[go: up one dir, main page]

JPH0666290B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0666290B2
JPH0666290B2 JP62336009A JP33600987A JPH0666290B2 JP H0666290 B2 JPH0666290 B2 JP H0666290B2 JP 62336009 A JP62336009 A JP 62336009A JP 33600987 A JP33600987 A JP 33600987A JP H0666290 B2 JPH0666290 B2 JP H0666290B2
Authority
JP
Japan
Prior art keywords
resist
layer
electrode
pattern
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62336009A
Other languages
Japanese (ja)
Other versions
JPH01175729A (en
Inventor
紳一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62336009A priority Critical patent/JPH0666290B2/en
Publication of JPH01175729A publication Critical patent/JPH01175729A/en
Publication of JPH0666290B2 publication Critical patent/JPH0666290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に電極を形成
する方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an electrode.

〔従来の技術〕[Conventional technology]

近年、半導体装置の微細化、高集積化に伴ない、配線の
微細化も急激に進展している。従って、配線の微細化に
より耐マイグレーション性をはじめとする信頼度の問題
がクローズアップされてきている。この点に関し、従来
のAl、又はAl系合金に対し、許容電流密度が大きく信頼
度が高いAu電極構造が改めて注目されている。
In recent years, along with the miniaturization and high integration of semiconductor devices, miniaturization of wiring has been rapidly progressing. Therefore, due to the miniaturization of wiring, reliability issues such as migration resistance have been highlighted. In this regard, an Au electrode structure having a large allowable current density and a high reliability is renewed attention as compared with the conventional Al or Al-based alloy.

Au電極構造の形式方法の一例を第3図に示す。まず、ウ
ェハー基板31上の絶縁膜32に例えばTi−Pt膜33を成膜
し、レジスト34を塗布する(第3図(a))。レジスト
を塗布、現像し、電極パターンを開口する(第3図
(b))。次にレジスト34をマスクとし、Ti−Pt層33を
電導パスとして、Auメッキ層35を形成する(第3図
(c))。しかる後、レジスト34を除去し、イオンミリ
ング法等によりTi−Pt層33をエッチングして電極が完成
する(第3図(d))。
An example of the formal method of the Au electrode structure is shown in FIG. First, for example, a Ti-Pt film 33 is formed on the insulating film 32 on the wafer substrate 31, and a resist 34 is applied (FIG. 3 (a)). A resist is applied and developed to open an electrode pattern (FIG. 3 (b)). Next, using the resist 34 as a mask and the Ti-Pt layer 33 as a conductive path, an Au plating layer 35 is formed (FIG. 3C). After that, the resist 34 is removed, and the Ti-Pt layer 33 is etched by an ion milling method or the like to complete the electrode (FIG. 3 (d)).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来の方法によるAu電極形成法では次の
ような欠点がある。即ち、第3図(b)で示すように、
所望の電極幅W1、電極間隔S1に対し、実際のAu電極ので
き上りは、第3図(d)に示すように各々W2、S2とな
り、電極幅は広がり、間隔は狭くなることになる。従っ
て、金属のエッチングにおいて、Auメッキ層の厚みをh
とすると、アスペクト比(深さと幅の比)の設計値h/
S1に対し実際ではh/S2となり増大するため、一般にエ
ッチングが困難となり、金属残りが生じやすく、電極間
ショート不良を起こすことになる。このことは微細化が
進み電極幅W、間隔Sが小さくなる一方、電流密度を維
持するためAuメッキ厚を大きくする必要があるためアス
ペクト比h/Sが更に大きくなり、一層エッチングの困
難さを増大させることになってしまう。
However, the conventional Au electrode forming method has the following drawbacks. That is, as shown in FIG. 3 (b),
For the desired electrode width W 1 and electrode spacing S 1 , the actual Au electrode production is W 2 and S 2 , respectively, as shown in FIG. 3 (d), and the electrode width widens and the spacing narrows. It will be. Therefore, in metal etching, the thickness of the Au plating layer should be h
Then, the design value of the aspect ratio (ratio of depth and width) h /
In practice, since h / S 2 increases with respect to S 1 , etching becomes difficult in general, and metal residue is likely to occur, resulting in a short circuit between electrodes. This means that as the miniaturization progresses and the electrode width W and the interval S become smaller, the aspect ratio h / S becomes even larger because the Au plating thickness needs to be made larger in order to maintain the current density, which makes etching more difficult. It will be increased.

また、従来の方法では、第4図のように二層配線に適用
した場合、電極44が逆テーパ状のため、層間絶縁膜45の
カバレジ(段差被覆度)を悪化させ、二層めの金属46を
積層した時、矢印で示すように薄くなり、ひいては配線
の断線を生じてしまい、信頼度上大きな問題となる。
Further, in the conventional method, when applied to a two-layer wiring as shown in FIG. 4, since the electrode 44 has an inverse taper shape, the coverage (step coverage) of the interlayer insulating film 45 is deteriorated and the second layer metal is formed. When 46 is laminated, it becomes thin as shown by the arrow, which eventually causes disconnection of wiring, which is a serious problem in reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板上に少な
くとも一層の金属膜を成膜する工程と、前記金属膜上に
上辺が下辺より長い断面形状をもつレジストパターンを
形成する工程と、前記レジストパターンをマスクして下
辺が上辺より長い断面形状を持つメッキ電極を形成する
工程とを含むことを特徴とする。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming at least one layer of a metal film on a semiconductor substrate, a step of forming a resist pattern on the metal film having a cross-sectional shape in which an upper side is longer than a lower side, and the resist Masking the pattern to form a plated electrode having a cross-sectional shape in which the lower side is longer than the upper side.

〔実施例〕〔Example〕

本発明の一実施例を第1図を用いて説明する。ウェハー
基板1上の絶縁膜2に例えば、Ti−Pt膜3をスパッタ等
により成長した後、ポジレジスト4を塗布する。ポジレ
ジストの厚さとしては、Auメッキ厚を考慮して、それよ
り厚くするのが望ましいが、あまり厚くすると微細パタ
ーン形成が困難であるため、1〜1.5μがよい(第1図
(a))。次に紫外光によりマスク(又はレチクル)上
のパターン5をレジストに転写する(第1図(b))。
この後、例えば、アンモニアガスを含む雰囲気の下でベ
ークした後、遠紫外光で全面照射する(第1図
(c))。通常のポジレジスト用現像液にて現像を行う
とレジストの断面は逆テーパ形状となり、Auメッキを行
うとレジストパターンの反転の金パターン6が得られる
(第1図(d))。レジスト4を除去後、イオンミリン
グ法等にて下地のTi−Pt層をエッチングすると所望の電
極パターン6′が得られる(第1図(e))。
An embodiment of the present invention will be described with reference to FIG. For example, a Ti-Pt film 3 is grown on the insulating film 2 on the wafer substrate 1 by sputtering or the like, and then a positive resist 4 is applied. It is desirable that the thickness of the positive resist is thicker in consideration of the Au plating thickness, but if it is too thick, it is difficult to form a fine pattern, so 1 to 1.5 μ is preferable (FIG. 1 (a)). ). Next, the pattern 5 on the mask (or reticle) is transferred to the resist by ultraviolet light (FIG. 1 (b)).
After that, for example, after baking in an atmosphere containing ammonia gas, the whole surface is irradiated with far-ultraviolet light (FIG. 1 (c)). When the resist is developed with an ordinary positive resist developer, the cross section of the resist becomes an inverse taper shape, and when Au plating is performed, a gold pattern 6 which is the reverse of the resist pattern is obtained (FIG. 1 (d)). After removing the resist 4, the underlying Ti-Pt layer is etched by ion milling or the like to obtain a desired electrode pattern 6 '(FIG. 1 (e)).

この方法により形成した電極7上に層間絶縁膜8を成長
すると、従来のと異なる正方向のテーパがついている
為、オーバハングを生じることはない。従って、第2層
目の金属を積層しても、クラック等が生ぜず、安定で信
頼度の高い多層配線が実現できる(第1図(f))。
When the interlayer insulating film 8 is grown on the electrode 7 formed by this method, an overhang does not occur because the taper in the positive direction different from the conventional one is attached. Therefore, even if the metal of the second layer is laminated, cracks and the like do not occur, and stable and highly reliable multilayer wiring can be realized (FIG. 1 (f)).

本実施例では紫外光に対し高感度のポジ型レジストを使
用した場合を示したが、無論これに限ることなく遠紫外
光〜X線に至るまで同様に高感度を有するポジ型レジス
トを用いることで充分対応することができる。
In this embodiment, the case where a positive resist having high sensitivity to ultraviolet light is used is shown, but of course, the present invention is not limited to this, and a positive resist having high sensitivity from far ultraviolet light to X-rays is also used. Will be sufficient.

次に、他の実施例を第2図を用いて説明する。ウエハー
基板11上の絶縁膜12に例えばTi−Pt膜13を積層し、吸収
の大きいネガレジスト14を塗布する。ここでレジスト14
はやはり1〜1.5μ厚がよい(第2図(a))。この
後、紫外光を照射しマスクパターン15を転写する(第2
図(b))。更に、ネガレジスト用現像液にて現像し、
マスクパターン15を形成した後、Auメッキを行いAuメッ
キパターン16を形成する(第2図(c))。しかる後、
レジスト14を除去し、イオンシリング法等でTi−Pt層13
をエッチングすると、所望の電極パターン16′が実現で
きる。(第2図(d))。
Next, another embodiment will be described with reference to FIG. For example, a Ti-Pt film 13 is laminated on the insulating film 12 on the wafer substrate 11, and a negative resist 14 having a large absorption is applied. Resist here 14
Is still preferably 1 to 1.5 μm thick (FIG. 2 (a)). After that, ultraviolet light is irradiated to transfer the mask pattern 15 (second
Figure (b)). Further, develop with a negative resist developer,
After forming the mask pattern 15, Au plating is performed to form an Au plating pattern 16 (FIG. 2 (c)). After that,
The resist 14 is removed, and the Ti-Pt layer 13 is formed by an ion silling method or the like.
By etching, the desired electrode pattern 16 'can be realized. (FIG. 2 (d)).

本実施例でも、前述の実施例と同様、テーパのついた電
極パターンができるから多層配線でも同様の効果が期待
できる。
Also in this embodiment, similar to the above-described embodiments, a tapered electrode pattern can be formed, so that the same effect can be expected in a multilayer wiring.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明はポジ型レジストへの反転現
像処理(イメージリバーサルプロセス)又は吸収の大き
いネガ型レジストを使用することにより、テーパを有す
るAuメッキ層が形成できるから (i) 設計寸法の電極幅W1、間隔S1に対し、出来上り
寸法を各々W2,S2とすると従来ではS2<S1であるのに対
し本発明ではS2>S1となるからAuメッキ層hに対するア
スペクト比h/S2は緩和されドライエッチでのメタル残
り等の不良を解消でき、微細化に容易に対応できる。
As described above, according to the present invention, the Au plating layer having a taper can be formed by using the reverse development processing (image reversal process) for the positive type resist or the use of the negative type resist having large absorption. (I) Design dimension electrode width W 1 of, relative spacing S 1, each W 2 the finished size, S 2 to the the conventional S 2 <the present invention whereas a S 1 S 2> from the S 1 Au plating layer h Since the aspect ratio h / S 2 is relaxed, defects such as metal residue in dry etching can be eliminated, and miniaturization can be easily dealt with.

(ii) また、断面形状がテーパ状であるため多層配線
構造においても層間絶縁膜のカバレジを良好に保てる
為、上層の配線金属も良好な形状となって配線の断線等
のない信頼度の配線構造が実現できる。
(Ii) In addition, since the cross-sectional shape is tapered, the coverage of the interlayer insulating film can be maintained well even in the multilayer wiring structure, so that the wiring metal in the upper layer also has a good shape, and the wiring has no reliability such as wiring disconnection. The structure can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す断面図、第2図は他の
実施例を示す断面図、第3図は従来の製造方法の断面
図、第4図は第3図の工程を用いた二層配線を示す断面
図である。 1,11,31,41……ウェハー基板、2,12,32,42……絶縁層、
3,13,33,43……下地金属である例えばTi−Pt層、4,34…
…ポジレジスト、14……ネガレジスト、15……開口部、
5,17……露光部、6,6′,7,16,16′,35,44……Auメッキ
層、8,45……層間絶縁膜、9,46……第二層目の配線金
属。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment, FIG. 3 is a sectional view of a conventional manufacturing method, and FIG. 4 shows the process of FIG. It is sectional drawing which shows the two-layer wiring used. 1,11,31,41 …… Wafer substrate, 2,12,32,42 …… Insulating layer,
3,13,33,43 ... Base metal such as Ti-Pt layer, 4,34 ...
… Positive resist, 14 …… Negative resist, 15 …… Opening part,
5,17 …… Exposure part, 6,6 ′, 7,16,16 ′, 35,44 …… Au plating layer, 8,45 …… Interlayer insulating film, 9,46 …… Second layer wiring metal .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に少なくとも一層の金属膜を
成膜する工程と、前記金属膜上に上辺が下辺より長い断
面形状をもつレジストパターンを形成する工程と、前記
レジストパターンをマスクして下辺が上辺より長い断面
形状をもつメッキ電極を形成する工程とを含むことを特
徴とする半導体装置の形成方法。
1. A step of forming at least one layer of a metal film on a semiconductor substrate, a step of forming a resist pattern having a cross-sectional shape in which an upper side is longer than a lower side on the metal film, and the resist pattern is masked. And a step of forming a plated electrode having a cross-sectional shape in which the lower side is longer than the upper side.
JP62336009A 1987-12-29 1987-12-29 Method for manufacturing semiconductor device Expired - Lifetime JPH0666290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336009A JPH0666290B2 (en) 1987-12-29 1987-12-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336009A JPH0666290B2 (en) 1987-12-29 1987-12-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01175729A JPH01175729A (en) 1989-07-12
JPH0666290B2 true JPH0666290B2 (en) 1994-08-24

Family

ID=18294749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336009A Expired - Lifetime JPH0666290B2 (en) 1987-12-29 1987-12-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0666290B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066522B2 (en) * 1998-07-22 2008-03-26 イビデン株式会社 Printed wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2645081C2 (en) * 1975-12-31 1985-10-03 International Business Machines Corp., Armonk, N.Y. Method of making a thin film structure
JPS5553443A (en) * 1978-10-16 1980-04-18 Mitsubishi Electric Corp Formation of electrode of semiconductor device

Also Published As

Publication number Publication date
JPH01175729A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JPH0226392B2 (en)
JPS59197139A (en) Method of treating integrated circuit
US4963512A (en) Method for forming conductor layers and method for fabricating multilayer substrates
JP2806370B2 (en) Pattern formation method
JPH0666290B2 (en) Method for manufacturing semiconductor device
JP3703455B2 (en) Formation method of double-layer bump
JPH0750694B2 (en) Conductive layer formation method
JPS59205735A (en) Manufacture of semiconductor device
JPH0612789B2 (en) Semiconductor device
JP2000077414A (en) Method for manufacturing semiconductor device
JPS62195125A (en) Formation of fine pattern
JPS5827664B2 (en) Method for manufacturing a device with a flat surface
US6586325B2 (en) Process for making an electronic device having a multilevel structure
JPH05243217A (en) Manufacture of semiconductor device
JPS5976447A (en) Multi-layer wiring method
JPS5867043A (en) Manufacture of semiconductor device
JPS5966150A (en) Semiconductor device and manufacture thereof
JPS59213131A (en) Manufacture of x-ray exposing mask
JPH0228324A (en) Manufacture of semiconductor device
JPH11186262A (en) Manufacture of semiconductor device
JPH02133939A (en) Formation of multilayer interconnection
JPH0143476B2 (en)
JPS6046049A (en) Manufacture of semiconductor device
JPH08107279A (en) Wiring board manufacturing method
JPS61245585A (en) Manufacture of josephson junction element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14