JPH0666259B2 - Method for producing hard carbon coating film - Google Patents
Method for producing hard carbon coating filmInfo
- Publication number
- JPH0666259B2 JPH0666259B2 JP59058757A JP5875784A JPH0666259B2 JP H0666259 B2 JPH0666259 B2 JP H0666259B2 JP 59058757 A JP59058757 A JP 59058757A JP 5875784 A JP5875784 A JP 5875784A JP H0666259 B2 JPH0666259 B2 JP H0666259B2
- Authority
- JP
- Japan
- Prior art keywords
- ion beam
- coating film
- substrate
- hard carbon
- carbon coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02115—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/28—Deposition of only one other non-metal element
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/04—Diamond
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、あらゆる分野において耐環境性にすぐれた被
覆膜を提供し、特に半導体産業においては高絶縁性・高
熱伝導性を生かし信頼性の高い被覆膜として利用される
硬質炭素被覆膜の製造方法に関する。TECHNICAL FIELD The present invention provides a coating film having excellent environment resistance in all fields, and particularly in the semiconductor industry, it has high reliability due to its high insulation and high thermal conductivity. The present invention relates to a method for producing a hard carbon coating film used as a coating film.
従来例の構成とその問題点 近年、耐環境性にすぐれた被覆膜として、ダイヤモンド
ライクな硬質炭素被覆膜が研究されてきている。硬質炭
素被覆膜はCVD法や、イオンビーム法等により形成さ
れ、高純度の炭化水素ガスや、炭素のイオンビームを得
る為の特殊なイオンガン等を必要とし、まだ研究段階の
技術である。一方、デュアルイオンビーム(イオンビー
ムをスパッタ用と基板照射用と2つ用いる)を用い、基
板上にイオンビームを照射しつつ膜形成すると、硬質炭
素被覆膜が得られるという研究レベルでの報告もある。Structure of Conventional Example and Problems Thereof In recent years, a diamond-like hard carbon coating film has been studied as a coating film having excellent environment resistance. The hard carbon coating film is formed by a CVD method, an ion beam method, or the like, requires a high-purity hydrocarbon gas, a special ion gun for obtaining an ion beam of carbon, and the like, and is still in a research stage. On the other hand, a research-level report that a hard carbon coating film can be obtained by using dual ion beams (using two ion beams for sputtering and substrate irradiation) while irradiating the substrate with the ion beam There is also.
第1図に、上記デュアルイオンビームスパッタ装置の概
略を示す。スパッタ用のイオンビーム源1からイオンビ
ーム2が炭素ターゲット3に照射され、炭素がスパッタ
され、スパッタ粒子4となり基板5に飛んでゆく。上記
基板5に基板照射用のイオンビーム源6によってイオン
ビーム7を照射することにより、基板上に硬質炭素被覆
を得る。この基板照射のイオンビームにより、膜がダイ
ヤモンドライクの硬質炭素被覆膜となる。この基板照射
のイオンビームの効果の詳細については不明であるが、
このイオンビームによって硬質炭素被覆膜が得られる。
これらの従来の技術は、装置及び形成法が複雑であり、
実用に十分たえ得るものではなかった。FIG. 1 shows an outline of the above dual ion beam sputtering apparatus. The carbon beam 3 is irradiated with the ion beam 2 from the ion beam source 1 for sputtering, and the carbon is sputtered to become the sputtered particles 4 and fly to the substrate 5. By irradiating the substrate 5 with the ion beam 7 from the ion beam source 6 for irradiating the substrate, a hard carbon coating is obtained on the substrate. The ion beam of this substrate irradiation turns the film into a diamond-like hard carbon coating film. Although the details of the effect of the ion beam on this substrate irradiation are unknown,
A hard carbon coating film is obtained by this ion beam.
These conventional techniques are complicated in device and forming method,
It was not enough for practical use.
本発明者等は、イオンビーム中にイオンビームの方向と
基板表面が平行に基板を設置することにより、効果的に
硬質炭素(ダイヤモンドライク)薄膜が形成されること
を発見し、1つのイオンビーム源を用い、炭素をターゲ
ットとし、イオンビーム中に基板を設置したイオンビー
ムスパッタ装置により製造する方法を発明した。The present inventors have found that a hard carbon (diamond-like) thin film is effectively formed by placing a substrate in the ion beam so that the direction of the ion beam and the substrate surface are parallel to each other. An inventor has invented a method for producing by an ion beam sputtering apparatus in which a source is used, carbon is used as a target, and a substrate is placed in the ion beam.
発明の目的 本発明の目的は、良好な硬質炭素被覆膜を簡便な装置で
容易に高速度で製造可能とする硬質炭素被覆膜の製造方
法を提供するものである。OBJECT OF THE INVENTION An object of the present invention is to provide a method for producing a hard carbon coating film, which enables a good hard carbon coating film to be easily produced at a high speed with a simple apparatus.
発明の構成 本発明で言うイオンビームの方向とは、イオンガンから
照射する多数のイオンの軌跡密度が最も高い部分を結ぶ
方向のことである。Configuration of the Invention The direction of the ion beam referred to in the present invention is a direction connecting the portions having the highest trajectory densities of a large number of ions irradiated from the ion gun.
第2図に本発明の硬質炭素被覆膜の製造方法に用いた装
置の概略を示す。イオンビーム源8から不活性ガスのイ
オンビーム9を炭素ターゲット10に照射し炭素をスパッ
タする。基板11は表面12が上記イオンビーム9とほぼ平
行になるように設置し蒸着膜を形成した。例えば第1図
に示した従来のデュアルイオンビームにおける基板照射
ビーム7の入射方向と基板5の表面(堆積した硬質炭素
薄膜の表面)とのなす角度が大きい構成であるのに対し
て、本願発明の第2図のイオンビームスパッタ装置で
は、イオンビーム9の方向と基板11の表面12(堆積した
硬質炭素被覆膜の表面)とのなす角度がほぼ0゜となる
構成である。また、基板表面12にほぼ平行に入射してい
るイオンビーム9が、従来のイオンビーム2及び7を兼
ねるため、イオンビーム源8単独でイオンビームスパッ
タ装置を構成でき、簡便な装置となっている。また基板
をターゲットのごく近傍におくことができ、非常に高速
な蒸着が可能である。イオンビームとしては不活性ガス
を用いるが、これに水素を混合することにより、得られ
る硬質炭素被覆膜の透明性と絶縁性を向上させることが
できた。基板はイオンビームに対してその表面が平行で
あればイオンビーム中のどの位置に設置しても有効であ
る。FIG. 2 shows an outline of an apparatus used in the method for producing a hard carbon coating film of the present invention. A carbon target 10 is irradiated with an ion beam 9 of an inert gas from an ion beam source 8 to sputter carbon. The substrate 11 was placed so that the surface 12 was substantially parallel to the ion beam 9 and a vapor deposition film was formed. For example, in the conventional dual ion beam shown in FIG. 1, the angle between the incident direction of the substrate irradiation beam 7 and the surface of the substrate 5 (the surface of the deposited hard carbon thin film) is large, whereas the invention of the present application is large. In the ion beam sputtering apparatus of FIG. 2, the angle between the direction of the ion beam 9 and the surface 12 of the substrate 11 (the surface of the deposited hard carbon coating film) is substantially 0 °. Further, since the ion beam 9 incident substantially parallel to the substrate surface 12 also serves as the conventional ion beams 2 and 7, the ion beam source 8 alone can constitute an ion beam sputtering apparatus, which is a simple apparatus. . In addition, the substrate can be placed very close to the target, and very high-speed vapor deposition is possible. Although an inert gas is used as the ion beam, by mixing this with hydrogen, the transparency and insulating properties of the obtained hard carbon coating film could be improved. The substrate is effective even if it is installed at any position in the ion beam as long as its surface is parallel to the ion beam.
実施例の説明 イオンビームとして、イオンエネルギー1.2KeV60mAのAr
を用い、グラファイトターゲットをスパッタ蒸着した。
Si基板を第2図のごとくターゲットのごく近傍におき、
この場合の蒸着レートは2〜3Å/secであり、従来の
レートに比べて1桁以上高かった。得られた硬質炭素被
覆膜はモース硬度9以上を示し、ダイヤモンドライクな
膜となっていた。イオンビームのガス中に水素を混合し
てゆくと、抵抗率が数桁高くなり、膜の透明度も向上す
ることも確認した。この場合、水素のかわりに炭化水素
(たとえばメタン)を用いても同様の効果が得られるこ
とを本発明人等は確認した。Description of Examples As an ion beam, Ar with an ion energy of 1.2 KeV 60 mA is used.
Was used to sputter-deposit a graphite target.
Place the Si substrate close to the target as shown in Fig. 2,
In this case, the vapor deposition rate was 2-3 Å / sec, which was higher than the conventional rate by one digit or more. The obtained hard carbon coating film had a Mohs hardness of 9 or more and was a diamond-like film. It was also confirmed that when hydrogen was mixed into the ion beam gas, the resistivity increased by several orders of magnitude and the transparency of the film also improved. In this case, the present inventors have confirmed that a similar effect can be obtained by using hydrocarbon (eg, methane) instead of hydrogen.
イオンビームとしてここではArのみについて述べたが、
不活性ガスであれば他のガスを用いても良い。また基板
はSiについてのみ述べたが、他の基板でも良い。As the ion beam, only Ar was mentioned here,
Another gas may be used as long as it is an inert gas. Although the substrate has been described only for Si, other substrates may be used.
イオンビームはターゲットをスパッタできる高速粒子で
あれば中性粒子等でも良い。The ion beam may be neutral particles or the like as long as they are high-speed particles that can sputter the target.
発明の効果 本発明の硬質炭素被覆膜の製造方法は、あらゆる分野に
応用可能な超硬質,耐環境性にすぐれた被覆膜を簡便な
装置で高速に形成可能とするものであり、本発明の工業
的価値はきわめて高い。EFFECTS OF THE INVENTION The method for producing a hard carbon coating film of the present invention is capable of forming a coating film having excellent superhardness and environment resistance applicable to all fields at high speed with a simple device. The industrial value of the invention is extremely high.
第1図は従来のデュアルイオンビームを用いた硬質炭素
被覆膜形成装置の概略構成図、第2図は本発明の製造方
法に用いられた装置の概略構成図である。 8……イオン源、9……イオンビーム、10……炭素ター
ゲット、11……基板、12……基板表面。FIG. 1 is a schematic configuration diagram of a conventional hard carbon coating film forming apparatus using a dual ion beam, and FIG. 2 is a schematic configuration diagram of an apparatus used in the manufacturing method of the present invention. 8 ... Ion source, 9 ... Ion beam, 10 ... Carbon target, 11 ... Substrate, 12 ... Substrate surface.
Claims (3)
スパッタし炭素薄膜を基板表面に形成する際に、前記基
板表面が少なくとも前記イオンビーム中にあり、かつ、
前記基板表面が前記イオンビームの方向と平行になるよ
うに前記基板を設置し、前記基板上に蒸着膜を形成する
ことを特徴とする硬質炭素被覆膜の製造方法。1. When a carbon target is sputtered by an ion beam to form a carbon thin film on the substrate surface, the substrate surface is at least in the ion beam, and
A method for producing a hard carbon coating film, comprising: placing the substrate so that the surface of the substrate is parallel to the direction of the ion beam, and forming a vapor deposition film on the substrate.
とを特徴とする特許請求の範囲第1項記載の硬質炭素被
覆膜の製造方法。2. The method for producing a hard carbon coating film according to claim 1, wherein the substrate is installed in the immediate vicinity of the target.
炭化水素の混合ガスを用いることを特徴とする特許請求
の範囲第1項又は第2項記載の硬質炭素被覆膜の製造方
法。3. The method for producing a hard carbon coating film according to claim 1 or 2, wherein a mixed gas of an inert gas and hydrogen or hydrocarbon is used as the ion beam.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058757A JPH0666259B2 (en) | 1984-03-27 | 1984-03-27 | Method for producing hard carbon coating film |
US07/051,798 US4844785A (en) | 1984-03-27 | 1987-05-20 | Method for deposition of hard carbon film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058757A JPH0666259B2 (en) | 1984-03-27 | 1984-03-27 | Method for producing hard carbon coating film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60201635A JPS60201635A (en) | 1985-10-12 |
JPH0666259B2 true JPH0666259B2 (en) | 1994-08-24 |
Family
ID=13093404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59058757A Expired - Lifetime JPH0666259B2 (en) | 1984-03-27 | 1984-03-27 | Method for producing hard carbon coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0666259B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742570B2 (en) * | 1986-01-31 | 1995-05-10 | 株式会社明電舍 | Method for producing carbon thin film |
JPH0795503B2 (en) * | 1987-06-24 | 1995-10-11 | 松下電器産業株式会社 | Method of manufacturing polarizable electrodes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57106513A (en) * | 1980-12-22 | 1982-07-02 | Nippon Telegr & Teleph Corp <Ntt> | Formation of carbon film |
JPS5855319A (en) * | 1981-09-30 | 1983-04-01 | Nippon Telegr & Teleph Corp <Ntt> | Formation of diamondlike carbon film |
-
1984
- 1984-03-27 JP JP59058757A patent/JPH0666259B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60201635A (en) | 1985-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cuomo et al. | Energetic carbon deposition at oblique angles | |
GB1532759A (en) | Production of monocrystalline layers on substrates | |
Bodö et al. | Ion bombardment and titanium film growth on polyimide | |
JPH0351787B2 (en) | ||
JPH0666259B2 (en) | Method for producing hard carbon coating film | |
Oubaki et al. | One‐Step DcMS and HiPIMS Sputtered CIGS Films from a Quaternary Target | |
Wu et al. | Formation of MoO3/organic interfaces | |
Preuss | A Study of the Propagation Mode for Metallic Vapors in Shadow‐Casting by Vacuum Evaporation of Au198 and Cr51 | |
JPH01282175A (en) | Method for forming a protective film on superconducting materials | |
Köhl et al. | Highly textured zinc oxide films by room temperature ion beam assisted deposition | |
JPS6339124A (en) | Magnetic recording medium and its production | |
JPS63203760A (en) | Method and device for forming inorganic film to glass substrate surface | |
JPS6144705A (en) | Method for forming electrically conductive carbon film | |
JP2844779B2 (en) | Film formation method | |
JPS6184826A (en) | Manufacture of head carbon coating film | |
JPS61280927A (en) | Multilayer article containing crystallization preventive layer and manufacture thereof | |
JPH0719369B2 (en) | Magnetic recording medium and manufacturing method thereof | |
JPH01201463A (en) | Method for manufacturing hard carbon membrane | |
Cho et al. | Effects of oxygen partial pressure on the crystallographic structure of Mn-Zn ferrite thin films deposited by ion beam sputtering | |
JPS6315346B2 (en) | ||
JPS6142122A (en) | Manufacture of film covered with hard carbon | |
JPS61221360A (en) | Flexible film having hard surface and production thereof | |
JPS61243166A (en) | Hard film and its production | |
JPS61190065A (en) | Wear-resistant parts and its production | |
JPS57145979A (en) | Formation of protective film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |