vc・α=Uj    α
=(ρs   pi!−)/pitρ、=7.3、  
 ρf=7.0  (g/2d)一方略圧下がある場合
、残溶鋼流動の原因となる凝固収縮速度はその一部が軽
圧下による固液界面の移動により少なくなるので(10
)式で示すことができる。
Vj = Sj −Vc ・tx (cIIY/!l1
n) (9) Vc・α=Uj α
=(ρs pi!-)/pitρ, =7.3,
ρf=7.0 (g/2d) On the other hand, when there is a substantial reduction, the solidification shrinkage rate, which causes residual molten steel flow, is partially reduced due to the movement of the solid-liquid interface due to the light reduction (10
) can be shown by the formula.

Vj= (Sj−Vc ・ct−vj)  (d/In
1n)     (10)■j:軽圧下によるj断面よ
り下流の単位時間当たり固液界面移動総体積(cn/m
1n)ここでvjはj断面より下流ロールにより鋳片を
圧下したことにより発生し外単位時間当りの固液界面移
動体積の総和で(11)式で示すことができる(以下実
効圧下体積と略す)。
Vj= (Sj-Vc ・ct-vj) (d/In
1n) (10) ■j: Total solid-liquid interface movement volume per unit time downstream from the j cross section under light pressure (cn/m
1n) Here, vj is the sum of the solid-liquid interface movement volume per unit time, which is generated by rolling down the slab from the j cross-section with downstream rolls, and can be expressed by equation (11) (hereinafter abbreviated as effective rolling volume). ).

vj=(Σ−1・ii・Δhi) ・Vc (cffl
/m1n) (11)i:ロール# Δhi:iロールの圧下量(+nm/ロール)ηi:i
ロールでの圧下効率 wi:iロールでの未凝固幅(mm) 従って軽圧下がある場合、j断面における残溶鋼流動の
原因となる凝固収縮速度は(12)式で示すことができ
る。
vj=(Σ-1・ii・Δhi)・Vc (cffl
/m1n) (11) i: roll # Δhi: i roll reduction amount (+nm/roll) ηi: i
Reduction efficiency with rolls wi: unsolidified width with i rolls (mm) Therefore, when there is a light reduction, the solidification shrinkage rate that causes residual molten steel flow in the j cross section can be expressed by equation (12).

Vj=Sj−Vc ・ct −(Σ−1・ii・Δhi
)l/c(ci!/m1n)    (12) 以上i ) ii) 1ii) iv)の検討結果に基
づき、また(5)式のUj はVcと比べ小さいことが
らUjを省略すると鋳片1m当りの厚み中心に集積する
成分量は(13)式で示すことができ、Csj の値と
して(8)式を採用すると(14)式となる。
Vj=Sj−Vc・ct−(Σ−1・ii・Δhi
)l/c(ci!/m1n) (12) Based on the results of the above i) ii) 1ii) iv), and since Uj in equation (5) is smaller than Vc, if Uj is omitted, then per meter of slab. The amount of components accumulated at the center of the thickness can be expressed by equation (13), and if equation (8) is adopted as the value of Csj, equation (14) is obtained.

5e−Ce−S1・C1−M・ΣSSj・βsj−酊。5e-Ce-S1・C1-M・ΣSSj・βsj-Drunkenness.

+M −ΣSsj・β5j−Tr7vT (57m) 
(13)Se−Ce−S1・C1−M・ΣSSj・Ss
j・(C3jo+Csj+1)/ 2 +M ・ΣSS
j・Ssj・((Aj−Vj +Aj +1 ・Vj 
+1) ) / 2(57m)  (14) (13)、 (14)式において右辺第1項は人口断面
を決めれば定まる値であり右辺第2項は前述したごとく
残溶鋼流動がない場合の各凝固ブロック残溶鋼の濃度と
凝固量の積に相当する値の総和なので定数と考えられ、
右辺第1項と第2項を含め定数となる。この定数を含め
、(12)、 (14)式における各項の係数が決定で
きれば、中心偏析は各ロールによる鋳片の圧下量、ロー
ル配置等の軽圧下条件を与えることにより計算が可能と
なり中心偏析式化モデル式が完成する。(12)、 (
14)式においてSsjやSjおよび未凝固幅(wi)
は伝熱計算により算出することが可能でSsjは凝固の
進行時期や凝固組織が決まれば定まる値となり、1程度
と推定される。また圧下効率(li)は、Δhiの値は
本試験の冷片の圧下挙動より算出した(15)式により
与えることができる。以上の結果によると(14)式に
おいてAj とCsj、が未知のパラメータでありそれ
以外の値は鋳造条件および軽圧下条件が定まれば計算で
求められる。
+M -ΣSsj・β5j-Tr7vT (57m)
(13) Se-Ce-S1・C1-M・ΣSSj・Ss
j・(C3jo+Csj+1)/2 +M・ΣSS
j・Ssj・((Aj−Vj +Aj +1 ・Vj
+1) ) / 2 (57m) (14) In equations (13) and (14), the first term on the right side is a value determined by determining the population cross section, and the second term on the right side is the value obtained when there is no residual molten steel flow as described above. Since it is the sum of the values corresponding to the product of the concentration of the solidified block residual molten steel and the amount of solidified steel, it is considered to be a constant.
It becomes a constant including the first and second terms on the right side. If the coefficients of each term in equations (12) and (14), including this constant, can be determined, center segregation can be calculated by giving light reduction conditions such as the amount of reduction of the slab by each roll and the arrangement of the rolls. The segregation model formula is completed. (12), (
In formula 14), Ssj, Sj and unsolidified width (wi)
can be calculated by heat transfer calculation, and Ssj is a value determined once the solidification progress period and solidification structure are determined, and is estimated to be about 1. Further, the rolling efficiency (li) can be given by equation (15), where the value of Δhi was calculated from the rolling behavior of the cold piece in this test. According to the above results, in equation (14), Aj and Csj are unknown parameters, and the other values can be obtained by calculation once the casting conditions and light reduction conditions are determined.

Δhi=P2/R・(Ki−Bi) 2Ki−Bi =
9.06(j! /Vc) ’・7q4(15)P:ロ
ール反力(kg)  R:ロール半径(1wl)Ki:
iロール位置での鋳片変形抵抗(kg/皿2)Bi:i
ロール位置での鋳片短辺凝固厚(111111)li:
メニスカスからiロールまでの距離(m)ここで、Aj
 を含めた各項の係数および定数は(14)式をあてほ
めの式としく15)式で示されるΔhi と未凝固幅(
wi)圧下効率(li)およびSj(固相率=037で
計算)により計算したVjを用いて、圧下時期を種々変
更した鋳造速度変更試験の結果を重回帰分析することに
よりVj以外の値を評価決定した。なお解析に用いた偏
析は(14)式に示される鋳片1m当りの成分量ではな
く、最大偏析粒径とした。
Δhi=P2/R・(Ki-Bi) 2Ki-Bi=
9.06(j!/Vc) '・7q4(15) P: Roll reaction force (kg) R: Roll radius (1wl) Ki:
Slab deformation resistance at roll position (kg/dish 2) Bi:i
Solidified thickness of slab short side at roll position (111111) li:
The distance from the meniscus to the i-roll (m), where Aj
The coefficients and constants of each term including Δhi and the unsolidified width (
wi) Using Vj calculated from rolling efficiency (li) and Sj (calculated with solid fraction = 037), values other than Vj were calculated by performing multiple regression analysis on the results of casting speed change tests in which the rolling timing was variously changed. The evaluation has been decided. The segregation used in the analysis was not the component amount per meter of slab shown in equation (14), but the maximum segregated grain size.

なお(12)、 (14)式において軽圧下がない場合
(vj = O)の中心部への成分集積量は(16)式
となる。
Note that in equations (12) and (14), when there is no light reduction (vj = O), the amount of component accumulation at the center is expressed as equation (16).

Se −Ce=S、−C,−M−ΣSsj・Ssj ・
(Csjo+Csj+1o)/2+M・ΣSs゛・s”
   A’S’十八°+へ・針上u−vc・−色L7虚
       (16)ここで各ブロックのM−Ssj
・Ssj・ ((Aj−Sj+Aj+1・Sj+1)・
α)/2(16式の下線)が軽圧下が無い場合のブロッ
クの成分集積量となる。この値をブロック時間で割った
値(以下偏析凝集指標と略す)は軽圧下がない場合の単
位鋳造速度、jブロック単位時間当たりの成分集積量で
、(工4)式における未知のパラメータ(AjとCsj
 o)が決定できれば偏析凝集指標の大小によって各凝
固時期における偏析凝集程度も評価できる。
Se −Ce=S, −C, −M−ΣSsj・Ssj・
(Csjo+Csj+1o)/2+M・ΣSs゛・s”
A'S' 18° + to needle top u-vc - color L7 imaginary (16) Here M-Ssj of each block
・Ssj・ ((Aj−Sj+Aj+1・Sj+1)・
α)/2 (underlined in formula 16) is the component accumulation amount of the block when there is no light reduction. The value obtained by dividing this value by the block time (hereinafter abbreviated as the segregation agglomeration index) is the unit casting speed in the absence of light reduction, the amount of component accumulation per block unit time, and the unknown parameter (Aj and Csj
If o) can be determined, the degree of segregation and aggregation at each solidification stage can also be evaluated based on the magnitude of the segregation and aggregation index.

2)分割方法の適正化と係数の決定 あてはめの式を(14)式として鋳造速度変更試験結果
を重回帰分析することにより、圧下帯の分割方法と(1
4)式における各項の係数の以下に算出した。
2) Optimizing the division method and determining the coefficients By performing multiple regression analysis on the casting speed change test results using equation (14) as the fitting formula, we determined the division method of the rolling zone and (1)
4) The coefficients of each term in the formula were calculated as follows.

i)圧下範囲の適正な分割方法 分割方法が濃化溶鋼の集積の実態に適合した場合、実測
最大偏析粒径と重回帰により得られた予測最大偏析粒径
の相関係数は最大になると考えられるので、分割方法は
最大偏析粒の実測値と予測値の相関係数が最大となるよ
う選択し、結果を表2に示す。表2の結果に基づくと、
最大偏析粒径は(17)式で示すことができる。(17
)式により計算した最大偏析粒径は後述(第5図)する
ごとく、実測の最大偏析粒径と非常に良く一致してい+
0.07078V30.S+0.15485Vff4 
 (17)Vj=Sj 4c・α−(Σ賀i・li・Δ
hi)l/cVc (am/m1n) ここで、■の添え字:モールドからの経過時間(win
)E:厚み中心固相率0.7まで要 した時間(分) 3)圧下刃、ロール配置、鋳造速度等と偏析の関係 (17)式において圧下帯下流ロールによる圧下はそれ
よりも上流の残溶鋼流動にも影響をおよぼしており偏析
をロール毎の圧下量やロール配置等との関係式として示
すためにはVjからVcO項を分離しく18)式のごと
く変形した方が便利であり、またモールドからの経過時
間を凝固の進行状況を示す鋳片の厚み中心固相率で示す
ことにより普遍化できる。(18)、 (15)、 (
19)式を組合せることにより中心偏析と鋳造速度、圧
下刃、ロール配置など軽圧下設備条件との関係を定式化
することができ、種々の軽圧下条件における偏析の計算
が可能になった。
i) Appropriate method of dividing the reduction range If the dividing method is suitable for the actual situation of accumulation of concentrated molten steel, it is thought that the correlation coefficient between the measured maximum segregated grain size and the predicted maximum segregated grain size obtained by multiple regression will be maximum. Therefore, the dividing method was selected to maximize the correlation coefficient between the measured value and the predicted value of the maximum segregated grains, and the results are shown in Table 2. Based on the results in Table 2,
The maximum segregated grain size can be expressed by equation (17). (17
) The maximum segregated grain size calculated using the formula (Figure 5) is in very good agreement with the measured maximum segregated grain size, as described later (Figure 5).
0.07078V30. S+0.15485Vff4
(17) Vj=Sj 4c・α−(Σgai・li・Δ
hi) l/cVc (am/m1n) Here, the subscript of ■: elapsed time from the mold (win
) E: Time required to reach thickness center solid fraction of 0.7 (minutes) 3) Relationship between reduction blade, roll arrangement, casting speed, etc. and segregation In equation (17), the reduction by the downstream roll of the reduction zone is the It also affects the flow of residual molten steel, and in order to express segregation as a relational expression with the reduction amount of each roll, roll arrangement, etc., it is convenient to separate the VcO term from Vj and transform it as shown in Equation 18). Furthermore, it can be generalized by showing the solid phase percentage at the center of thickness of the slab, which indicates the progress of solidification of the time elapsed from the molding. (18), (15), (
By combining Equations 19), it was possible to formulate the relationship between center segregation and light reduction equipment conditions such as casting speed, reduction blade, roll arrangement, etc., and it became possible to calculate segregation under various light reduction conditions.

最大偏析粒径= −29,311+0.87617 ・
Vc −(1,767・10−” ・vj = (Σ−
1・wi・Δhi)Vc  Vc(cm/m1n)ここ
で、■の添え字:鋳片の中心固相率(fcj)vj :
vの上下fcj間の実効圧下体積(ctl / m i
 n )wi:未凝固幅(C11)、ηi:圧下効率、
Δhintロール圧下量(C111)、i:ロールN。
Maximum segregated grain size = -29,311+0.87617 ・
Vc −(1,767・10−” ・vj = (Σ−
1・wi・Δhi)Vc Vc (cm/m1n) Here, the subscript ■: Central solid fraction of slab (fcj) vj:
Effective reduction volume between the upper and lower fcj of v (ctl/m i
n) wi: Unsolidified width (C11), ηi: Rolling efficiency,
Δhint Roll reduction amount (C111), i: Roll N.

ここでΔhiは前述した(15)式で、j2i/Vcは
モールドからの経過時間である。
Here, Δhi is the equation (15) described above, and j2i/Vc is the elapsed time from the molding.

Δh i = P i ” / Ri・(Ki−Bi)
”なおK1−B1 =9.06 (l i/Vc) ”
 ”’     (15)Pi :各ロールの反力(k
g) R1:各ロールの半径(−) Ki:iロール位置での鋳片変形抵抗(kg/mm”)
Bi:iロール位置での鋳片短辺凝固厚(lllffl
)21 :メニスカスからiロールまでの距離(m)l
 i =Lr+(N−Nr) ・Rp        
  (19)Lr :メニスカスから軽圧下開始ロール
までの距離(m) Nr :軽圧下開始ロールNO N:軽圧下ロールのN。
Δh i = P i ” / Ri・(Ki-Bi)
"K1-B1 = 9.06 (l i/Vc)"
”' (15) Pi: Reaction force of each roll (k
g) R1: Radius of each roll (-) Ki: Slab deformation resistance at i roll position (kg/mm")
Bi: Solidified thickness of slab short side at i roll position (llffl
)21: Distance from meniscus to i-roll (m)l
i = Lr + (N-Nr) ・Rp
(19) Lr: Distance from the meniscus to the light reduction start roll (m) Nr: Light reduction start roll NO N: N of the light reduction roll.

Rp:ロールピッチ(m) メニスカスから各ロールまでの距離21はロールビンチ
をRpとすると(19)式となる。式(18)の中心偏
析定式化モデル式を用いて鋳造速度変更試験における最
大偏析粒径と鋳造速度の関係を計算した結果を実測デー
タと比べ第5図に示す。計算値と実測値は非常に良く一
致していることが分る。
Rp: Roll pitch (m) The distance 21 from the meniscus to each roll is expressed by equation (19), where Rp is the roll pitch. The relationship between the maximum segregated grain size and the casting speed in the casting speed change test was calculated using the center segregation formulation model equation (18), and the results are shown in FIG. 5 in comparison with the measured data. It can be seen that the calculated values and the measured values match very well.

4)各凝固時期のAj と濃化溶鋼の集積時期(エフ)
式における各項の係数を用いて前述したAjおよび偏析
凝集指標を算出した。ここでAjは前述したごとく大き
いほど偏析しやすく (実行分配係数小)、また偏析凝
集指標は大きいほど単位時間当りの濃化溶鋼の凝集量が
多い。Aj と鋳片厚み中心固相率(以下fscと略す
)の関係を第6図に示し、偏析凝集指標とfscの関係
を第7図に示す。Aj は凝固が進行するにつれしだい
に増大する傾向が認められるがAjの挙動変動の理由に
ついては今後検討が必要である。一方偏析凝集指標は厚
み中心固相率(fsc)が0.35前後で非常に大きい
。fscが0.35より小さいか、大きい場合、偏析凝
集指標は小さく fscが0.35の場合の1/20程
度となり、濃化溶鋼の集積が激しい凝固時期は比較的狭
いことが推定される。厚み中心固相率(fsc)が0.
35以下の場合の偏析凝集指標が小さい理由は残溶鋼が
比較的低固相率部位を流動するため濃化程度の激しい高
固相率デンドライト樹間の濃化溶鋼の流動集積が少ない
ためと考えられる。
4) Aj of each solidification period and accumulation period of concentrated molten steel (F)
Aj and the segregation aggregation index described above were calculated using the coefficients of each term in the equation. Here, as mentioned above, the larger Aj is, the easier it is to segregate (the effective distribution coefficient is smaller), and the larger the segregation aggregation index is, the larger the amount of agglomeration of concentrated molten steel per unit time is. The relationship between Aj and the solid fraction at the center of slab thickness (hereinafter abbreviated as fsc) is shown in FIG. 6, and the relationship between the segregation agglomeration index and fsc is shown in FIG. It is recognized that Aj tends to gradually increase as solidification progresses, but the reason for the change in behavior of Aj needs to be investigated in the future. On the other hand, the segregation aggregation index is very large, with a thickness center solid fraction (fsc) of around 0.35. When fsc is smaller or larger than 0.35, the segregation agglomeration index is small and is about 1/20 of that when fsc is 0.35, and it is estimated that the solidification period when concentrated molten steel is intensely accumulated is relatively narrow. Thickness center solid fraction (fsc) is 0.
The reason why the segregation agglomeration index is small when it is 35 or less is thought to be because the residual molten steel flows through areas with a relatively low solid fraction, so there is little flow accumulation of concentrated molten steel between the high solid fraction dendrite trees where the degree of concentration is severe. It will be done.

またfscが0.35より大きい場合の偏析凝集指標が
小さい理由は凝固の進行につれてブロック内の凝固量が
少なくなることと、またデンドライト樹間の通液抵抗が
増大するためと考えられる。
Moreover, the reason why the segregation aggregation index is small when fsc is larger than 0.35 is thought to be because the amount of solidification within the block decreases as solidification progresses, and also because the liquid flow resistance between dendrite trees increases.

以上において、鋳片の中心固相率が0.25から0.5
0となるときに、行う圧下処理としては、該鋳片の中心
固相率が増大する圧下帯の下流に行くに従って圧下力値
を増大し、該鋳片を一定の圧下率で圧下すればよい。例
えば、鋳片がモールドのメニスカスから各圧下ロールま
でに要した時間に応じて該各圧下ロールの圧下力値を増
大したり、該鋳片がモールドのメニスカスから各圧下ロ
ールまでの位置に応じて各圧下ロールの圧力値を増大す
るように構成することができる。
In the above, the central solid fraction of the slab is 0.25 to 0.5
0, the rolling reduction treatment to be carried out is to increase the rolling force value toward the downstream of the rolling zone where the center solid fraction of the slab increases, and to roll the slab at a constant rolling rate. . For example, the rolling force value of each rolling roll may be increased depending on the time required for the slab to reach each rolling roll from the meniscus of the mold, or the rolling force value of each rolling roll may be increased depending on the position of the slab from the meniscus of the mold to each rolling roll. It can be configured to increase the pressure value of each reduction roll.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように、本発明に係る連続鋳造方法は、
鋳片の中心固相率が0.2から0.5となるときに、該
鋳片に対する圧下処理を行うようにすることによって、
連続鋳造鋳片の厚み中心部にみられる不純物元素の偏析
を防止して均質な金属を得ることができる。
As detailed above, the continuous casting method according to the present invention includes:
By performing the reduction treatment on the slab when the central solid fraction of the slab is from 0.2 to 0.5,
A homogeneous metal can be obtained by preventing the segregation of impurity elements found in the center of the thickness of continuously cast slabs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る連続鋳造方法が適用される連鋳機
の一例を示す図、 第2図は鋳片における偏析と鋳造速度との関係を示す図
、 第3図は連鋳機における軽圧下帯の分割方法を説明する
ための図、 第4図は鋳片の厚み中心部周辺の負偏析を示す図、 第5図は鋳片における計算最大偏析粒径と鋳造速度との
関係を示す図、 第6図はパラメータAj と鋳片の凝固時期との関係を
示す図、 第7図は鋳片における濃化溶鋼の集積時期を示す図であ
る。 (符号の説明) 1・・・取鍋、       2・・・タンディシュ、
3・・・モールド、 11・・・スライディングノズル、 21・・・ストッパ。
Fig. 1 is a diagram showing an example of a continuous casting machine to which the continuous casting method according to the present invention is applied, Fig. 2 is a diagram showing the relationship between segregation in slabs and casting speed, and Fig. 3 is a diagram showing an example of a continuous casting machine to which the continuous casting method according to the present invention is applied. Figure 4 shows the negative segregation around the center of the thickness of the slab. Figure 5 shows the relationship between the calculated maximum segregated grain size and casting speed in the slab. FIG. 6 is a diagram showing the relationship between the parameter Aj and the time of solidification of the slab, and FIG. 7 is a diagram showing the time of accumulation of concentrated molten steel in the slab. (Explanation of symbols) 1...Ladle, 2...Tandish,
3...Mold, 11...Sliding nozzle, 21...Stopper.

Claims (5)

【特許請求の範囲】[Claims] 1.鋳片を連続的に引き抜く溶融金属の連続鋳造方法で
あって、前記鋳片の中心固相率が0.25から0.50
となるときに、該鋳片に対する圧下処理を行うようにし
たことを特徴とする連続鋳造方法。
1. A method for continuous casting of molten metal in which a slab is continuously drawn out, wherein the central solid fraction of the slab is from 0.25 to 0.50.
A continuous casting method characterized in that, when the slab is rolled, the slab is subjected to a reduction treatment.
2.前記鋳片に対する圧下処理は、該鋳片の中心固相率
が約0.35となるときに行うようにした請求項第1項
に記載の連続鋳造方法。
2. 2. The continuous casting method according to claim 1, wherein the reduction treatment of the slab is performed when the central solid fraction of the slab is about 0.35.
3.前記鋳片に対する圧下処理は、該鋳片の中心固相率
が増大する圧下帯の下流に行くに従って圧下力値を増大
し、該鋳片を一定の圧下率で圧下処理するようになって
いる請求項第1項に記載の連続鋳造方法。
3. The rolling process for the slab is performed by increasing the rolling force value toward the downstream of the rolling zone where the central solid fraction of the slab increases, and rolling the slab at a constant rolling rate. The continuous casting method according to claim 1.
4.前記鋳片に対する圧下処理は、該鋳片がモールドの
メニスカスから各圧下ロールまでに要した時間に応じて
該各圧下ロールの圧下力値を増大するようにした請求項
第3項に記載の連続鋳造方法。
4. 4. The continuous rolling method according to claim 3, wherein the rolling process for the slab is performed such that the rolling force value of each rolling roll is increased in accordance with the time required for the slab from the meniscus of the mold to each rolling roll. Casting method.
5.前記鋳片に対する圧下処理は、該鋳片がモールドの
メニスカスから各圧下ロールまでの位置に応じて該各圧
下ロールの圧下力値を増大するようにした請求項第3項
に記載の連続鋳造方法。
5. The continuous casting method according to claim 3, wherein the rolling process for the slab is performed by increasing the rolling force value of each rolling roll according to the position of the slab from the meniscus of the mold to each rolling roll. .
JP1120295A 1989-05-16 1989-05-16 Continuous casting method Expired - Lifetime JPH0669606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120295A JPH0669606B2 (en) 1989-05-16 1989-05-16 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120295A JPH0669606B2 (en) 1989-05-16 1989-05-16 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH02299754A true JPH02299754A (en) 1990-12-12
JPH0669606B2 JPH0669606B2 (en) 1994-09-07

Family

ID=14782704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120295A Expired - Lifetime JPH0669606B2 (en) 1989-05-16 1989-05-16 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH0669606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279265A (en) * 1991-03-08 1992-10-05 Nippon Steel Corp Continuous casting method
JPH04309446A (en) * 1991-04-09 1992-11-02 Nippon Steel Corp Continuous casting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158554A (en) * 1985-12-30 1987-07-14 Nippon Steel Corp Continuous casting method
JPS62275556A (en) * 1985-08-03 1987-11-30 Nippon Steel Corp Continuous casting method
JPS6363561A (en) * 1986-09-04 1988-03-19 Nippon Steel Corp Continuous casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275556A (en) * 1985-08-03 1987-11-30 Nippon Steel Corp Continuous casting method
JPS62158554A (en) * 1985-12-30 1987-07-14 Nippon Steel Corp Continuous casting method
JPS6363561A (en) * 1986-09-04 1988-03-19 Nippon Steel Corp Continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279265A (en) * 1991-03-08 1992-10-05 Nippon Steel Corp Continuous casting method
JPH04309446A (en) * 1991-04-09 1992-11-02 Nippon Steel Corp Continuous casting method

Also Published As

Publication number Publication date
JPH0669606B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Tzavaras et al. Electromagnetic stirring and continuous casting—Achievements, problems, and goals
JP2727205B2 (en) Method for improving segregation of continuous cast slab
JP3383647B2 (en) Continuous cast billet and method of manufacturing the same
JP3401785B2 (en) Cooling method of slab in continuous casting
JPH02299754A (en) Continuous casting method
JP3119203B2 (en) Unsolidified rolling method of slab
JP2001259810A (en) Continuous casting method
JP3671872B2 (en) Continuous casting method of steel
Isaev Effectiveness of using large cooling elements to alleviate axial segregation in continuous-cast ingots
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JPH0628789B2 (en) Continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPS61119360A (en) Continuous casting method of steel
Zhang et al. Taper barrel rheomoulding process for semi-solid slurry preparation and microstructure evolution of A356 aluminum alloy
CN221675761U (en) An electromagnetic stirring system for thick slab continuous casting machine
KR840001298B1 (en) Continuous casting method of cast steel product
JPH0390263A (en) Continuous casting method
JPH01162551A (en) Method for continuously casting round shape billet
JP2001259809A (en) Continuous casting method
JP3463556B2 (en) Manufacturing method of round billet slab by continuous casting
JPH0390259A (en) Continuous casting method
JPH10146651A (en) Manufacturing method of round billet slab by continuous casting
JPH05185183A (en) Continuous casting method for steel
JP3395717B2 (en) Continuous casting method
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 15