JPH0657363A - Nitrogen compound aluminum sintered alloy and method for producing the same - Google Patents
Nitrogen compound aluminum sintered alloy and method for producing the sameInfo
- Publication number
- JPH0657363A JPH0657363A JP20022692A JP20022692A JPH0657363A JP H0657363 A JPH0657363 A JP H0657363A JP 20022692 A JP20022692 A JP 20022692A JP 20022692 A JP20022692 A JP 20022692A JP H0657363 A JPH0657363 A JP H0657363A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- aluminum
- producing
- nitrogen
- sintered alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
(57)【要約】
【目的】 高精度、高密度で機械的特性、物理的特性、
及び耐摩耗性に優れたアルミニウム焼結合金と、その合
金を塑性加工によらず常圧焼結により高い経済性で製造
する方法を提供する。
【構成】 Mgを0.4〜4.0重量%含有するアルミ
ニウム合金溶湯を102℃/sec 以上の凝固速度で凝固
した急冷凝固アルミニウム合金粉末を必要に応じて25
0〜450℃の温度域で焼鈍した後に、冷間で圧縮成形
し、この成形体を窒素化合促進ガス成分として還元性ガ
ス成分を0.01atm 以上添加した窒素分圧0.8atm
以上かつ水蒸気分圧0.01atm 以下の常圧雰囲気下に
おいて粉末表面に窒素との化合物を生成させて焼結さ
せ、Mgを0.4〜4.0重量%かつ窒素を0.2〜
4.0重量%含有する窒素化合アルミニウム焼結合金を
得る。
(57) [Summary] [Purpose] High precision, high density, mechanical properties, physical properties,
And an aluminum sintered alloy having excellent wear resistance, and a method for producing the alloy with high economic efficiency by pressureless sintering without plastic working. [Structure] A rapidly solidified aluminum alloy powder obtained by solidifying an aluminum alloy melt containing 0.4 to 4.0% by weight of Mg at a solidification rate of 10 2 ° C / sec or more is added as necessary.
After annealing in a temperature range of 0 to 450 ° C., cold compression molding is performed, and this compact is added with a reducing gas component of 0.01 atm or more as a nitrogen compounding promoting gas component and a nitrogen partial pressure of 0.8 atm.
In a normal pressure atmosphere having a steam partial pressure of 0.01 atm or less, a compound with nitrogen is produced on the powder surface and sintered, 0.4 to 4.0 wt% of Mg and 0.2 to 0.2% of nitrogen are contained.
A nitrogen compounded aluminum sintered alloy containing 4.0% by weight is obtained.
Description
【0001】[0001]
【産業上の利用分野】本発明は、高精度、高密度で機械
的特性や物理的特性に優れ、耐摩耗性にも優れたアルミ
ニウム焼結合金、及びその合金を塑性加工によらず常圧
焼結により高い経済性で製造する方法に関するものであ
る。本発明は、機械構造部品に要求される特性を満たす
アルミニウム合金を高い自由度で形状付与できる常圧焼
結法により提供するものであり、利用分野としては、コ
ンプレッサー部品のサイドプレート、ハウジング、シリ
ンダー、ケース、ベーン、シュー、ローター等、自動車
部品のタイミングプーリー、オイルポンプローター、ブ
ッシュ等、または、事務機器のローラー、ギヤ、軸受け
等が挙げられる。FIELD OF THE INVENTION The present invention relates to an aluminum sintered alloy having high precision, high density, excellent mechanical properties and physical properties, and excellent wear resistance, and an aluminum sintered alloy which is not subjected to plastic working but under normal pressure. The present invention relates to a method of producing by sintering with high economy. The present invention provides an aluminum alloy satisfying the properties required for machine structural parts by a pressureless sintering method capable of imparting a shape with a high degree of freedom, and its fields of use include side plates of compressor parts, housings, and cylinders. , A case, a vane, a shoe, a rotor, etc., a timing pulley of an automobile part, an oil pump rotor, a bush, etc., or a roller, a gear, a bearing, etc. of an office equipment.
【0002】[0002]
【従来の技術】アルミニウム粉末あるいはアルミニウム
合金粉末の表面には還元が不可能な強固な酸化膜が存在
しているため、アルミニウム焼結合金を製造するにはこ
の酸化膜を破り粉末同士の金属接触部を形成させ金属原
子の拡散を可能とさせる必要がある。金属原子の拡散に
より粉末を強固に結合させなければ強固な焼結体は得ら
れないからである。従来、この方法は大きく次の2つの
方法があった。2. Description of the Related Art A strong oxide film that cannot be reduced exists on the surface of aluminum powder or aluminum alloy powder. Therefore, in order to produce a sintered aluminum alloy, this oxide film is broken and metal contact between the powder particles occurs. It is necessary to form a portion to enable diffusion of metal atoms. This is because a strong sintered body cannot be obtained unless the powder is firmly bonded by the diffusion of metal atoms. Conventionally, this method is roughly divided into the following two methods.
【0003】焼結助剤を混合する方法 アルミニウムあるいはアルミニウム合金組成の融点より
低温側で共晶液相を発生する合金成分を有する粉末を焼
結助剤として原料に添加混合後に圧縮成形し、焼結工程
の昇温過程中に成形体内に形成された焼結助剤とアルミ
ニウム粉末またはアルミニウム合金粉末との金属接触部
から共晶液相を発生させることで金属接触部の拡大を図
り焼結を進行させる方法である。特開昭47−3400
6は、アルミニウム粉にCuまたはCu−Sn粉末を混
合した粉末成形体を無酸化あるいは還元性雰囲気で焼結
するアルミニウム(Al)焼結合金の製造方法を提案し
ている。特公昭51−13444は、焼結助剤としてM
g,Zn等の粉末を添加する方法を提案している。特開
昭50−96409は、焼結助剤としてMg粉末あるい
はCu−Mg母合金粉末を焼結助剤として添加する方法
を提案している。特公昭61−17895,特公昭61
−54855,特公昭61−6243,特公昭62−6
626には、Cu,Mg,Si,Zn等の元素粉末ある
いは合金粉末を焼結助剤として混合する方法が開示され
ている。Method of Mixing Sintering Aid A powder having an alloying component that generates a eutectic liquid phase at a temperature lower than the melting point of aluminum or aluminum alloy composition is added as a sintering aid to a raw material, compression-molded, and fired. The eutectic liquid phase is generated from the metal contact portion between the sintering aid and the aluminum powder or aluminum alloy powder formed in the compact during the temperature rising process of the binding process, thereby expanding the metal contact portion and sintering. It is a method of proceeding. JP-A-47-3400
No. 6 proposes a method for producing an aluminum (Al) sintered alloy in which a powder compact obtained by mixing aluminum powder with Cu or Cu—Sn powder is sintered in a non-oxidizing or reducing atmosphere. Japanese Examined Patent Publication No. 51-13444 is M as a sintering aid.
A method of adding powders such as g and Zn has been proposed. Japanese Unexamined Patent Publication No. 50-96409 proposes a method of adding Mg powder or Cu—Mg master alloy powder as a sintering aid. Japanese Patent Publication 61-17895, Japanese Patent Publication 61
-54855, Japanese Patent Publication 61-6243, Japanese Patent Publication 62-6
626 discloses a method of mixing elemental powders such as Cu, Mg, Si and Zn or alloy powders as a sintering aid.
【0004】Siを含有する焼結合金の製造方法を次に
説明する。特公昭53−118209に共晶組成である
Al−11.7Si近傍の組成を有したAl−Si二元
合金粉末に焼結助剤として金属Si粉末と必要に応じて
合金粉末を混合してSiを合計で20〜50%含有した
焼結体の製造法が提案されている。特公昭60−384
42は、Al粉末またはAl−Si合金粉末にてAl−
Cu−Mg、Al−Cu−Mg−Si、Cu−Mg−S
i合金粉末を焼結助剤として30wt%未満の配合率で混
合し圧縮成形後550〜650℃の温度範囲で焼結し、
2.1%Si以下の低Si含有低密度焼結体の製造方法
を提案している。特公昭59−37339は、Al−1
0〜35Si粉末にて、Cu,Mg,Si成分を単組成
粉末あるいは合金粉末として添加配合する高Si含有焼
結体の製造方法が提案されている。また、これにはMg
成分を若干量含有するAl−25Si−2Cu−0.5
Mg合金粉末を高純度窒素ガス(露点−70℃以下)雰
囲気中で555℃×60分焼結した例が記載されている
が、焼結体の引張強度は9.2kg/mm2しか得られていな
い。A method of manufacturing a sintered alloy containing Si will be described below. In JP-B-53-118209, Al-Si binary alloy powder having a composition near Al-11.7Si which is a eutectic composition is mixed with metal Si powder as a sintering aid and alloy powder as required, and Si is added. Has been proposed for producing a sintered body containing 20 to 50% in total. Japanese Patent Sho 60-384
42 is Al powder or Al-Si alloy powder.
Cu-Mg, Al-Cu-Mg-Si, Cu-Mg-S
i alloy powder was mixed at a compounding ratio of less than 30 wt% as a sintering aid, compression molded, and then sintered in a temperature range of 550 to 650 ° C.,
A method for producing a low Si content low density sintered body of 2.1% Si or less is proposed. Japanese Examined Japanese Patent Publication 59-37339 is Al-1
There has been proposed a method for producing a high Si-containing sintered body in which Cu, Mg, and Si components are added as a single composition powder or an alloy powder in 0 to 35 Si powder. In addition, Mg
Al-25Si-2Cu-0.5 containing a small amount of components
An example in which Mg alloy powder is sintered in a high-purity nitrogen gas (dew point −70 ° C. or lower) atmosphere at 555 ° C. for 60 minutes is described, but the tensile strength of the sintered body is only 9.2 kg / mm 2. Not not.
【0005】塑性加工を加える方法 新しい粉末冶金技術として近年になって開発されてきた
方法で、塑性変形により粉末同士を結合させる方法であ
る。粉末に強力な塑性加工を加えることで粉末を塑性変
形させ、粉末表面の酸化膜を破り、分断し、隣接粉末間
をつなぎ金属接触部を生成させる。物理的手法で酸化膜
を破るから焼結助剤を不要とする。塑性加工方法として
は、ホットプレス法、粉末鍛造法、粉末押出法、粉末圧
延法等が用いられる。塑性加工による方法は、比較的低
温度域で処理できるため、急冷凝固の効果をある程度保
持した高密度合金を得ることが出来る。特開昭60−1
21203は、アルミニウム合金粉末を温度250〜5
50℃で押出比4:1〜15:1にて押出する方法を提
案している。強力なせん断力でアルミニウム合金粉末を
押し出すため、粉末表面の酸化膜が破れて隣接粉末同士
の内部の金属が結合するのである。特開昭61−136
602にはアルミニウム合金粉末を加熱成形後にホット
プレスする方法を提案している。ホットプレスにより、
粉末表面の酸化膜を破り内部金属同士の接触させ金属原
子を拡散させるものである。Method of applying plastic working A method developed in recent years as a new powder metallurgical technique, which is a method of joining powders by plastic deformation. By subjecting the powder to strong plastic working, the powder is plastically deformed, the oxide film on the surface of the powder is broken and divided, and adjacent powders are connected to form a metal contact portion. Since the oxide film is broken by a physical method, the sintering aid is unnecessary. As the plastic working method, a hot pressing method, a powder forging method, a powder extrusion method, a powder rolling method and the like are used. Since the method by plastic working can be processed in a relatively low temperature range, a high-density alloy can be obtained in which the effect of rapid solidification is maintained to some extent. JP 60-1
21203 is aluminum alloy powder having a temperature of 250 to 5
A method of extruding at 50 ° C. with an extrusion ratio of 4: 1 to 15: 1 is proposed. Since the aluminum alloy powder is extruded with a strong shearing force, the oxide film on the powder surface is broken and the metal inside the adjacent powder particles is bonded. JP 61-136
602 proposes a method of hot pressing aluminum alloy powder after hot molding. By hot pressing,
This is to break the oxide film on the powder surface and bring the internal metals into contact with each other to diffuse metal atoms.
【0006】以上、焼結助剤を混合する方法、塑性
加工による方法のいずれによっても酸化膜を破り金属同
士の接触を実現し、接触部を通じて金属原子が拡散出来
るようになる。As described above, both of the method of mixing the sintering aid and the method of plastic working can break the oxide film and realize the contact between the metals, and the metal atoms can diffuse through the contact portion.
【0007】[0007]
【発明が解決しようとする課題】しかし、以上説明した
アルミニウム焼結合金を製造する従来法2つにはそれぞ
れ次のような難点がある。 焼結助剤を用いる方法の難点 共晶液相を発生する焼結助剤粉末を混合した粉末を圧縮
成形後に焼結させる方法では、焼結助剤を混合法で分散
させるために、共晶液相の発生個所が偏在するという難
点がある。このため、組成的にも濃度斑や偏析が生じ易
く、粉末の焼結状態の均質性に劣る。粗大な気孔や流出
孔が残り易いため高精度・高密度焼結体が得難い。ま
た、この方法で得られた焼結体は急冷凝固により生成さ
れた微細析出物が粗大化しており、機械的特性が塑性加
工法による焼結体に比較して大きく劣る。 塑性加工による方法の難点 塑性加工法による焼結は比較的低温度域で処理でき、高
密度材料が得られるという長所がある。しかし、高い圧
力を加えて加工しなければならないから、設備が高価で
製造コストが高い。さらに形状的制約があり従来の粉末
冶金法の特徴であるニアネットシェイプ材の製造が困難
であり材料歩留まりが低い。However, each of the two conventional methods for producing the aluminum sintered alloy described above has the following drawbacks. Difficulties of the method using a sintering aid In the method of sintering the powder mixed with the sintering aid powder that generates a eutectic liquid phase after compression molding, the sintering aid is dispersed by the mixing method. There is a problem that the liquid phase is unevenly distributed. Therefore, in terms of composition, density unevenness and segregation are likely to occur, and the homogeneity of the sintered state of the powder is poor. It is difficult to obtain high-precision and high-density sintered compacts because coarse pores and outflow holes are likely to remain. Further, in the sintered body obtained by this method, fine precipitates generated by rapid solidification are coarsened, and the mechanical properties are significantly inferior to those of the sintered body produced by the plastic working method. Difficulties of the plastic working method Sintering by the plastic working method has an advantage that a high density material can be obtained because it can be processed in a relatively low temperature range. However, since high pressure must be applied for processing, the equipment is expensive and the manufacturing cost is high. Further, there are shape restrictions, and it is difficult to manufacture a near net shape material, which is a feature of conventional powder metallurgy, and the material yield is low.
【0008】共晶反応により液相を発生させて焼結させ
る焼結助剤を用いる従来の方法は、共晶液相の偏在、濃
度斑、偏析等の問題があって高精度・高品質の焼結合金
を得ることができない。これはAl粉末あるいはAl合
金粉末と焼結助剤の界面において共晶液相を発生させ、
酸化膜を分断し、焼結を行うという点に起因している。
焼結助剤の分布が不均一であるから共晶液相の分布が均
一にならず濃度斑、偏析等が生ずる。そこで本発明は焼
結助剤を用いずAl焼結合金を製造することを第1の目
的とする。また、塑性加工を用いると前述のように設備
費、製造コストが嵩む。そこで本発明は塑性加工を用い
ないで、Al焼結合金を製造することを第2の目的とす
る。The conventional method using a sintering aid for generating and sintering a liquid phase by a eutectic reaction has problems of uneven distribution of the eutectic liquid phase, uneven concentration, segregation, etc. Sintered alloy cannot be obtained. This produces a eutectic liquid phase at the interface between the Al powder or Al alloy powder and the sintering aid,
This is due to the fact that the oxide film is divided and then sintered.
Since the distribution of the sintering aid is non-uniform, the distribution of the eutectic liquid phase is not uniform, resulting in uneven concentration and segregation. Therefore, the first object of the present invention is to produce an Al sintered alloy without using a sintering aid. Further, if plastic working is used, the facility cost and manufacturing cost increase as described above. Therefore, the second object of the present invention is to produce an Al sintered alloy without using plastic working.
【0009】[0009]
【課題を解決するための手段】本発明の窒素化合アルミ
ニウム焼結合金は、Mgを0.4〜4.0重量%かつ窒
素を0.2〜4.0重量%含有することを特徴とする窒
素化合アルミニウム焼結合金である。また、製造方法
は、Mgを0.4〜4.0重量%含有するアルミニウム
合金溶湯を102 ℃/sec 以上の凝固速度で凝固した急
冷凝固アルミニウム合金粉末を必要に応じて250〜4
50℃の温度域で焼鈍した後に、冷間で圧縮成形し、こ
の成形体を窒素化合促進ガス成分として還元性ガス成分
を0.01atm 以上添加した窒素分圧0.8atm 以上か
つ水蒸気分圧0.01atm 以下の常圧雰囲気下において
粉末表面に窒素との化合物を生成させて焼結させること
を特徴とする。The nitrogen compounded aluminum sintered alloy of the present invention is characterized by containing 0.4 to 4.0% by weight of Mg and 0.2 to 4.0% by weight of nitrogen. Nitrogen compound aluminum sintered alloy. In addition, the manufacturing method is, if necessary, a rapidly solidified aluminum alloy powder obtained by solidifying an aluminum alloy melt containing 0.4 to 4.0% by weight of Mg at a solidification rate of 10 2 ° C / sec or more in an amount of 250 to 4
After annealing in a temperature range of 50 ° C., cold compression molding is performed, and the compact is added with a reducing gas component of 0.01 atm or more as a nitrogen compounding promoting gas component, a nitrogen partial pressure of 0.8 atm or more and a steam partial pressure of 0. It is characterized in that a compound with nitrogen is produced on the powder surface and sintered under an atmospheric pressure of 0.01 atm or less.
【0010】簡単に言えば、本発明のアルミニウム焼結
合金は、Mgを含有したアルミニウム合金粉末を成形
し、焼結雰囲気ガス中の窒素成分との窒素化合反応によ
り焼結を促進させて粉末組成の融点以下で塑性加工なし
に常圧で高精度に焼結した合金である。常圧というの
は、焼結において成形体にかかる圧力が雰囲気ガスによ
る通常の圧力のことで、前記の塑性加工の様な非常な高
圧力を用いないということである。Briefly, the aluminum sintered alloy of the present invention is obtained by forming an aluminum alloy powder containing Mg and accelerating the sintering by a nitrogen compounding reaction with a nitrogen component in a sintering atmosphere gas to form a powder composition. It is an alloy that has been sintered with high precision at atmospheric pressure below its melting point without plastic working. The normal pressure means that the pressure applied to the molded body during sintering is a normal pressure by the atmospheric gas, and an extremely high pressure such as the above-mentioned plastic working is not used.
【0011】Mg添加による粉末表面改質及び雰囲気窒
素との化合反応を兼ね合わせることで従来困難とされて
きたアルミ合金粉末の焼結現象を促進化させることが可
能となったが、焼結合金の物理的特性や機械的特性は、
焼結体の密度に大きく支配されるため、如何に緻密化し
た焼結合金を製造できるかが、焼結合金製造の第2のポ
イントとなる。この緻密化の方法として、急冷凝固合金
粉末を用いた次の2つの手法を見いだした。By combining the powder surface modification by adding Mg and the compounding reaction with atmospheric nitrogen, it has become possible to accelerate the sintering phenomenon of the aluminum alloy powder, which has been conventionally difficult. The physical and mechanical properties of
Since the density of the sintered body is largely controlled, the second point in the production of the sintered alloy is how dense a sintered alloy can be produced. As the densification method, the following two methods using a rapidly solidified alloy powder were found.
【0012】成形時に高密度化する方法 高精度で高密度な焼結体を得るには成形時に高密度化し
ておくことが有効である。成形方法としては、金型成形
や、冷間静水圧成形などがある。金型成形の場合は金型
との焼き付きを防止したり、粉末の流動性を改善するた
めに、粉末状の潤滑剤を混合したり、金型に直接潤滑剤
を塗布したりする。一般に成形圧力を高めると、高密度
の成形が可能となる。しかし、金型への負荷が大きくな
るので成形形状が制約を受け、金型寿命も短くなるた
め、例えば8〜10t/cm2 を越えるような高圧力の成形
は通常採用されない。よって、成形時に高い成形密度を
得るためには圧縮性や成形性に優れた原料粉末を用いる
必要がある。成形密度は粉末形状等にも影響を受ける
が、粉末硬度に大きく支配される。成形時に高密度化す
るには、粉末のマトリックスが軟質であることが重要で
ある。硬度の観点からはマトリックス組成は低合金であ
る方が望ましい。しかし、実用強度を確保する必要から
時効析出硬化型元素を添加し、熱処理による特性向上が
図れる組成とするため、粉末に過時効処理を施し軟質化
を図る。物理的特性や機械的特性あるいは耐摩耗性を確
保するためには、硬質粒子をマトリックス中に分散させ
ることが有効である。硬質粒子は、粉末の成形性を劣化
させないようにマトリックスに固溶しないセラミックス
等の硬質粒子や固溶度の小さいSi晶が良い。硬質粒子
を分散あるいはSiを溶解した溶湯を粉末化することで
急冷凝固させると硬質粒子やSi晶を微細均質に分散さ
せることができ、多量の粒子やSiを含有させても粒子
やSi晶のブリッジングが抑制でき高密度化への影響が
低減できる。また、一部に軟質の粉末を混合し、成形性
や圧縮性を改善し、焼結体の高強度化を図ることができ
る。Method for increasing the density during molding It is effective to increase the density during molding in order to obtain a highly accurate and high-density sintered body. Molding methods include die molding and cold isostatic pressing. In the case of die molding, in order to prevent seizure with the die and to improve the fluidity of the powder, a powdery lubricant is mixed or the lubricant is directly applied to the die. Generally, increasing the molding pressure enables high-density molding. However, since the load on the mold is increased and the molding shape is restricted, and the life of the mold is shortened, high-pressure molding exceeding 8 to 10 t / cm 2 is not usually adopted. Therefore, in order to obtain a high compaction density during compaction, it is necessary to use a raw material powder having excellent compressibility and compactibility. The compacting density is influenced by the powder shape and the like, but is largely controlled by the powder hardness. It is important that the powder matrix is soft in order to densify during molding. From the viewpoint of hardness, it is desirable that the matrix composition is a low alloy. However, in order to ensure practical strength, an aging precipitation hardening type element is added to the composition so that the characteristics can be improved by heat treatment. Therefore, the powder is overaged to be softened. It is effective to disperse hard particles in a matrix in order to secure physical properties, mechanical properties or wear resistance. The hard particles are preferably hard particles such as ceramics that do not form a solid solution in the matrix or Si crystals having a small solid solubility so as not to deteriorate the moldability of the powder. Hard particles or Si crystals can be finely and homogeneously dispersed by rapidly cooling and solidifying by melting a molten metal in which hard particles are dispersed or Si is melted, and even if a large amount of particles or Si is contained, Bridging can be suppressed and the effect on high density can be reduced. In addition, soft powder can be mixed in a part to improve the formability and compressibility and to increase the strength of the sintered body.
【0013】焼結時に高密度化する方法 耐熱性や熱安定性あるいは高い機械的特性を要求される
用途に対しては、硬質で安定な金属間化合物が分散した
高合金マトリックスが必要となる。急冷凝固法によれ
ば、素地の硬化や耐熱性の改善を図るために、溶製法で
は少量しか添加出来ないFe,Ni,Mnや、或いはT
i,Cr,V,Mo,Zr等を有効に含有させる事が可
能である。しかしながら、マトリックス硬度が高く粉末
焼鈍により成形性や圧縮性は幾分は改善されるものの、
成形のみで高密度化することは困難となるため、焼結時
に緻密化を図る製法が必要となる。一般に、焼結時に液
相を発生させると緻密化するが、液相量が多かったり、
発生する液相の分布が不均質であったりすると寸法精度
が悪くなる。また、多量の液相発生は、組織の粗大化も
招く。液相焼結方法としては、従来の共晶反応により液
相を発生させて焼結させる方法があるが、この方法の問
題は共晶液相をAl粉末あるいはAl合金粉末と焼結助
剤の界面において発生させて焼結を行うことに起因して
いる。そこで、全く焼結助剤を添加混合しないで焼結さ
せる方法により焼結助剤添加法による焼結法の問題を解
決する。つまり、個々の粉末内に少量の液相を均質に生
成させることで、成形体内に高密度・均質に液相を分布
させ焼結時の均一収縮を実現し高い寸法精度を得る。本
発明では、粉末内に液相を生成させるには、まずCu,
Mgを同時に含有する組成の溶湯を粉末化に際して、急
冷凝固させて所要の合金組成の融点以下で液相が生じる
様な準安定相を形成させた粉末を製造する。この粉末の
加熱工程中に発生した準安定相の液相は、粉末表面の酸
化膜を分断させ金属接触部の拡大を図り焼結が進行す
る。成形体内の相状態が均質であるため、少量の液相量
であっても短時間に均等に収縮し、組成斑や偏析がきわ
めて小さい高精度・高密度焼結体が製造できる。この場
合も、液相の生成を損なわない範囲での粉末焼鈍により
粉末を軟化させると低圧で高密度の成形体が得ることが
でき焼結体の高精度化を図るに有効である。また、一部
に軟質粉末を混合することで、成形密度を上げて焼結性
を向上させることもできる。この合金はCu,Mgを含
有しているので熱処理による強度改善も図れる。焼結時
に高密度化する方法において、さらに機械的・物理的特
性の改善が必要な場合には、微細粒子の分散によって改
善することが出来る。分散粒子の添加手段としては、混
合法により分散させることが容易であるが粒子の凝集等
の問題があり機械的特性の改善効果を引き出せない。そ
こで、本発明では、粉末製造時に分散粒子を含有した溶
湯を粉末化する方法や混合粉末を機械的粉砕再凝集処理
する方法で分散粒子を微細化し均一且つ高密度に分散す
ることで大きな機械的特性値の改善を図る。Method of densifying at the time of sintering For applications requiring heat resistance, thermal stability or high mechanical properties, a high alloy matrix in which a hard and stable intermetallic compound is dispersed is required. According to the rapid solidification method, Fe, Ni, Mn, or T, which can be added only in a small amount in the melting method, in order to harden the substrate and improve heat resistance.
It is possible to effectively contain i, Cr, V, Mo, Zr and the like. However, although the matrix hardness is high and the formability and compressibility are somewhat improved by powder annealing,
Since it is difficult to increase the density by only molding, a manufacturing method for densifying during sintering is required. Generally, when a liquid phase is generated during sintering, it becomes dense, but there is a large amount of liquid phase,
If the distribution of the generated liquid phase is inhomogeneous, the dimensional accuracy will deteriorate. In addition, the generation of a large amount of liquid phase also leads to coarsening of the structure. As a liquid phase sintering method, there is a method of generating a liquid phase by a conventional eutectic reaction and sintering, but the problem of this method is that the eutectic liquid phase is formed of Al powder or Al alloy powder and a sintering aid. This is due to the fact that the sintering is performed at the interface. Therefore, the problem of the sintering method by the addition method of the sintering aid is solved by the method of sintering without adding and mixing the sintering aid at all. That is, by uniformly producing a small amount of liquid phase in each powder, the liquid phase is uniformly distributed in the compact to realize uniform shrinkage during sintering and obtain high dimensional accuracy. In the present invention, in order to generate a liquid phase in the powder, first, Cu,
At the time of pulverizing a molten metal having a composition containing Mg at the same time, it is rapidly solidified to form a powder in which a metastable phase is formed so that a liquid phase is formed at a melting point of a required alloy composition or less. The metastable liquid phase generated during the heating step of the powder divides the oxide film on the surface of the powder to expand the metal contact portion, and the sintering proceeds. Since the phase state in the compact is uniform, even a small amount of liquid phase shrinks uniformly in a short time, and it is possible to manufacture a high-precision and high-density sintered body with minimal composition unevenness and segregation. Also in this case, if the powder is softened by the powder annealing within the range where the generation of the liquid phase is not impaired, a high-density molded body can be obtained at a low pressure, which is effective in improving the accuracy of the sintered body. Further, by mixing a part of the soft powder, the molding density can be increased and the sinterability can be improved. Since this alloy contains Cu and Mg, the strength can be improved by heat treatment. In the method of densifying during sintering, if further improvement of mechanical and physical properties is required, it can be improved by dispersing fine particles. As a means for adding dispersed particles, it is easy to disperse them by a mixing method, but there is a problem such as particle agglomeration, and the effect of improving mechanical properties cannot be obtained. Therefore, in the present invention, a method of powderizing a molten metal containing dispersed particles at the time of powder production or a method of mechanically pulverizing and re-aggregating a mixed powder to finely disperse the dispersed particles and disperse the dispersed particles uniformly and at high density Improve the characteristic value.
【0014】本発明法によって得られた焼結材は、従来
の粉末冶金法のメリットであるニアネットシェイプ素材
を得ることが出来、適当量の気孔を分布させた焼結体と
すればサイジングやコイニングによる高精度加工が可能
で、形状付与自由度の高い高精度焼結体の製造法と言え
る。The sintered material obtained by the method of the present invention can be used as a near net shape material, which is an advantage of the conventional powder metallurgy method. If a sintered body having an appropriate amount of pores is distributed, sizing and sizing can be performed. It can be said that this is a method for producing a high-precision sintered body that enables high-precision processing by coining and has a high degree of freedom in shape giving.
【0015】[0015]
【作用】本発明では組成と製造条件を限定している。以
下にこれら限定の意味を説明する。In the present invention, the composition and manufacturing conditions are limited. The meaning of these limitations is explained below.
【0016】[Mgの添加量]本発明ではMgの添加が
重要である。Mgは、焼結時に噴霧時に形成された粉末
表面の酸化膜を還元する働きと同時に雰囲気窒素との反
応を助長し金属接触部を拡大し焼結現象を促進させる働
きを行う。SiあるいはCuと共存すると、溶体化、時
効処理を施すことにより機械的特性を改善することがで
きる。Mgの添加量が0.4重量%以下であると上記の
ような効果が不十分になる。逆に4.0重量%を越える
と焼結体の寸法精度が劣化したり、素地の耐熱性や靭性
が低下する。従って望ましいMg含有量は0.4〜4.
0重量%である。[Amount of Mg Added] In the present invention, the addition of Mg is important. Mg has the function of reducing the oxide film formed on the powder surface during spraying at the time of sintering and, at the same time, promoting the reaction with atmospheric nitrogen and expanding the metal contact portion to promote the sintering phenomenon. When coexisting with Si or Cu, mechanical properties can be improved by performing solution treatment and aging treatment. If the addition amount of Mg is 0.4% by weight or less, the above effect becomes insufficient. On the other hand, if it exceeds 4.0% by weight, the dimensional accuracy of the sintered body deteriorates, and the heat resistance and toughness of the base material deteriorate. Therefore, the desirable Mg content is 0.4 to 4.
It is 0% by weight.
【0017】[窒素の含有量]本発明では窒素の含有が
特に重要である。窒素は、焼結時に粉末表面に雰囲気窒
素とアルミ合金が反応して生成する窒素化合物として存
在し、焼結現象を促進させる。また、窒素化合物は硬質
であるため耐摩耗性が向上する。窒素の含有量が0.2
重量%以下であると上記のような効果が不十分になる。
逆に窒素含有量で4.0重量%を越えるような窒素化合
物量が存在すると焼結体の靭性が低下する。従って望ま
しい窒素含有量は0.2〜4.0重量%である。[Nitrogen Content] In the present invention, the nitrogen content is particularly important. Nitrogen is present as a nitrogen compound generated on the surface of the powder during the sintering by the reaction between atmospheric nitrogen and the aluminum alloy, and accelerates the sintering phenomenon. Further, since the nitrogen compound is hard, the wear resistance is improved. Nitrogen content is 0.2
If the content is less than or equal to wt%, the above effects will be insufficient.
On the contrary, if a nitrogen compound amount exceeding 4.0% by weight is present, the toughness of the sintered body is lowered. Therefore, the desirable nitrogen content is 0.2 to 4.0% by weight.
【0018】[窒素化合物の形態]原料粉末と窒素との
化合反応は粉末表面で起こり、窒素化合物は旧粉末界面
あるいは旧粉末表面上に生成するため、粉末同士の結合
に寄与し焼結を促進させる。また、窒素化合物を粒子と
して分散させる場合と異なり、本発明の窒素化合物は反
応により生成しているため密着性に優れ、極めて密に分
散しているため、耐摩耗性や硬さを大いに向上させる。
但し、窒素化合物層が10μmを越えると、靭性低下の
原因となるため、厚みは10μm以下であるとする。通
常の焼結条件では、窒素化合物の厚みは0.1〜5μm
程度である。[Form of Nitrogen Compound] The compounding reaction between the raw material powder and nitrogen takes place on the surface of the powder, and the nitrogen compound is generated at the interface of the old powder or on the surface of the old powder. Let Further, unlike the case where the nitrogen compound is dispersed as particles, the nitrogen compound of the present invention is excellent in adhesiveness because it is generated by the reaction, and is extremely densely dispersed, which greatly improves wear resistance and hardness. .
However, if the nitrogen compound layer exceeds 10 μm, the toughness is reduced, so the thickness is set to 10 μm or less. Under normal sintering conditions, the thickness of the nitrogen compound is 0.1-5 μm.
It is a degree.
【0019】[噴霧粉末の凝固速度]本発明では噴霧粉
末製造時のアルミニウム合金溶湯の凝固速度が重要であ
る。焼結時に準安定相を液化して液相焼結する方法にお
いては、原料粉末に準安定相が生成されていることが不
可欠であり、この準安定相は急冷凝固により生成され
る。凝固速度が102 ℃/sec未満であると、準安定相が
生成しないか、生成しても量が少なく焼結が十分進行し
ない。また、成形時に高密度化する方法においては、焼
結現象を促進させるために急冷凝固により焼結時の拡散
エネルギを蓄積させることが有効である。凝固速度が1
02 ℃/sec未満であると上記のような効果が不十分にな
るため望ましい凝固速度は102 ℃/sec以上である。[Solidification Rate of Spray Powder] In the present invention, the solidification rate of the molten aluminum alloy during the production of the spray powder is important. In the method of liquefying the metastable phase at the time of sintering and performing the liquid phase sintering, it is essential that the metastable phase is generated in the raw material powder, and the metastable phase is generated by rapid solidification. If the solidification rate is less than 10 2 ° C / sec, a metastable phase will not be formed, or even if it is formed, the amount will be small and sintering will not proceed sufficiently. Further, in the method of increasing the density during molding, it is effective to accumulate diffusion energy during sintering by rapid solidification in order to accelerate the sintering phenomenon. Coagulation rate is 1
If it is less than 0 2 ° C / sec, the above effect becomes insufficient, so that the desirable solidification rate is 10 2 ° C / sec or more.
【0020】[粉末粒度]噴霧法により粉末を製造する
場合、粉末の粒度により凝固速度が異なってくる。ま
た、粉末同士の金属接触部分の頻度や窒素と反応する表
面積も粉末の粒度により大きく影響される。粉末の最大
粒度が350μmを越えたり、平均粒度が75μmを越
えたりすると焼結性が低下する。従って、最大粒径は3
50μm以下、平均粒度は75μm以下であることが望
ましい。[Powder Particle Size] When the powder is produced by the spraying method, the solidification rate varies depending on the particle size of the powder. In addition, the frequency of metal contact between powders and the surface area that reacts with nitrogen are also greatly affected by the particle size of the powder. If the maximum particle size of the powder exceeds 350 μm or if the average particle size exceeds 75 μm, the sinterability decreases. Therefore, the maximum particle size is 3
It is desirable that the average particle size is 50 μm or less and the average particle size is 75 μm or less.
【0021】[粉末の造粒]噴霧粉末の粒度が細かい場
合、粉末の金型への流動性や充填性が良くない。そこ
で、噴霧粉末を機械的に造粒する事で、粉末の急冷度や
物性を充分維持した状態で流動性や充填性に優れた粉末
として、焼結体の高精度化を図ることができる。[Granulation of powder] When the particle size of the sprayed powder is small, the fluidity and the filling property of the powder into the mold are not good. Therefore, by mechanically granulating the sprayed powder, it is possible to improve the accuracy of the sintered body as a powder having excellent fluidity and filling properties while sufficiently maintaining the quenching degree and the physical properties of the powder.
【0022】[粉末の焼鈍]成形性や圧縮性を改善する
必要がある場合は粉末を焼鈍処理すると良い。噴霧粉末
は急冷凝固されておりいわゆる焼きが入った状態にあり
高硬度であるため、合金の時効処理温度以上で焼鈍する
と軟化するため成形性や圧縮性を改善できる。焼鈍は2
50℃未満では、粉末を過時効により軟化するに長時間
を要し、450℃を越える場合は、粉末同士が焼結して
しまったり急冷凝固により蓄積された焼結エネルギーが
消費されてしまったり、準安定相が安定化してしまった
りする問題が生じる。そこで、焼鈍は250〜450℃
で行う。この温度範囲であれば、焼鈍温度に粉末が通常
の加熱速度で昇温すれば、純分粉末は軟化するが、均質
性の高い焼鈍を行う場合は、焼鈍の保持時間は最低30
〜60分必要である。[Powder Annealing] When it is necessary to improve the formability and compressibility, the powder may be annealed. Since the sprayed powder has been rapidly solidified, is in a so-called quenched state and has high hardness, it softens when annealed at an aging temperature of the alloy or higher, so that formability and compressibility can be improved. Annealing is 2
If the temperature is lower than 50 ° C, it takes a long time to soften the powder due to overaging, and if the temperature exceeds 450 ° C, the powders are sintered with each other or the sintering energy accumulated by rapid solidification is consumed. , There is a problem that the metastable phase is stabilized. Therefore, annealing is 250 to 450 ° C.
Done in. Within this temperature range, if the powder is heated to the annealing temperature at a normal heating rate, the pure powder is softened, but in the case of annealing with high homogeneity, the holding time of the annealing is at least 30.
~ 60 minutes required.
【0023】[冷間成形]高密度成形するために温間で
成形することも可能であるが、本発明の場合は、経済性
とその効果から考えて冷間成形で充分である。[Cold Forming] It is possible to perform warm forming for high-density forming, but in the case of the present invention, cold forming is sufficient in view of economical efficiency and its effect.
【0024】[潤滑剤]金型成形の場合は、金型との焼
き付きを防止するために原料粉末に粉状の潤滑剤を混合
したり、金型に直接潤滑剤を塗布するのが普通である。
添加する潤滑剤は、焼結温度より低い温度で気化し、焼
結性を阻害しないものである必要がある。[Lubricant] In the case of die molding, it is usual to mix powdered lubricant with the raw material powder or to apply lubricant directly to the die in order to prevent seizure with the die. is there.
The lubricant to be added needs to be one that vaporizes at a temperature lower than the sintering temperature and does not impair the sinterability.
【0025】[低硬度粉末の場合]原料粉末より低硬度
な粉末を混合すると成形性や圧縮性を改善することがで
きる。混合すべき低硬度粉末のMg含有量は、前述した
理由により0.4〜4.0重量%とする。粉末の軟質性
を確保するためAl成分は85重量%以上である必要が
ある。その他の成分は主たる原料粉末より低硬度であれ
ば、含有させることができる。低硬度粉末の混合量は3
0重量%以下とする。これを越えると添加した低硬度粉
末同士が焼結する部分が生じ強度改善効果が減ずる。こ
のために30重量%以下とする。[In the case of low hardness powder] Mixing of powder having a hardness lower than that of the raw material powder can improve moldability and compressibility. The Mg content of the low hardness powder to be mixed is set to 0.4 to 4.0% by weight for the reason described above. In order to ensure the softness of the powder, the Al component needs to be 85% by weight or more. Other components can be contained as long as the hardness is lower than that of the main raw material powder. Mixing amount of low hardness powder is 3
It is 0% by weight or less. If it exceeds this, a portion where the added low hardness powders sinter is produced, and the strength improving effect is reduced. Therefore, the amount is 30% by weight or less.
【0026】[成形体密度比]成形時に高密度化を図る
方法では、成形体密度比が90%未満であると、焼結体
の強度が低くなる。これを避けるためには密度比90%
以上とするのが望ましい。強度や靭性に優れた焼結体を
得るためには、成形密度は高い方がよい。また、焼結時
に高密度化する液相焼結法では、粉末が硬質であるため
高い成形密度を得ることが困難であるが、成形体密度比
が70%未満では成形体の強度が低くなる。それゆえ、
密度比は70%以上とする。[Molded product density ratio] In the method of increasing the density during molding, if the molded product density ratio is less than 90%, the strength of the sintered product becomes low. To avoid this, the density ratio is 90%
It is desirable to set it as above. In order to obtain a sintered body having excellent strength and toughness, it is preferable that the molding density be high. Further, in the liquid phase sintering method in which the density is increased during sintering, it is difficult to obtain a high compaction density because the powder is hard, but the strength of the compact decreases when the compact density ratio is less than 70%. . therefore,
The density ratio is 70% or more.
【0027】[焼結雰囲気]本発明では焼結の雰囲気が
特に重要である。焼結時に粉末表面に窒素化合物を生成
させて、焼結現象を促進と焼結材の耐摩耗性を向上を図
るために、主に窒素ガスで構成する雰囲気を形成する必
要がある。そのためには、窒素分圧が0.8atm 以上で
あることが必要となる。同時に、粉末表面での窒素化合
を促進させるガス成分として還元性ガス成分を0.01
atm 以上添加させなければならない。雰囲気の圧力は、
加圧することでいくらかの焼結促進が図れるが経済性と
設備の観点から、常圧で充分である。また、雰囲気中の
水蒸気分圧が高いと、焼結時に粉末表面酸化膜を還元す
る働きと同時に雰囲気窒素との反応を助長する働きを行
うMg成分と水蒸気分が反応し、Mg成分の添加効果を
阻害する。さらに、水蒸気は、粉末表面に形成される窒
素化合物を分解する働きもある。また、粉末に吸着して
いる水分を焼結温度迄の昇温過程で蒸発・分解してやる
ためにも水蒸気分圧を低くしなければならない。それゆ
え、水蒸気分圧は0.01atm 以下に抑えることが重要
となる。[Sintering atmosphere] In the present invention, the sintering atmosphere is particularly important. It is necessary to form an atmosphere mainly composed of nitrogen gas in order to generate a nitrogen compound on the surface of the powder at the time of sintering to promote the sintering phenomenon and improve the wear resistance of the sintered material. For that purpose, the nitrogen partial pressure needs to be 0.8 atm or more. At the same time, a reducing gas component is added as 0.01 as a gas component that promotes nitrogenation on the powder surface.
Must be added at least atm. Atmospheric pressure is
Pressurization can promote some sintering, but atmospheric pressure is sufficient from the viewpoint of economy and equipment. Further, if the water vapor partial pressure in the atmosphere is high, the Mg component, which functions to reduce the oxide film on the powder surface during sintering and at the same time to promote the reaction with atmospheric nitrogen, reacts with the water vapor, and the effect of adding the Mg component Inhibit. Further, the water vapor also has a function of decomposing the nitrogen compound formed on the powder surface. In addition, the water vapor partial pressure must be lowered in order to evaporate and decompose the moisture adsorbed on the powder in the process of raising the temperature to the sintering temperature. Therefore, it is important to keep the water vapor partial pressure below 0.01 atm.
【0028】[焼結温度]成形体は適正な温度に加熱さ
れて焼結される。焼結温度は、成形時に高密度化する
製造法の場合の合金系と焼結時に高密度化する製造法
の場合の合金系とでは異なる。前者の場合は、焼結温
度範囲は500〜570℃が望ましい。500℃未満で
は雰囲気窒素との反応量が乏しく、固相拡散による焼結
現象も充分進行しない。逆に570℃を越えると、Al
−Siの共晶点578℃に近づき、合金が軟化変形し精
度が著しく劣り、組織が粗大化する。焼結を充分に進行
させて、精度確保し、組織の粗大化を抑えるには焼結温
度を500〜570℃とする。より精度が要求される場
合は、520〜550℃が望ましい。一方、後者の場
合は、焼結温度、急冷凝固法により得られた準安定相の
液相発生温度Tcより高く、粉末の融点Tmより低い温
度とする。もちろん、準安定相の液相発生温度Tcや融
点Tmは粉末の合金組成によって異なる。本発明の合金
系では、準安定相の液相発生温度は、およそ500℃近
辺であり、粉末の融点はおよそ580℃近辺である。[Sintering temperature] The molded body is heated to an appropriate temperature and sintered. The sintering temperature differs between the alloy system in the case of the manufacturing method in which the density is increased during molding and the alloy system in the case of the manufacturing method in which the density is increased during sintering. In the former case, the sintering temperature range is preferably 500 to 570 ° C. If it is less than 500 ° C., the reaction amount with atmospheric nitrogen is poor, and the sintering phenomenon due to solid phase diffusion does not proceed sufficiently. Conversely, if the temperature exceeds 570 ° C, Al
When the eutectic point of —Si approaches 578 ° C., the alloy is softened and deformed, the precision is significantly deteriorated, and the structure is coarsened. The sintering temperature is set to 500 to 570 ° C. in order to sufficiently advance the sintering, ensure the accuracy, and suppress the coarsening of the structure. When higher accuracy is required, 520 to 550 ° C is desirable. On the other hand, in the latter case, the sintering temperature is higher than the liquidus generation temperature Tc of the metastable phase obtained by the rapid solidification method, and the temperature is lower than the melting point Tm of the powder. Of course, the liquid phase generation temperature Tc and the melting point Tm of the metastable phase differ depending on the alloy composition of the powder. In the alloy system of the present invention, the liquidus generation temperature of the metastable phase is around 500 ° C., and the melting point of the powder is around 580 ° C.
【0029】[焼結時間]成形体は、焼結温度域で適正
な時間加熱されて焼結される。焼結時間が、20〜30
分でも焼結は進行する。しかし、実際には焼結の均一性
やより高い強度を確保するために、1〜4時間の加熱を
行うことが望ましい。焼結時間が増加するにつれ雰囲気
窒素との反応量も増加し焼結現象が進行し緻密化しなが
ら耐摩耗性向上に有効な析出物の形態・大きさが変化す
る。それゆえ、焼結時間は、要求される特性や寸法精度
に応じて選定する必要がある。また、焼結時に高密度化
する製造法では、焼結時に液相が生じるため焼結の進行
が速く、成形時に高密度化する製造法の場合と比較して
かなり短時間でよい。[Sintering time] The molded body is heated and sintered in a sintering temperature range for an appropriate time. Sintering time 20-30
The sintering proceeds even in minutes. However, in practice, it is desirable to perform heating for 1 to 4 hours in order to ensure the uniformity of sintering and higher strength. As the sintering time increases, the reaction amount with nitrogen in the atmosphere also increases, the sintering phenomenon progresses, and the morphology and size of the precipitates effective for improving wear resistance change while densifying. Therefore, the sintering time must be selected according to the required characteristics and dimensional accuracy. Further, in the manufacturing method of densifying at the time of sintering, since a liquid phase is generated at the time of sintering, the progress of sintering is fast, and the manufacturing method of densifying at the time of molding can be performed in a considerably short time.
【0030】[焼結時の寸法変化]成形時に高密度化す
る製造法の合金系では、焼結時の寸法変化を抑えて高精
度焼結する事が可能となる。この寸法精度確保のための
寸法変化率は、1.5%以内とする。より高い寸法精度
が必要な場合は、1%以内であることが望ましい。[Dimensional Change During Sintering] In the alloy system of the manufacturing method in which the density is increased during forming, it is possible to suppress the dimensional change during sintering and perform high-precision sintering. The dimensional change rate for ensuring this dimensional accuracy is within 1.5%. If higher dimensional accuracy is required, it is desirable to be within 1%.
【0031】[焼結体密度比]焼結体のヤング率や機械
的特性は、焼結体密度比が高い方が優れる。成形時に高
密度化する焼結合金系で引張強度25kg/mm2を、また、
焼結時に高密度化する焼結合金系で引張強度30kg/mm2
を確保するためには、焼結体密度比は90%以上とする
必要がある。より高い機械的特性等が要求される場合
は、密度比97%以上の焼結体を製造することも可能で
ある。また、密度比を94〜96%程度にすると良好な
サイジングやコイニングが可能となり高精度の製品を得
ることができる。また、焼結体中の気孔に含油すれば潤
滑性を持たせることもできる。この様な効果を持たすた
めに焼結密度比の上限を99%とする。[Sintered Body Density Ratio] The higher the sintered body density ratio, the better the Young's modulus and mechanical properties of the sintered body. With a sintered alloy system that densifies during molding, tensile strength of 25 kg / mm 2
Sintered alloy system that densifies during sintering and has a tensile strength of 30 kg / mm 2
In order to secure the above, the density ratio of the sintered body needs to be 90% or more. When higher mechanical properties and the like are required, it is possible to manufacture a sintered body having a density ratio of 97% or more. Further, when the density ratio is about 94 to 96%, good sizing and coining are possible, and a highly accurate product can be obtained. Further, if the pores in the sintered body are impregnated with oil, lubricity can be provided. In order to have such an effect, the upper limit of the sintering density ratio is set to 99%.
【0032】[成形時に高密度化する場合の合金組成]
成形時に高密度化する製法における原料粉末への要件
は、成形前のマトリックスが軟質であることである。よ
って、合金成分を次のように限定する必要がある。Mg
成分は、本発明において不可欠な成分であるが、前述し
た0.4〜4.0重量%の範囲では焼鈍処理を施せば、
粉末の成形性や圧縮性を大きく損なうことはない。しか
し、マトリックスの強度やマトリックスの硬度を上げて
耐摩耗性を改善したり、耐熱性を改善を図るために、C
u,Mn,Fe,Ni等を含有させる場合は、添加の総
量が2.0wt%を越えると成形時の圧縮性が悪化するた
め、これらの総量は2重量%を上限とした。また、成形
性や圧縮性を損なわずに材料の特性を改善する添加元素
として、マトリックスへの固溶量が少なく粒子分散型組
織を呈するSi成分を見いだした。Siの添加は熱膨張
率の低下、剛性の向上、耐摩耗性の改善等に効果があ
る。この効果は、Si添加量が4.0wt%以下では小さ
い為、本発明では添加下限量を4.0wt%とした。Si
添加量が40.0wt%を越えると成形性や圧縮性への悪
影響も無視できなくなる上、焼結体中のSi晶径が大き
くなり靭性が劣化し、被削性も悪化するため、添加上限
量を40.0wt%とした。本合金系は、SiとMgを含
むので熱処理が可能である。[Alloy composition when densifying at the time of forming]
The requirement for the raw material powder in the manufacturing method of densifying at the time of molding is that the matrix before molding is soft. Therefore, it is necessary to limit the alloy components as follows. Mg
The component is an essential component in the present invention, but if the annealing treatment is applied in the range of 0.4 to 4.0% by weight described above,
It does not significantly impair the moldability and compressibility of the powder. However, in order to improve the wear resistance and the heat resistance by increasing the strength of the matrix and the hardness of the matrix, C
When u, Mn, Fe, Ni and the like are contained, if the total amount of addition exceeds 2.0 wt%, the compressibility at the time of molding deteriorates, so the upper limit of these total amounts is 2 wt%. Further, as an additional element that improves the characteristics of the material without impairing the moldability and compressibility, the inventors have found a Si component that has a small amount of solid solution in the matrix and exhibits a particle-dispersed structure. The addition of Si is effective in lowering the coefficient of thermal expansion, improving rigidity, improving wear resistance and the like. Since this effect is small when the Si addition amount is 4.0 wt% or less, the lower addition amount is set to 4.0 wt% in the present invention. Si
If the addition amount exceeds 40.0 wt%, adverse effects on formability and compressibility cannot be ignored, and the Si crystal size in the sintered body becomes large, the toughness deteriorates and machinability deteriorates. The limiting amount was 40.0 wt%. Since the alloy system contains Si and Mg, heat treatment is possible.
【0033】[焼結時に高密度化する場合の合金組成]
焼結時に準安定相を液化させて高密度化を図る製法での
合金組成には、準安定相を形成するに必要なCuの添加
が不可欠である。Cuの添加量が少ないと準安定相が生
成しなかったり、生成しても緻密化に必要な液相量が得
られない。Cuの添加量が多いと液相量が多くなり寸法
精度が悪くなる。よって準安定相を必要量生成させるた
めのCu添加量は1.0〜8.0重量%である。本系合
金はMgも同時に含有しており時効硬化熱処理が可能で
ある。液相焼結により緻密化を図る焼結法では、成形時
に高密度化する必要性が低く、耐摩耗性や耐熱性に優れ
る硬質な粉末を用いることができる。Cuは、準安定相
の生成のための必須成分である他、マトリックスを硬質
化する。さらに、同時に特性改善効果に優れる成分とし
てFe,Ni,Mn等の遷移元素がある。Fe,Ni,
Mnの遷移元素の添加は、熱膨張率の低下、剛性の向
上、耐摩耗性の改善等に効果がある。従来の鍛造法で
は、これら遷移元素は少量しか添加できない。本発明で
用いる急冷凝固法によれば高濃度で添加可能で、急冷凝
固時に硬質で微細な晶出物・析出物を生成し、合金の耐
焼き付き性や強度を大きく向上させる。また、この晶出
物・析出物は比較的熱的にも安定であり、耐熱性の改善
に有効であり、焼結温度域においても粗大化の程度が小
さい。この効果は、全含有量(Ni+Fe+Mn)量が
5.0wt%以下では小さいので、5.0wt%以上が望ま
しい。反対に(Ni+Fe+Mn)量が30.0wt%を
越えると溶解温度が高くなり溶湯にすることが難しくな
る上、焼結体中の析出物が大きくなり靭性が劣化し、被
削性も悪化するため望ましくない。従って、(Fe+N
i+Mn)添加量は5.0〜30.0wt%が望ましい。
さらに、機械的・物理的特性を改善する必要がある場合
は、SiあるいはTi、Cr,V,Mo,Zr等の添加
が有効である。特に、Siの添加効果は、前述の通り熱
膨張率の低下、剛性の向上、耐摩耗性の改善等に有効で
ある。しかし、液相焼結の場合は、Si晶が粗大化し靭
性が低下するため、成形時に高密度化する焼結法に比較
して添加可能な量が少なくなる。本発明者は、この準安
定相の液化現象を利用したAl−高Si合金の焼結法を
特願平3−124846で開示しているが、この場合は
Si添加量が多いため、材料の靭性や信頼性を必要とす
る用途には問題があった。そこで、本発明では、遷移元
素の添加により靭性を維持し熱膨張や耐摩耗性を向上さ
せることが可能で、Si添加量の上限は靭性を大きく劣
化させない8.0重量%とした。また、Ti,Cr,
V,Mo,Zrの成分は高価である上、添加量が8.0
重量%を越えると靭性を低下させるため、添加上限量を
8.0重量%とした。本発明においてはこれらの元素は
含有しなくても良い。[Alloy composition when densifying during sintering]
The addition of Cu necessary for forming the metastable phase is indispensable for the alloy composition in the manufacturing method in which the metastable phase is liquefied during sintering to increase the density. If the addition amount of Cu is small, a metastable phase is not formed, or even if it is formed, the liquid phase amount required for densification cannot be obtained. If the amount of Cu added is large, the amount of liquid phase becomes large and the dimensional accuracy becomes poor. Therefore, the amount of Cu added to generate a necessary amount of the metastable phase is 1.0 to 8.0% by weight. This system alloy contains Mg at the same time and can be subjected to age hardening heat treatment. In the sintering method for achieving densification by liquid phase sintering, it is possible to use a hard powder which is less required to have a high density during molding and is excellent in wear resistance and heat resistance. Cu is an essential component for forming a metastable phase and hardens the matrix. Further, at the same time, there are transition elements such as Fe, Ni, Mn, etc. as the components excellent in the characteristic improving effect. Fe, Ni,
The addition of the transition element of Mn is effective in lowering the coefficient of thermal expansion, improving rigidity, improving wear resistance and the like. Conventional forging methods can only add small amounts of these transition elements. According to the rapid solidification method used in the present invention, it can be added at a high concentration, and hard and fine crystallized substances / precipitates are formed during rapid solidification, and the seizure resistance and strength of the alloy are greatly improved. Further, these crystallized substances / precipitates are relatively thermally stable and effective in improving heat resistance, and the degree of coarsening is small even in the sintering temperature range. This effect is small when the total content (Ni + Fe + Mn) is 5.0 wt% or less, so 5.0 wt% or more is desirable. On the other hand, if the amount of (Ni + Fe + Mn) exceeds 30.0 wt%, the melting temperature becomes high and it becomes difficult to make it into a molten metal, and the precipitates in the sintered body become large and the toughness deteriorates and machinability also deteriorates. Not desirable. Therefore, (Fe + N
The amount of i + Mn) added is preferably 5.0 to 30.0 wt%.
Further, when it is necessary to improve mechanical / physical properties, addition of Si or Ti, Cr, V, Mo, Zr, etc. is effective. In particular, the effect of adding Si is effective in reducing the coefficient of thermal expansion, improving rigidity, improving wear resistance, etc., as described above. However, in the case of liquid phase sintering, since the Si crystal becomes coarse and the toughness decreases, the amount that can be added becomes smaller than in the sintering method in which the density is increased during molding. The present inventor discloses a sintering method of an Al-high Si alloy utilizing the liquefaction phenomenon of the metastable phase in Japanese Patent Application No. 3-124846. In this case, however, since the amount of Si added is large, the material There was a problem in applications requiring toughness and reliability. Therefore, in the present invention, it is possible to maintain toughness and improve thermal expansion and wear resistance by adding a transition element, and the upper limit of the amount of Si added is 8.0% by weight, which does not significantly deteriorate toughness. In addition, Ti, Cr,
The components of V, Mo and Zr are expensive and the addition amount is 8.0.
Since the toughness is deteriorated when the content exceeds 10% by weight, the upper limit of addition is set to 8.0% by weight. In the present invention, these elements may not be contained.
【0034】[硬質粒子の分散]特に機械的・物理的特
性の改善が必要な場合は、微細粒子の分散によって改善
することが出来る。分散粒子としては、複合化すること
で熱膨張率・剛性・強度・耐摩耗性等が改善できるもの
であればよく、焼結で分散拡散もしくは凝縮成長しない
ことが望ましい。このために選ばれる粒子は、金属間化
合物、炭化物、酸化物、窒化物、ほう化物、硅化物など
である。例を列げる。 金属間化合物・遷移金属アルミナイド、遷移金属間化
合物 炭化物・・・アルミカーバイド、シリコンカーバイ
ド、チタンカーバイド、ボロンカーバイド等 酸化物・・・アルミナ、シリカ、ムライト、酸化亜
鉛、イットリア等 窒化物・・・アルミナイトライド、窒化珪素、チタン
ナイトライド等 ほう化物・・・チタンボライド等 硅化物・・・モリブデンシリサイド等[Dispersion of Hard Particles] Especially when improvement of mechanical and physical properties is required, it is possible to improve by dispersion of fine particles. As the dispersed particles, any particles that can improve the thermal expansion coefficient, rigidity, strength, wear resistance and the like by forming a composite may be used, and it is desirable that the dispersed particles do not disperse or diffuse or grow by sintering. The particles selected for this purpose are intermetallic compounds, carbides, oxides, nitrides, borides, silicides and the like. I will give an example. Intermetallic compounds / transition metal aluminides, transition intermetallic compounds Carbides: aluminum carbide, silicon carbide, titanium carbide, boron carbide, etc. Oxides: alumina, silica, mullite, zinc oxide, yttria, etc. Nitride: aluminum Nitride, silicon nitride, titanium nitride, etc. Boride: titanium boride, etc. Silicide: molybdenum silicide, etc.
【0035】[分散粒子の粒径]粒子の大きさも重要な
因子である。これも主たる目的によって異なる。 分散強化を目的とする場合・・・0.1〜1μm 分散物によって転移の動きを止める働きを持たせる。こ
の場合は0.1〜1μm程度の細かい粒径のものが望ま
しい。 複合効果を目的とする場合・・・1〜20μm 複合粒子のマトリックス界面での結合度を確保し体積率
を高めるためである。 耐摩耗性改善を目的とする場合・・・5〜30μm 摺動により粒子が脱落しないように5〜30μmの比較
的粗い粒子を分散させる。これらの粒子は単独で添加し
ても良いし、複数種類添加しても良い。[Particle Size of Dispersed Particles] Particle size is also an important factor. This also depends on the main purpose. For the purpose of strengthening dispersion: 0.1 to 1 μm Dispersion has a function of stopping the movement of transition. In this case, a fine particle size of 0.1 to 1 μm is desirable. In the case of aiming at a composite effect: 1 to 20 μm This is to secure the degree of bonding at the matrix interface of the composite particles and increase the volume ratio. For the purpose of improving wear resistance: 5 to 30 μm Disperse relatively coarse particles of 5 to 30 μm so that the particles do not fall off by sliding. These particles may be added alone or in plural kinds.
【0036】[分散粒子の量]分散粒子の量が、0.5
体積%以下であると粒子を添加した効果が現れない。反
対に30重量%を越えると被削性や靭性が劣る。従っ
て、分散粒子の量は0.5〜30重量%とするのが望ま
しい。[Amount of dispersed particles] The amount of dispersed particles is 0.5.
If it is less than the volume%, the effect of adding particles does not appear. On the other hand, if it exceeds 30% by weight, machinability and toughness are poor. Therefore, the amount of dispersed particles is preferably 0.5 to 30% by weight.
【0037】[分散粒子の添加手段]分散粒子の添加手
段としては、原料粉末にこれら分散粒子を混合する混合
法が経済的かつ容易であり、物理的特性値の改善には効
果がある。しかし、単純な混合法では、分散させた粒子
が旧粉末粒界にのみ存在し粉末内に粒子を分散させるこ
とができず、粒子分散による特性改善が十分はかりにく
い。また、微細な粒子を分散する場合には粉末粒子間の
焼結結合を阻害するのでふさわしくない。この解決には
粉末粒子内に分散させることが有効であり、その方法と
しては、つぎの2つの方法がある。 粉末製造時において分散粒子を含有させた溶湯を粉末
化する方法。 これは、粒子を添加した溶湯を急冷凝固法によって粉末
化する方法である。粉末化する前に粒子を添加するので
粉末の内部に粒子が分散する。粒子の偏析や凝集を防ぐ
ため溶解鋳造法により予め製造した分散粒子を均一に含
有するインゴットを用いたり、溶湯中に分散粒子を添加
して攪拌能力の高い誘導溶解したりする必要がある。 分散粒子を添加した混合粉末を機械的粉砕再凝集処理
する方法 これは、急冷凝固粉末に、粒子を添加し機械的に粉砕し
再凝集する方法である。この機械的粉砕再凝集処理によ
ってアルミニウム合金粉末中に添加粒子を微細均一に一
体化できる。また、処理中に炭化物、酸化物あるいは金
属間化合物は機械的粉砕再凝集処理により生成分散させ
ることも可能である。この処理は、従来のボールミル粉
砕や混合のような湿式法ではなく乾式でおこなう。場合
によってPCA(Process Control Agent )としてステ
アリン酸やアルコールなどを少量添加することで過度の
凝集を防ぐこともある。処理装置はアトライターが高速
処理に適している。一方、ボールミルは、長時間処理が
必要となるが雰囲気制御が容易であり、投入エネルギー
の設計さえ適切に行なえば比較的経済性に優れている。
このようにして得られた処理粉末は含有されていた分散
粒子が微粉砕され粉末中に均一に分散しており、該粉末
を焼成すれば微細な粒子を均一に偏析なく分散させたア
ルミニウム基粒子複合焼結合金が製造できる。[Means for Adding Dispersed Particles] As a means for adding dispersed particles, a mixing method in which these dispersed particles are mixed with the raw material powder is economical and easy, and is effective in improving physical property values. However, in the simple mixing method, the dispersed particles exist only in the old powder grain boundaries and the particles cannot be dispersed in the powder, and it is difficult to sufficiently improve the characteristics by dispersing the particles. Further, when fine particles are dispersed, it hinders the sintering bond between the powder particles and is not suitable. To solve this problem, it is effective to disperse it in powder particles, and there are the following two methods. A method of pulverizing a molten metal containing dispersed particles during powder production. This is a method in which a molten metal containing particles is pulverized by a rapid solidification method. Since the particles are added before pulverization, the particles are dispersed inside the powder. In order to prevent the particles from segregating or agglomerating, it is necessary to use an ingot produced by a melt casting method and which contains dispersed particles uniformly, or to add the dispersed particles to a molten metal to induce induction melting with a high stirring ability. Method of mechanically pulverizing and reaggregating mixed powder to which dispersed particles are added This is a method of adding particles to rapidly solidified powder and mechanically pulverizing and reaggregating. By this mechanical pulverization reaggregation treatment, the added particles can be finely and uniformly integrated into the aluminum alloy powder. It is also possible to generate and disperse carbides, oxides or intermetallic compounds during the treatment by mechanical pulverization reaggregation treatment. This treatment is performed by a dry method instead of a conventional wet method such as ball milling and mixing. In some cases, excessive aggregation may be prevented by adding a small amount of stearic acid or alcohol as a PCA (Process Control Agent). Attritor is suitable for high-speed processing. On the other hand, the ball mill requires a long treatment time, but the atmosphere control is easy, and it is relatively economical if the input energy is properly designed.
Dispersed particles contained in the treated powder thus obtained were finely pulverized and uniformly dispersed in the powder, and by firing the powder, aluminum-based particles in which fine particles were uniformly dispersed without segregation A composite sintered alloy can be manufactured.
【0038】[サイジング・コイニング]焼結体は、内
部に気孔を有しているため、サイジングやコイニングが
可能であり表面粗度や寸法精度を大きく改善することが
できる。熱処理体でのサイジングやコイニングの加工も
可能である。[Sizing / Coining] Since the sintered body has pores inside, sizing and coining are possible, and surface roughness and dimensional accuracy can be greatly improved. It is also possible to process sizing and coining with a heat-treated body.
【0039】[0039]
〈実施例1〉エアアトマイズ法により製造した最大粒径
が300μm以下、平均粒径が35μmである下記表1
に示す,の2種類の粉末を用意した。<Example 1> The maximum particle size produced by the air atomizing method is 300 μm or less, and the average particle size is 35 μm.
Two kinds of powders shown in (1) were prepared.
【0040】[0040]
【表1】 [Table 1]
【0041】この粉末を400℃で焼鈍処理を施した
後、ミリスチン酸のアセトン溶液を金型に塗布し成形圧
力7t/cm2 で10×10×55mmの試験片に成形した。
成形体は、窒素化合促進成分ガスを0.005atm 導入
した下記3種類の常圧雰囲気中で540℃にて4時間焼
結した。 (a)窒素分圧0.99atm 以上、水蒸気分圧0.005a
tm 以下の常圧雰囲気中 (b)アルゴン分圧0.99atm 以上、水蒸気分圧0.0
05atm 以下の常圧雰囲気中 (c)窒素分圧0.90atm 以上、水蒸気分圧0.05atm
以上の常圧雰囲気中 焼結体は焼結温度と同一温度で溶体化処理した後に17
0℃で時効処理を施した。表2に、焼結時の寸法変化率
及び特性値を示した。After the powder was annealed at 400 ° C., an acetone solution of myristic acid was applied to a mold and molded into a test piece of 10 × 10 × 55 mm at a molding pressure of 7 t / cm 2 .
The molded body was sintered at 540 ° C. for 4 hours in the following three kinds of normal pressure atmospheres containing 0.005 atm of a nitrogen compound promoting component gas. (a) Nitrogen partial pressure 0.99 atm or more, steam partial pressure 0.005a
Atmospheric pressure below tm (b) Argon partial pressure 0.99 atm or more, steam partial pressure 0.0
Atmospheric pressure atmosphere of 05 atm or less (c) Nitrogen partial pressure 0.90 atm or more, steam partial pressure 0.05 atm
In the above atmospheric pressure atmosphere, the sintered body is subjected to solution treatment at the same temperature as the sintering temperature, and then 17
Aging treatment was performed at 0 ° C. Table 2 shows the dimensional change rate and characteristic values during sintering.
【0042】[0042]
【表2】 [Table 2]
【0043】水蒸気分圧を抑えた窒素雰囲気中において
窒素と化合させながら焼結することにより優れた特性を
有する焼結合金が得られるのが判る。図1に、粉末組成
及びの焼結体中に観察できる窒素化合物の走査型電
子顕微鏡による組織を示す。It can be seen that a sintered alloy having excellent properties can be obtained by sintering while combining with nitrogen in a nitrogen atmosphere in which the partial pressure of water vapor is suppressed. FIG. 1 shows a structure of a nitrogen compound which can be observed in a sintered body having a powder composition and a scanning electron microscope.
【0044】〈実施例2〉エアアトマイズ法により製造
した最大粒径が300μm以下、平均粒径が42μmで
ある下記表3に示す,の2種類の粉末を用意した。Example 2 Two kinds of powders, shown in Table 3 below, having a maximum particle size of 300 μm or less and an average particle size of 42 μm manufactured by the air atomization method were prepared.
【0045】[0045]
【表3】 [Table 3]
【0046】この粉末を300℃で焼鈍処理を施した
後、ミリスチン酸のアセトン溶液を金型に塗布し成形圧
力7t/cm2 で成形体密度比93.0〜93.5%の範囲
になるように10×10×55mmの試験片に成形した。
成形体は、還元ガスを0.004atm 添加した窒素分圧
0.99atm 以上、水蒸気分圧0.003atm 以下の常
圧雰囲気中で560℃にて0.5〜4時間焼結し水冷し
た。表4に、焼結体の特性値を示した。図2には、4時
間焼結した焼結体の顕微鏡組織を示した。After the powder is annealed at 300 ° C., an acetone solution of myristic acid is applied to the mold and the compact density is in the range of 93.0-93.5% at a compacting pressure of 7 t / cm 2. Thus, a test piece of 10 × 10 × 55 mm was molded.
The compact was sintered and water-cooled at 560 ° C. for 0.5 to 4 hours in a normal pressure atmosphere containing a reducing gas of 0.004 atm and a nitrogen partial pressure of 0.99 atm or more and a steam partial pressure of 0.003 atm or less. Table 4 shows the characteristic values of the sintered body. FIG. 2 shows the microstructure of the sintered body that was sintered for 4 hours.
【0047】[0047]
【表4】 [Table 4]
【0048】Mgの含有により、旧粉末粒界を越えてS
iが拡散しオストワルド成長しており、焼結性が著しく
改善されているのが観察でき、優れた焼結体特性が得ら
れているのが判る。Due to the inclusion of Mg, S exceeds the old powder grain boundary.
It can be observed that i is diffused and Ostwald grown, and the sinterability is remarkably improved, and it can be seen that excellent sintered body characteristics are obtained.
【0049】〈実施例3〉エアアトマイズ法により製造
した粒径が5〜149μmの下記〜の3種類のAl
−Si系合金粉末を用意した。 Al−9.0Si−1.4Mg−0.5Cu−0.3
Mn−0.5Fe合金粉末 Al−16.6Si−1.5Mg−0.5Cu−0.
4Mn−0.6Fe合金粉末 Al−24.8Si−1.8Mg−0.4Cu−0.
3Mn−0.7Fe合金粉末 この粉末を400℃で焼鈍後、粉状の潤滑剤を1wt%添
加して混合粉末を機械的造粒装置で20〜400μmの
大きさに造粒した。造粒粉末は、油圧の200tプレス
を用いて加圧面積が26cm2 の図6に示すようなサイド
プレート形状に成形密度が90〜94%になるように成
形した。成形体は、還元ガスを0.002atm 添加した
水蒸気分圧が0.003atm 以下であるN2 ガスを流入
させた炉中で焼結した。炉内温度は540℃にして、炉
内での加熱時間は2Hrとした。焼結体は焼結後に水冷
し、170℃×8Hrの時効処理を施した。表5に焼結
時の寸法変化率と特性を示した。図3に熱処理体及び鋳
造A390合金の熱処理材の組織写真を示した。尚、比
較材としてAl粉末+Si粉末+Mg粉末を混合し組成
相当の混合粉末を作製し同一の製造条件で製造したも
のの特性及び鋳造ADC12材の特性も示した。Example 3 The following three types of Al having a particle size of 5 to 149 μm produced by the air atomizing method are described below.
-Si-based alloy powder was prepared. Al-9.0Si-1.4Mg-0.5Cu-0.3
Mn-0.5Fe alloy powder Al-16.6Si-1.5Mg-0.5Cu-0.
4Mn-0.6Fe alloy powder Al-24.8Si-1.8Mg-0.4Cu-0.
3Mn-0.7Fe alloy powder This powder was annealed at 400 ° C., 1 wt% of powdery lubricant was added, and the mixed powder was granulated into a size of 20 to 400 μm by a mechanical granulator. The granulated powder was molded using a hydraulic 200t press into a side plate shape with a pressing area of 26 cm 2 as shown in FIG. 6 so that the molding density was 90 to 94%. The compact was sintered in a furnace in which a reducing gas of 0.002 atm was added and N 2 gas having a water vapor partial pressure of 0.003 atm or less was introduced. The temperature in the furnace was 540 ° C., and the heating time in the furnace was 2 Hr. The sintered body was water-cooled after sintering and was subjected to an aging treatment at 170 ° C. × 8 Hr. Table 5 shows the dimensional change rate and characteristics during sintering. FIG. 3 shows microstructure photographs of the heat-treated body and the heat-treated material of the cast A390 alloy. As a comparative material, the characteristics of the Al2 powder + Si powder + Mg powder were mixed to prepare a mixed powder corresponding to the composition and manufactured under the same manufacturing conditions, and the characteristics of the cast ADC12 material are also shown.
【0050】[0050]
【表5】 [Table 5]
【0051】本発明法によると、サイドプレートのよう
な複雑形状を有する製品を、熱膨張が低く特性に優れた
アルミ焼結合金で高精度で経済的に製造できるのが判
る。It can be seen that according to the method of the present invention, a product having a complicated shape such as a side plate can be economically manufactured with high precision using an aluminum sintered alloy having a low thermal expansion and excellent characteristics.
【0052】〈実施例4〉エアアトマイズ法により製造
した下記表6に示す〜の4種類のAl−Fe−Ni
−Mn系合金粉末を用意した。Example 4 Four kinds of Al-Fe-Ni shown in Table 6 below produced by the air atomizing method
-Mn-based alloy powder was prepared.
【0053】[0053]
【表6】 [Table 6]
【0054】次に、105μm以下の粉末に分級した粉
末を400℃で焼鈍後、粉状潤滑剤を1wt%添加した混
合粉末を面圧6〜8t/cm2 で10×10×55mmの試験
片に成形し密度比が82〜88%の成形体を作成した。
成形体は、還元ガスを0.002atm 添加した水蒸気分
圧が0.003atm 以下であるN2 ガスを流入させたベ
ルト炉中で焼結した。炉内温度は540℃にして、炉内
での加熱時間は1Hrとした。焼結体は焼結後に水冷
し、170℃×8Hrの時効処理を施した。表7に焼結
体の特性を示した。図4に焼結体の顕微鏡組織を示す。
各焼結体は、サイジングを実施したところ最大表面粗度
が3μm、寸法精度は10μmと向上した。尚、比較材
として組成相当の合金を、凝固速度の遅い149〜3
50μmの粉末を用いて同条件で製造した焼結合金、及
びAl−4.4Ni−5.5Fe−0.4Mn粉末にC
u粉末を4wt%とMg粉末を2.5wt%添加した混合粉
末を用いて同条件で製造した焼結合金、さらに鋳造法に
て製造した鋳造合金の熱処理材特性を示した。Then, the powder classified to a powder of 105 μm or less was annealed at 400 ° C., and a mixed powder containing 1 wt% of a powdery lubricant was added to a test piece of 10 × 10 × 55 mm at a surface pressure of 6 to 8 t / cm 2. Was molded into a molded body having a density ratio of 82 to 88%.
The compact was sintered in a belt furnace in which a reducing gas of 0.002 atm was added and N 2 gas having a water vapor partial pressure of 0.003 atm or less was introduced. The furnace temperature was 540 ° C., and the heating time in the furnace was 1 hr. The sintered body was water-cooled after sintering and was subjected to an aging treatment at 170 ° C. × 8 Hr. Table 7 shows the characteristics of the sintered body. FIG. 4 shows the microstructure of the sintered body.
When sizing was performed on each sintered body, the maximum surface roughness was improved to 3 μm and the dimensional accuracy was improved to 10 μm. As a comparative material, an alloy having a composition corresponding to 149 to 3 having a slow solidification rate was used.
Sintered alloy manufactured under the same conditions using 50 μm powder, and Al-4.4Ni-5.5Fe-0.4Mn powder with C
The heat-treated material characteristics of a sintered alloy produced under the same conditions using a mixed powder containing 4 wt% of u powder and 2.5 wt% of Mg powder, and a cast alloy produced by the casting method are shown.
【0055】[0055]
【表7】 [Table 7]
【0056】凝固速度の速い粉末を用いると準安定化相
の液化により緻密化が進行し、鋳造法では製造できない
優れた特性を有する合金を製造できる。本発明の焼結体
の切削粉を加熱しても液相の発生は見つけられず、準安
定化相が全て安定化相に遷移していることが判る。When a powder having a fast solidification rate is used, densification proceeds due to liquefaction of the metastabilized phase, and an alloy having excellent properties which cannot be produced by the casting method can be produced. No generation of a liquid phase was found even when the cutting powder of the sintered body of the present invention was heated, and it can be seen that the metastabilized phase has all transitioned to the stabilized phase.
【0057】〈実施例5〉表8に示す2種類の地金を溶
解した溶解炉中に、平均粒径が4μmのAl2 O3 粒子
を2.0体積%及び平均粒径が9μmのSiC粒子を1
0体積%添加した後に、エアアトマイズ法により平均粒
径が40μm程度の粒子分散複合粉末を製造した。Example 5 In a melting furnace in which two types of metal shown in Table 8 are melted, 2.0% by volume of Al 2 O 3 particles having an average particle diameter of 4 μm and SiC having an average particle diameter of 9 μm are used. 1 particle
After adding 0% by volume, a particle-dispersed composite powder having an average particle size of about 40 μm was manufactured by the air atomization method.
【0058】[0058]
【表8】 [Table 8]
【0059】この粉末を400℃で焼鈍処理を施した
後、ステアリン酸のアセトン溶液を金型に塗布し成形圧
力7〜8t/cm2 で10×10×55mmの試験片に成形し
た。成形体は、還元ガスを0.002atm 添加した窒素
分圧0.99atm 以上、水蒸気分圧0.005atm 以下
の常圧雰囲気中で550℃にて2時間焼結した後、熱処
理を施した。表9に熱処理体の特性値を示した。After the powder was annealed at 400 ° C., an acetone solution of stearic acid was applied to a mold and molded into a test piece of 10 × 10 × 55 mm at a molding pressure of 7 to 8 t / cm 2 . The compact was sintered for 2 hours at 550 ° C. in a normal pressure atmosphere containing a reducing gas of 0.002 atm and a nitrogen partial pressure of 0.99 atm or more and a water vapor partial pressure of 0.005 atm or less, and then heat-treated. Table 9 shows the characteristic values of the heat-treated body.
【0060】[0060]
【表9】 [Table 9]
【0061】粒子の分散により物理的・機械的特性が改
善されていることが判る。It can be seen that the physical and mechanical properties are improved by the dispersion of the particles.
【0062】〈実施例6〉エアアトマイズ法により製造
した最大粒径が300μm以下、平均粒径が35μmで
ある下記表10に示す,の2種類の粉末を用意し
た。Example 6 Two kinds of powders, shown in Table 10 below, having a maximum particle size of 300 μm or less and an average particle size of 35 μm manufactured by the air atomization method were prepared.
【0063】[0063]
【表10】 [Table 10]
【0064】この粉末に平均粒径1.2μmのイットリ
ア粒子を2体積%を混合したのちに高エネルギーボール
ミルを用いて機械的粉砕再凝集処理を行なった。この粉
末を420℃で焼鈍処理を施した後に金型にステアリン
酸のアセトン溶液を塗布し、面圧11t/cm2 で30×4
0mmのタブレットに成形した。成形体は、還元ガスを
0.02atm 添加した窒素分圧0.99atm 以上、水蒸
気分圧0.005atm 以下の常圧雰囲気中で540℃に
て4時間焼結し熱処理を施した。焼結体はコイニング加
工を施し真円度を10μmのタブレットとした。表11
に、熱処理体の特性値を示した。This powder was mixed with 2% by volume of yttria particles having an average particle size of 1.2 μm, and then mechanically pulverized and reaggregated using a high energy ball mill. This powder is annealed at 420 ° C., and then an acetone solution of stearic acid is applied to the die, and the surface pressure is set to 30 × 4 at a surface pressure of 11 t / cm 2.
Molded into 0 mm tablets. The compact was sintered and heat-treated at 540 ° C. for 4 hours in a normal pressure atmosphere containing a reducing gas of 0.02 atm and a nitrogen partial pressure of 0.99 atm or more and a steam partial pressure of 0.005 atm or less. The sintered body was subjected to coining to give a tablet having a roundness of 10 μm. Table 11
The characteristic values of the heat-treated body are shown in FIG.
【0065】[0065]
【表11】 [Table 11]
【0066】粒子の分散により物理的・機械的特性が改
善されていることが判る。It can be seen that the dispersion of the particles improves the physical and mechanical properties.
【0067】〈実施例7〉エアアトマイズ法により製造
した最大粒径が300μm以下、平均粒径が35μmで
ある下記表12に示す,の2種類の粉末を用意し
た。Example 7 Two kinds of powders, shown in Table 12 below, having a maximum particle size of 300 μm or less and an average particle size of 35 μm manufactured by the air atomizing method were prepared.
【0068】[0068]
【表12】 [Table 12]
【0069】この粉末を350℃で焼鈍後に2024
(Al−4.1Cu−1.4Mg−0.4Mn−0.3
Si)合金粉末を、10及び20重量%添加し、更に1
重量%の粉潤滑剤を添加しVブレンダーで混合した。混
合粉末を面圧7t/cm2 で10×10×55mmの試験片に
成形した。成形体は、還元ガスを0.04atm 添加した
窒素分圧0.99atm 以上、水蒸気分圧0.005atm
以下の常圧雰囲気中で550℃にて2時間焼結した後、
熱処理を施した。表13に、熱処理体の特性値を示し
た。図5に540℃で焼結した粉末に2024粉末を
10重量%混合した熱処理体及び粉末に2024粉末
を10重量%混合した熱処理体の組織写真を示した。After this powder was annealed at 350 ° C., 2024
(Al-4.1Cu-1.4Mg-0.4Mn-0.3
Si) alloy powder is added in an amount of 10 and 20% by weight, and further 1
A powder lubricant of weight% was added and mixed in a V blender. The mixed powder was molded into a test piece of 10 × 10 × 55 mm with a surface pressure of 7 t / cm 2 . The molded product has a nitrogen partial pressure of 0.99 atm or more with a reducing gas added of 0.04 atm and a steam partial pressure of 0.005 atm.
After sintering at 550 ° C. for 2 hours in the following atmospheric pressure atmosphere,
Heat treatment was applied. Table 13 shows the characteristic values of the heat-treated body. FIG. 5 shows microstructure photographs of the heat-treated body obtained by mixing 1024% by weight of 2024 powder with the powder sintered at 540 ° C. and the heat-treated body obtained by mixing 10% by weight of 2024 powder with the powder.
【0070】[0070]
【表13】 [Table 13]
【0071】軟質粉末の混合添加により機械的特性が改
善されていることが判る。It can be seen that the mechanical properties are improved by the mixed addition of the soft powder.
【0072】〈実施例8〉実施例2で評価した粉末を用
いて焼結材及び粉末鍛造材を作製した。焼結材の作製条
件は、実施例2に準じ焼結時間は4Hrとした。Example 8 Using the powder evaluated in Example 2, a sintered material and a powder forged material were produced. The sintering conditions were the same as in Example 2 except that the sintering time was 4 hours.
【0073】試験は、リング状試験片とプレート状試験
片を湿式で摺動させるスラスト式摩擦試験機を用いた。
プレート材はA390(Al−17Si合金)材の熱処
理材とした。摺動面積は1.2cm2 で摺動速度は4m/
秒一定とし、荷重はステップアップ式1分毎に5kgf
づつ増加させて500kgf迄加圧するが、最終荷重に
いたる前に焼き付きが発生すると試験機は停止し、その
荷重を焼き付き荷重とした。表14に試験の結果を示し
たが、本発明焼結材と粉末鍛造材に比較して耐摩耗性に
有効な適当形態のSi晶あるいは硬質析出物が均一に分
散しており、優れた耐摩耗特性を有している。特に焼結
材はHmv200を越えるマトリックス組織を呈してお
り耐摩耗性に優れている。For the test, a thrust type friction tester in which a ring-shaped test piece and a plate-shaped test piece were slid in a wet manner was used.
The plate material was a heat-treated material of A390 (Al-17Si alloy) material. Sliding area is 1.2 cm 2 and sliding speed is 4 m /
With a constant second, the load is 5 kgf per minute for step-up type
The pressure was gradually increased to 500 kgf, but if seizure occurred before reaching the final load, the tester stopped and the load was taken as the seizure load. Table 14 shows the results of the test. Compared with the sintered material of the present invention and the powder forged material, Si crystals or hard precipitates in an appropriate form effective for wear resistance are uniformly dispersed, and excellent resistance to wear is obtained. Has wear characteristics. In particular, the sintered material has a matrix structure exceeding Hmv200 and is excellent in wear resistance.
【0074】[0074]
【表14】 [Table 14]
【0075】〈実施例9〉エアアトマイズ法により製造
した最大粒径が105μm以下、平均粒径が38μmで
あるAl−5.5Mn−3.4Ni−1.4Fe−3.
7Cu−2.2Mg合金粉末を用意した。この粉末を4
00℃で焼鈍処理を施した後、粉潤滑剤を0.7wt%混
合し成形圧力7t/cm2 で40×16×5mmの試験片に成
形した。成形は、還元ガスを0.003atm 添加した窒
素分圧0.99atm 以上、水蒸気分圧0.04atm 以下
の常圧雰囲気中で540℃にて2時間焼結した後、熱処
理を施した。熱処理体は、研削加工の後に両面を研磨し
38.8×15.6×4.4mmのロータリーコンプレッ
サー用摺動ベーンに加工した。Example 9 Al-5.5Mn-3.4Ni-1.4Fe-3.n having a maximum particle size of 105 μm or less and an average particle size of 38 μm manufactured by the air atomization method.
7Cu-2.2Mg alloy powder was prepared. 4 this powder
After annealing at 00 ° C., 0.7 wt% of powder lubricant was mixed and molded into a test piece of 40 × 16 × 5 mm at a molding pressure of 7 t / cm 2 . The molding was carried out by sintering at 540 ° C. for 2 hours in a normal pressure atmosphere containing a reducing gas of 0.003 atm and a nitrogen partial pressure of 0.99 atm or more and a water vapor partial pressure of 0.04 atm or less, followed by heat treatment. Both sides of the heat-treated body were ground and then polished to form a sliding vane for a rotary compressor of 38.8 × 15.6 × 4.4 mm.
【0076】また、エアアトマイズ法により製造した最
大粒径が149μm以下、平均粒径が42μmであるA
l−16.6Si−1.5Mg−0.5Cu−0.3M
n−0.6Fe合金粉末を用意した。この粉末を400
℃で焼鈍処理を施した後、粉潤滑剤を1wt%混合し成形
圧力6t/cm2 で、幅3.8mmのベーン溝を4溝持つ外径
59.5mmローター形状に成形した。成形は、ベーン材
と同一の常圧雰囲気中で540℃にて4時間焼結した
後、熱処理を施した。熱処理体は、端面を旋削加工の後
にベーン溝を研磨しコンプレッサーローターに加工し
た。The maximum particle size produced by the air atomization method is 149 μm or less, and the average particle size is 42 μm.
1-16.6Si-1.5Mg-0.5Cu-0.3M
An n-0.6Fe alloy powder was prepared. 400 this powder
After annealing at a temperature of 1 ° C., 1 wt% of a powder lubricant was mixed and molded at a molding pressure of 6 t / cm 2 into a rotor shape having an outer diameter of 59.5 mm and four vane grooves each having a width of 3.8 mm. The molding was carried out by sintering at 540 ° C. for 4 hours in the same atmospheric pressure atmosphere as the vane material, followed by heat treatment. As for the heat-treated body, after turning the end face, the vane groove was polished and processed into a compressor rotor.
【0077】次に、本焼結ローターと本焼結ベーンを組
み合わせて、回転数4800rpm で300Hr運転した
ところ、ローター材もベーン材も摩耗量は5μm以下で
あり、実用レベルであった。また、同一設計の鉄系コン
プレッサーに比べて、回転中の振動及び発生音が20%
以上も小さくなり、効率も8%向上した。さらに、ベー
ン材にNi−Pメッキを処理して同一回転数運転したと
ころ、1000Hrの運転後も効率の低下は見られなか
った。Next, when the main sinter rotor and the main sinter vane were combined and operated at 300 rpm for 4800 rpm, the wear amount of both the rotor material and the vane material was 5 μm or less, which was at a practical level. In addition, vibration and noise generated during rotation are 20% compared to iron-based compressors of the same design.
The above was also reduced and the efficiency was improved by 8%. Furthermore, when the vane material was treated with Ni-P plating and operated at the same rotation speed, no decrease in efficiency was observed even after the operation for 1000 hours.
【0078】[0078]
【発明の効果】本発明により、高精度・高密度で機械的
特性や物理的特性に優れ且つ耐摩耗性にも優れたアルミ
ニウム焼結合金を、塑性加工によらず高い自由度で形状
付与できる常圧焼結法により製造することができ、コン
プレッサー部品のサイドプレート、ハウジング、シリン
ダー、ケース、ベーン、シュー、ローター等、自動車部
品のタイミングプーリー、オイルポンプローター、ブッ
シュ等、または、事務機器のローラー、ギア、軸受け等
の各種機械部品や摺動部品への広範な適用が可能とな
る。EFFECTS OF THE INVENTION According to the present invention, an aluminum sintered alloy having high precision and high density, excellent mechanical properties and physical properties, and excellent wear resistance can be formed with a high degree of freedom without plastic working. It can be manufactured by the atmospheric pressure sintering method, and is used for compressor parts such as side plates, housings, cylinders, cases, vanes, shoes, and rotors, timing pulleys for automobile parts, oil pump rotors, bushes, and rollers for office equipment. It can be widely applied to various mechanical parts such as gears, bearings, and sliding parts.
【図1】本発明の実施例1での粉末組成及びの焼結
体中に観察できる窒素化合物の走査型電子顕微鏡による
組織。FIG. 1 is a structure of a nitrogen compound observable in a sintered body having a powder composition and a scanning electron microscope according to Example 1 of the present invention.
【図2】本発明の実施例2での粉末組成及びの焼結
体の顕微鏡組織。FIG. 2 is a microstructure of a powder composition and a sintered body of Example 2 of the present invention.
【図3】本発明の実施例3での粉末組成,,焼結
体及び鋳造A390合金熱処理体の顕微鏡組織。FIG. 3 is a microscopic structure of a powder composition, a sintered body, and a heat-treated cast A390 alloy in Example 3 of the present invention.
【図4】本発明の実施例4での粉末組成,,,
焼結体の顕微鏡組織。FIG. 4 is a powder composition in Example 4 of the present invention;
Microscopic structure of the sintered body.
【図5】本発明の実施例7での粉末組成及び焼結体
の顕微鏡組織。FIG. 5 shows a powder composition and a microstructure of a sintered body in Example 7 of the present invention.
【図6】本発明の実施例3でのサイドプレート形状の成
形体を示す斜視図。FIG. 6 is a perspective view showing a side plate shaped molded body according to a third embodiment of the present invention.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年5月7日[Submission date] May 7, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施例1での粉末組成及びの焼結
体中に観察できる窒素化合物の走査型電子顕微鏡による
金属組織の写真。FIG. 1 is a scanning electron microscope of nitrogen compounds that can be observed in a sintered body having a powder composition and a composition according to Example 1 of the present invention.
A photograph of the metallographic structure .
【図2】本発明の実施例2での粉末組成及びの焼結
体の顕微鏡による金属組織の写真。FIG. 2 is a photomicrograph of a metallographic structure of a sintered body having a powder composition and a sintered body according to Example 2 of the present invention.
【図3】本発明の実施例3での粉末組成,,焼結
体及び鋳造A390合金熱処理体の顕微鏡による金属組
織の写真。FIG. 3 is a microscopic metal set of a powder composition, a sintered body, and a cast A390 alloy heat-treated body in Example 3 of the present invention.
Woven photos .
【図4】本発明の実施例4での粉末組成,,,
焼結体の顕微鏡による金属組織の写真。FIG. 4 is a powder composition in Example 4 of the present invention;
A photograph of the metallographic structure of the sintered body under a microscope.
【図5】本発明の実施例7での粉末組成及び焼結体
の顕微鏡による金属組織の写真。FIG. 5 is a microscopic photograph of a metal structure of a powder composition and a sintered body in Example 7 of the present invention.
【図6】本発明の実施例3でのサイドプレート形状の成
形体を示す斜視図。FIG. 6 is a perspective view showing a side plate shaped molded body according to a third embodiment of the present invention.
Claims (12)
0.2〜4.0重量%含有することを特徴とする窒素化
合アルミニウム焼結合金。1. A nitrogen compounded aluminum sintered alloy containing 0.4 to 4.0% by weight of Mg and 0.2 to 4.0% by weight of nitrogen.
表面上に生成しており、窒素化合物層の厚みが10μm
以下であることを特徴とする請求項1記載の窒素化合ア
ルミニウム焼結合金。2. The nitrogen compound is formed on the old powder interface or on the old powder surface, and the thickness of the nitrogen compound layer is 10 μm.
The nitrogen compounded aluminum sintered alloy according to claim 1, wherein:
ルミニウム合金溶湯を102 ℃/sec 以上の凝固速度で
凝固した急冷凝固アルミニウム合金粉末を必要に応じて
250〜450℃の温度域で焼鈍した後に、冷間で圧縮
成形し、この成形体を窒素化合促進ガス成分として還元
性ガス成分を0.01atm 以上添加した窒素分圧0.8
atm 以上かつ水蒸気分圧0.01atm 以下の常圧雰囲気
下において粉末表面に窒素との化合物を生成させて焼結
させることを特徴とする窒素化合アルミニウム焼結合金
の製造方法。3. A rapidly solidified aluminum alloy powder obtained by solidifying an aluminum alloy melt containing 0.4 to 4.0% by weight of Mg at a solidification rate of 10 2 ° C./sec or more at a temperature of 250 to 450 ° C. as required. After annealing in the zone, cold compression molding was performed, and this compact was added with a reducing gas component of 0.01 atm or more as a nitrogen compounding promoting gas component.
1. A method for producing a nitrogen compounded aluminum sintered alloy, which comprises producing a compound of nitrogen on the powder surface and sintering it under an atmospheric pressure atmosphere of atm or more and water vapor partial pressure of 0.01 atm or less.
製造方法において、噴霧粉末の粒度が、最大粒径が35
0μm以下、平均粒径が75μm以下であることを特徴
とする寸法精度が高い請求項3記載のアルミニウム焼結
合金の製造方法。4. The method for manufacturing an aluminum sintered alloy according to claim 3, wherein the atomized powder has a maximum particle size of 35.
The method for producing an aluminum sintered alloy according to claim 3, wherein the dimensional accuracy is high, which is 0 μm or less and an average particle size is 75 μm or less.
ム焼結合金の製造方法において、噴霧粉末に機械的な造
粒処理を施すことを特徴とする寸法精度が高い請求項3
又は請求項4記載のアルミニウム焼結合金の製造方法。5. The method for producing an aluminum sintered alloy according to claim 3 or 4, wherein the spray powder is subjected to mechanical granulation treatment, and the dimensional accuracy is high.
Alternatively, the method for producing an aluminum sintered alloy according to claim 4.
ム焼結合金の製造方法において、成形体の密度比が90
%以上であって、500〜570℃の範囲で焼結体密度
比90%以上、99%以下に焼結し、焼結時の寸法変化
率が1.5%以内で、焼結体の引張強度が25kg/mm2以
上であることを特徴とする寸法精度が高い請求項3から
請求項5記載のアルミニウム焼結合金の製造方法。6. The method for producing an aluminum sintered alloy according to claim 3, wherein the compact has a density ratio of 90.
% Or more, the sintered body is sintered to a density ratio of 90% or more and 99% or less in the range of 500 to 570 ° C., the dimensional change rate during sintering is 1.5% or less, and the sintered body has a tensile strength. The method for producing an aluminum sintered alloy according to claim 3, wherein the strength is 25 kg / mm 2 or more and the dimensional accuracy is high.
ム焼結合金の製造方法において、成形体の密度比が70
%以上であって、粉末の急冷凝固によって生成した準安
定相の液相発生温度以上粉末の融点未満の温度域で焼結
体密度比90%以上、99%以下に焼結し、焼結体の引
張強度が30kg/mm2以上であることを特徴とする請求項
3から請求項5記載のアルミニウム焼結合金の製造方
法。7. The method for producing an aluminum sintered alloy according to claim 3, wherein the compact has a density ratio of 70.
% Or more, and in a temperature range not lower than the liquidus generation temperature of the metastable phase generated by the rapid solidification of the powder and lower than the melting point of the powder, the sintered body is sintered to have a density ratio of 90% or more and 99% or less. 6. The method for producing an aluminum sintered alloy according to claim 3, wherein the tensile strength is 30 kg / mm 2 or more.
製造方法において、アルミニウム合金溶湯がSiを4.
0〜40.0重量%を同時に含有し、さらに必要に応じ
てCu,Mn,Fe,Niの内選ばれた1種類以上の成
分を合計で2重量%を越えることなく含有し、残部が実
質的にアルミニウムからなる組成を有する溶湯であるこ
とを特徴とする寸法精度が高く耐摩耗性に優れ低熱膨張
率を有する請求項6記載のアルミニウム焼結合金の製造
方法。8. The method for producing an aluminum sintered alloy according to claim 6, wherein the molten aluminum alloy contains 4.
0 to 40.0% by weight at the same time, if necessary, at least one component selected from Cu, Mn, Fe and Ni is contained without exceeding 2% by weight in total, and the balance is substantially 7. The method for producing an aluminum sintered alloy according to claim 6, which has a high dimensional accuracy, is excellent in wear resistance, and has a low coefficient of thermal expansion, which is a molten metal having a composition that is substantially made of aluminum.
製造方法において、アルミニウム合金溶湯がCuを1.
0〜8.0重量%含有し、同時にFe,Ni,Mnの内
選ばれた1種類以上の成分を合計で5.0〜30.0重
量%含有し、さらに必要に応じてSi,Ti,Cr,
V,Mo,Zrから選ばれた1種類以上の成分を8重量
%以下含有し、残部が実質的にアルミニウムからなる組
成を有する溶湯であることを特徴とする耐摩耗性に優れ
低熱膨張率を有する請求項7記載のアルミニウム焼結合
金の製造方法。9. The method for producing an aluminum sintered alloy according to claim 7, wherein the molten aluminum alloy contains Cu of 1.
0 to 8.0% by weight, and at the same time, 5.0 to 30.0% by weight in total of one or more components selected from Fe, Ni and Mn, and if necessary Si, Ti, Cr,
A molten metal having a composition containing 8% by weight or less of one or more kinds of components selected from V, Mo and Zr, and the balance being substantially aluminum, and having excellent wear resistance and a low coefficient of thermal expansion. The method for producing an aluminum sintered alloy according to claim 7, which comprises.
ウム焼結合金の製造方法において、アルミニウム合金溶
湯中に、金属間化合物、炭化物、酸化物、窒化物、ほう
化物、硅化物から選ばれた少なくとも1種以上の粒子を
0.5〜30体積%添加した溶湯であることを特徴とす
る耐摩耗性に優れ低熱膨張率を有する請求項3から請求
項9記載のアルミニウム焼結合金の製造方法。10. The method for producing an aluminum sintered alloy according to claim 3, wherein the molten aluminum alloy is selected from intermetallic compounds, carbides, oxides, nitrides, borides, and silicides. The method for producing an aluminum sintered alloy according to any one of claims 3 to 9, which is a melt containing at least one kind of particles added in an amount of 0.5 to 30% by volume and has excellent wear resistance and a low coefficient of thermal expansion. .
において、急冷凝固粉末製造から圧縮成形の工程間に、
アルミニウム合金粉末に金属間化合物、炭化物、酸化
物、窒化物、ほう化物、硅化物から選ばれた少なくとも
1種以上の粒子を0.5〜30体積%添加混合し、必要
に応じて機械的粉砕再凝集処理によって該アルミニウム
合金粉末粒子中に微細均一に一体化する工程を設けるこ
とを特徴とする耐摩耗性に優れ低熱膨張率を有する請求
項3から請求項9記載のアルミニウム焼結合金の製造方
法。11. The manufacturing method according to claim 3, wherein during the steps from the production of the rapidly solidified powder to the compression molding,
0.5 to 30% by volume of at least one kind of particles selected from intermetallic compounds, carbides, oxides, nitrides, borides, and silicides is added to aluminum alloy powder and mixed, and mechanically pulverized if necessary. 10. The production of an aluminum sintered alloy according to claim 3, which has an excellent wear resistance and a low coefficient of thermal expansion, which is characterized in that a step of finely and uniformly integrating the aluminum alloy powder particles by a re-aggregation treatment is provided. Method.
法において成形工程以前に、当該アルミニウム合金粉末
より低硬度であるMgを0.4〜4.0重量%含み、残
りが実質的に85重量%以上のアルミニウムからなる組
成を有するアルミニウム合金粉末を30重量%以下添加
混合することを特徴とする請求項3から請求項11記載
のアルミニウム焼結合金の製造方法。12. The manufacturing method according to claim 3, wherein before the molding step, 0.4 to 4.0% by weight of Mg having a hardness lower than that of the aluminum alloy powder is contained, and the balance is substantially 85. The method for producing an aluminum sintered alloy according to claim 3, wherein 30% by weight or less of an aluminum alloy powder having a composition of aluminum by weight% or more is added and mixed.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20022692A JP2509052B2 (en) | 1991-09-20 | 1992-07-02 | Nitrogen compound aluminum sintered alloy and method for producing the same |
DE69315492T DE69315492T2 (en) | 1992-07-02 | 1993-07-02 | Nitrogen-compressed aluminum-based sintered alloys and manufacturing process |
EP93305229A EP0577436B1 (en) | 1992-07-02 | 1993-07-02 | Nitrogen-combined aluminum sintered alloys and method of producing the same |
US08/084,947 US5460775A (en) | 1992-07-02 | 1993-07-02 | Nitrogen-combined aluminum sintered alloys and method of producing the same |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27011091 | 1991-09-20 | ||
JP8155392 | 1992-03-02 | ||
JP8155292 | 1992-03-02 | ||
JP4-81552 | 1992-03-02 | ||
JP3-270110 | 1992-03-02 | ||
JP4-81553 | 1992-03-02 | ||
JP20022692A JP2509052B2 (en) | 1991-09-20 | 1992-07-02 | Nitrogen compound aluminum sintered alloy and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0657363A true JPH0657363A (en) | 1994-03-01 |
JP2509052B2 JP2509052B2 (en) | 1996-06-19 |
Family
ID=27466590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20022692A Expired - Lifetime JP2509052B2 (en) | 1991-09-20 | 1992-07-02 | Nitrogen compound aluminum sintered alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2509052B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995028505A1 (en) * | 1994-04-14 | 1995-10-26 | Sumitomo Electric Industries, Ltd. | Slide member made of sintered aluminum alloy and method of production thereof |
US5525292A (en) * | 1994-07-20 | 1996-06-11 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing aluminum sintering |
US6042631A (en) * | 1997-02-07 | 2000-03-28 | Sumitomo Electric Industries, Ltd. | ALN dispersed powder aluminum alloy and method of preparing the same |
US7177384B2 (en) | 1999-09-09 | 2007-02-13 | Mitsubishi Heavy Industries, Ltd. | Aluminum composite material, manufacturing method therefor, and basket and cask using the same |
US7517492B2 (en) | 2003-12-01 | 2009-04-14 | The Ex One Company | Processes for sintering aluminum and aluminum alloy components |
JP2014505789A (en) * | 2010-12-15 | 2014-03-06 | ジーケーエヌ シンター メタルズ、エル・エル・シー | Improved aluminum alloy powder metal with transition elements |
-
1992
- 1992-07-02 JP JP20022692A patent/JP2509052B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995028505A1 (en) * | 1994-04-14 | 1995-10-26 | Sumitomo Electric Industries, Ltd. | Slide member made of sintered aluminum alloy and method of production thereof |
EP0704543A4 (en) * | 1994-04-14 | 1999-10-13 | Sumitomo Electric Industries | Slide member made of sintered aluminum alloy and method of production thereof |
US5525292A (en) * | 1994-07-20 | 1996-06-11 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing aluminum sintering |
US6042631A (en) * | 1997-02-07 | 2000-03-28 | Sumitomo Electric Industries, Ltd. | ALN dispersed powder aluminum alloy and method of preparing the same |
US6159419A (en) * | 1997-02-07 | 2000-12-12 | Sumitomo Electric Industries, Ltd. | ALN dispersed powder aluminum alloy and method of preparing the same |
US7177384B2 (en) | 1999-09-09 | 2007-02-13 | Mitsubishi Heavy Industries, Ltd. | Aluminum composite material, manufacturing method therefor, and basket and cask using the same |
US7517492B2 (en) | 2003-12-01 | 2009-04-14 | The Ex One Company | Processes for sintering aluminum and aluminum alloy components |
JP2014505789A (en) * | 2010-12-15 | 2014-03-06 | ジーケーエヌ シンター メタルズ、エル・エル・シー | Improved aluminum alloy powder metal with transition elements |
US10870148B2 (en) | 2010-12-15 | 2020-12-22 | Gkn Sinter Metals, Llc | Aluminum alloy powder metal with transition elements |
Also Published As
Publication number | Publication date |
---|---|
JP2509052B2 (en) | 1996-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5372775A (en) | Method of preparing particle composite alloy having an aluminum matrix | |
EP0577436B1 (en) | Nitrogen-combined aluminum sintered alloys and method of producing the same | |
KR100197324B1 (en) | Sintered aluminum alloy slide member and manufacturing method thereof | |
JPH08253826A (en) | Sintered friction material, composite copper alloy powder used therein, and method for producing the same | |
JP2761085B2 (en) | Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts | |
EP0533950B1 (en) | Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor | |
JP2006063400A (en) | Aluminum-based composite material | |
JP3095026B2 (en) | Manufacturing method of aluminum sintered alloy | |
JP2509052B2 (en) | Nitrogen compound aluminum sintered alloy and method for producing the same | |
Kim | Yield and compaction behavior of rapidly solidified Al–Si alloy powders | |
EP0500531A1 (en) | Dual processing of aluminum base metal matrix composites | |
JPH0120215B2 (en) | ||
JPH0625386B2 (en) | Method for producing aluminum alloy powder and sintered body thereof | |
JPS6365051A (en) | Manufacture of ferrous sintered alloy member excellent in wear resistance | |
JPH06330214A (en) | High hardness and wear resistant aluminum powder alloy and method for producing the same | |
JP4008597B2 (en) | Aluminum-based composite material and manufacturing method thereof | |
JP2000119791A (en) | Aluminum alloy for slide bearing and method for producing the same | |
JPH029099B2 (en) | ||
JPH0578708A (en) | Method for producing aluminum-based particle composite alloy | |
KR102130490B1 (en) | Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel | |
JP3128041B2 (en) | Cylinder block and its manufacturing method | |
JPH07278713A (en) | Aluminum powder alloy and method for producing the same | |
JP3417666B2 (en) | Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same | |
JPH08193236A (en) | High toughness wear-resistant aluminum alloy and method for producing the same | |
JP2798709B2 (en) | Manufacturing method of aluminum alloy powder sintered parts |