JPH0655171A - Method for producing ultrapure water from primary pure water and apparatus therefor - Google Patents
Method for producing ultrapure water from primary pure water and apparatus thereforInfo
- Publication number
- JPH0655171A JPH0655171A JP4224544A JP22454492A JPH0655171A JP H0655171 A JPH0655171 A JP H0655171A JP 4224544 A JP4224544 A JP 4224544A JP 22454492 A JP22454492 A JP 22454492A JP H0655171 A JPH0655171 A JP H0655171A
- Authority
- JP
- Japan
- Prior art keywords
- pure water
- ultra
- water
- ion exchange
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910021642 ultra pure water Inorganic materials 0.000 title claims abstract description 32
- 239000012498 ultrapure water Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000005342 ion exchange Methods 0.000 claims abstract description 23
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 239000012528 membrane Substances 0.000 claims abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000008929 regeneration Effects 0.000 claims abstract description 16
- 238000011069 regeneration method Methods 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 15
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 13
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 13
- 238000012432 intermediate storage Methods 0.000 claims abstract description 12
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 8
- 238000011033 desalting Methods 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000000835 fiber Substances 0.000 claims description 10
- 238000007872 degassing Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 19
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 abstract 2
- 229910052763 palladium Inorganic materials 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910001410 inorganic ion Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000003010 cation ion exchange membrane Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- -1 that is Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超々純水の製造方法に
係り、特に、半導体製造施設におけるユースポイント近
くで精製できる一次純水からの超々純水の製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrapure water, and more particularly to a method for producing ultrapure water from primary pure water which can be purified near a point of use in a semiconductor manufacturing facility.
【0002】[0002]
【従来の技術】例えば、半導体製造工場において超純水
は図4の如く市水から一次純水製造装置、サブシステム
(二次純水製造装置)を経て製造され各ユースポイント
に供給されていた。半導体の高集積化には、ユースポイ
ントまでの配管材質を変えたり、ユースポイント近くに
処理装置を置くこともアイデアとして発表されている。
即ち、半導体の高集積化が進むにつれユースポイントで
はより高品質な水、即ち超々純水が要求される。1例と
して、16Mbitクラスの要求水質は超々純水である下記
表1に掲げる水質のものである。2. Description of the Related Art For example, in a semiconductor manufacturing factory, ultrapure water is manufactured from city water through a primary pure water manufacturing apparatus and a subsystem (secondary pure water manufacturing apparatus) as shown in FIG. . For high integration of semiconductors, it has been announced as an idea to change the pipe material up to the point of use or to place a processing device near the point of use.
That is, as the degree of integration of semiconductors increases, higher quality water, that is, ultrapure water, is required at the point of use. As an example, the required water quality of the 16 Mbit class is that of ultra-pure water shown in Table 1 below.
【0003】[0003]
【表1】 [Table 1]
【0004】そこでサブシステムからユースポイントま
での長距離配管の材質を高価な低溶質な物にする等配慮
しなければならなくなる。又サブシステムの処理量は数
10m3 /hと大きく設置床面積が広いのが現状であ
り、ユースポイント近くに設置するには問題であった。Therefore, it is necessary to consider the material of the long-distance pipe from the subsystem to the point of use to be an expensive low-solute material. In addition, the throughput of the subsystem is as large as several tens of m 3 / h and the installation floor area is wide at present, and it was a problem to install it near the point of use.
【0005】[0005]
【発明が解決しようとする課題】本発明は、前記した問
題点を解決し、装置を小型化して、ユースポイント近く
で超々純水を製造できる経済的な方法を提供することを
課題とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide an economical method capable of producing ultrapure water near the point of use by downsizing the apparatus.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、一次純水を受け入れ、ユースポイント
直前で超々純水まで精製する超々純水の製造方法におい
て、下記工程(a)〜(g)を順次通すこととしたもの
である。 (a)一次純水を中間貯槽に受け入れ、ユースポイント
直前まで輸送する工程、(b)輸送された一次純水を電
気再生型イオン交換装置で脱塩処理する工程、(c)
(b)の処理水の一部を気体透過膜の接液側に通水し、
接ガス側に水素を供給する工程、(d)(b)の処理水
の残部と(c)の処理水を併せて、紫外線を照射する工
程、(e)(d)の処理水を水素脱気膜を通して処理す
る工程、(f)(e)の処理水をイオン交換樹脂により
処理する工程、(g)(f)の処理水を限外ろ過する工
程、上記方法において、工程(b)の電気再生型イオン
交換装置は、イオン交換体として球状イオン交換樹脂も
使用できるが、コンパクトで且つ処理量を増加させるに
は接触面積を大きくとれるイオン交換繊維を用いるのが
よい。In order to solve the above problems, in the present invention, the following step (a) is adopted in a method for producing ultrapure water in which primary pure water is received and purified to ultrapure water immediately before the point of use. (G) are passed through one by one. (A) A step of receiving the primary pure water in an intermediate storage tank and transporting it to just before the point of use, (b) A step of desalting the transported primary pure water with an electric regeneration type ion exchange device, (c)
Part of the treated water of (b) is passed to the liquid contact side of the gas permeable membrane,
A step of supplying hydrogen to the gas contact side, a step of irradiating the treated water of (d) and (b) and the treated water of (c) with ultraviolet rays, and a dehydrogenation of the treated water of (e) and (d) A step of treating through a gas membrane, a step of treating the treated water of (f) and (e) with an ion exchange resin, a step of ultrafiltering the treated water of (g) and (f), In the electric regeneration type ion exchange device, a spherical ion exchange resin can be used as an ion exchanger, but it is preferable to use an ion exchange fiber which is compact and has a large contact area in order to increase the throughput.
【0007】また、本発明では、一次純水を受け入れ、
ユースポイント直前で超々純水まで精製する超々純水の
製造装置において、一次純水を受け入れる中間貯槽と、
該中間貯槽から一次純水をユースポイント直前まで輸送
する手段を有し、(a)輸送された一次純水を脱塩処理
するイオン交換繊維を用いる電気再生型イオン交換装置
と、(b)処理水の一部を接液側に通水し、接ガス側に
水素を供給する手段を有する気体透過膜と、(c)紫外
線照射装置と、(d)水素脱気膜と、(e)イオン交換
樹脂装置と、(f)限外ろ過装置、とを有し、前記
(a)、(c)、(d)、(e)、(f)の各装置を順
次配管で連結すると共に、(a)から(c)の配管にバ
イパス管を設けて(b)の気体透過膜を配設したもので
ある。The present invention also receives primary pure water,
In an ultrapure water production system that purifies ultrapure water just before the point of use, an intermediate storage tank that receives primary pure water,
An electric regeneration type ion exchange device using ion exchange fibers for desalting the transported primary pure water, which has means for transporting the primary pure water from the intermediate storage tank to a point immediately before a use point, and (b) treatment A gas permeable membrane having means for supplying a part of water to the liquid contact side and supplying hydrogen to the gas contact side, (c) ultraviolet irradiation device, (d) hydrogen degassing membrane, and (e) ion An exchange resin device and an (f) ultrafiltration device are provided, and the devices (a), (c), (d), (e), and (f) are sequentially connected by piping, and ( A bypass pipe is provided in the pipes of (a) to (c) and the gas-permeable membrane of (b) is arranged.
【0008】[0008]
【作用】電気再生型イオン交換装置の原理を、図2に示
す説明図を用いて、イオン交換繊維の場合を例に説明す
る。装置は、正と負の電極板10、11と、陽イオンと
陰イオン交換膜12、13及びイオン交換繊維14から
なり、電源17より電極板に電気を通す。被処理水を電
極板の間を流すことにより、水中の不純物、例えばNa
+ ,Cl- 等はイオン交換繊維のH+ ,OH- 基と置換
される。置換されたNa+ ,Cl- は該繊維を移動しイ
オン交換膜で選択透過されNa+ は負側の電極方向へ、
Cl- は正側の電極方向へ移動する。イオン交換繊維に
は、水中のH+ ,OH- が吸着し、常時再生状態が保持
されている。The principle of the electric regeneration type ion exchange device will be described with reference to the explanatory view shown in FIG. The device comprises positive and negative electrode plates 10 and 11, cation and anion exchange membranes 12 and 13, and ion exchange fibers 14, and a power source 17 conducts electricity to the electrode plates. By flowing the water to be treated between the electrode plates, impurities in the water such as Na
+ , Cl −, etc. are replaced with H + , OH − groups of the ion exchange fiber. The substituted Na + and Cl − move through the fiber and are selectively permeated by the ion exchange membrane, and Na + moves toward the negative electrode,
Cl − moves toward the positive electrode. H + and OH − in water are adsorbed on the ion exchange fiber, and the regenerated state is always maintained.
【0009】このように、電気再生型イオン交換装置に
おいては、イオン交換体が常に再生されるため、装置が
小型でも処理量を増大させることができ、更に従来のよ
うなイオン交換樹脂の再生や廃棄が不要となるという利
点がある。次に、本発明の(c)〜(g)の工程につい
ては、超々純水の製造方法として知られた工程であり、
それぞれの作用を説明する。前記の電気再生型イオン交
換装置で、一次純水中の金属イオン、無機イオン、及び
イオン性有機物質等のイオン性物質が除去された処理水
の一部を、工程(c)で水素を溶存させる。As described above, in the electric regeneration type ion exchange apparatus, since the ion exchanger is constantly regenerated, the throughput can be increased even if the apparatus is small, and the conventional ion exchange resin can be regenerated. There is an advantage that disposal is unnecessary. Next, the steps (c) to (g) of the present invention are steps known as a method for producing ultrapure water,
Each action will be described. In the electric regeneration type ion exchange device, a part of the treated water from which the ionic substances such as metal ions, inorganic ions and ionic organic substances in the primary pure water have been removed is dissolved with hydrogen in the step (c). Let
【0010】ついで工程(d)の紫外線照射では、20
0nm以下の波長を含む紫外線によって、被処理水中に残
存する有機物質及び溶存酸素が分解及び除去される。即
ち、有機物質は酸化され主に炭酸となり、後置のイオン
交換樹脂に吸着され、また溶存酸素は水素と活発に反応
して水を生成する。又殺菌線と言われる波長260nm付
近の紫外線によって殺菌も行われる。工程(e)では、
工程(c)によって溶解した水素が溶存酸素と反応した
残り、ならびに有機物分解中に生じた水素を水素脱気膜
によって除去する。Then, in the ultraviolet irradiation of step (d), 20
The organic substances and dissolved oxygen remaining in the water to be treated are decomposed and removed by the ultraviolet rays having a wavelength of 0 nm or less. That is, the organic substance is oxidized to become mainly carbonic acid, which is adsorbed by the ion-exchange resin provided later, and the dissolved oxygen actively reacts with hydrogen to generate water. In addition, sterilization is also performed by ultraviolet rays having a wavelength of around 260 nm, which is called sterilization line. In step (e),
The hydrogen remaining in the step (c) after the dissolved hydrogen has reacted with the dissolved oxygen and the hydrogen generated during the decomposition of the organic matter are removed by the hydrogen degassing membrane.
【0011】次に工程(f)のイオン交換樹脂による処
理では、紫外線分解によるイオン性の分解生成物、極微
量溶出する重金属イオンを除去する。次に工程(g)の
限外ろ過によって微粒子を除去する。この微粒子は被処
理水中に含まれるものの他、バクテリアの死菌、ポンプ
の発塵、イオン交換樹脂及び気体透過膜等から漏出した
ものを含む。このように、各工程を通すことにより、前
記した表1に記載の水質をもつ超々純水が得られる。Next, in the treatment with the ion exchange resin in the step (f), ionic decomposition products due to ultraviolet decomposition and heavy metal ions eluted in an extremely small amount are removed. Next, fine particles are removed by ultrafiltration in step (g). The fine particles include not only those contained in the water to be treated but also bacteria killed by bacteria, dust generated by the pump, leaked from the ion exchange resin, the gas permeable membrane and the like. In this way, by passing through each step, ultrapure water having the water quality shown in Table 1 can be obtained.
【0012】[0012]
【実施例】以下、本発明を実施例により説明するが、本
発明はこれらに限定されない。 実施例1 図1は、本発明の超々純水の製造方法の概略システムを
示す工程図である。図1において、一次純水製造装置1
から、下記表2の水質の一次純水が、管6から屋内に設
置された中間貯槽2に送られて貯蔵される。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. Example 1 FIG. 1 is a process diagram showing a schematic system of a method for producing ultra-ultra pure water according to the present invention. In FIG. 1, a primary pure water production apparatus 1
Therefore, the primary pure water having the water quality shown in Table 2 below is sent from the pipe 6 to the intermediate storage tank 2 installed indoors and stored therein.
【0013】[0013]
【表2】 [Table 2]
【0014】中間貯槽2の一次純水は、管7によって、
ユースポイント5の直前に設置された電気再生型イオン
交換装置3と工程(c)〜(g)の処理工程を行う超々
純水製造装置4とからなる処理装置によって、前記表1
の水質をもつ超々純水となって各ユースポイント5に送
られる。そして、余剰の超々純水はリターン管9によっ
て、中間貯槽2に返送され、循環している。The primary pure water of the intermediate storage tank 2 is transferred by the pipe 7 to
The above-mentioned Table 1 is used by the processing device including the electric regeneration type ion exchange device 3 installed immediately before the use point 5 and the ultra-super pure water producing device 4 for performing the processing steps (c) to (g).
It is sent to each use point 5 as ultra-pure water with the water quality of. The surplus ultra-pure water is returned to the intermediate storage tank 2 by the return pipe 9 and circulated.
【0015】次に、上記の装置3と4を詳しく説明す
る。電気再生型イオン交換装置3は、図2に示す構成と
なっており、中間貯槽2からの一次純水が管7から通水
され、イオン交換繊維とイオン交換膜によって被処理水
中の金属イオン(Na+ )とか無機イオン(Cl- )等
が分離され、イオン性物質の除去された処理水15とイ
オン性物質の濃縮された排液16が生成される。Next, the above-mentioned devices 3 and 4 will be described in detail. The electric regeneration type ion exchange device 3 has a structure shown in FIG. 2, in which the primary pure water from the intermediate storage tank 2 is passed through the pipe 7, and the metal ions in the water to be treated by the ion exchange fiber and the ion exchange membrane ( Na + ) and inorganic ions (Cl − ) and the like are separated, and treated water 15 from which the ionic substance has been removed and a drainage 16 in which the ionic substance is concentrated are generated.
【0016】この装置3は例えば、処理量が5m3 /h
又は10m3 /hとすることができ、この場合、5m3
/h装置では使用ポンプの回転数制御により、1〜5m
3 /h対応可能であり、10m3 /h装置では4〜10
m3 /h対応可能である。即ち、実際の使用量に対応し
た経済的運転が行える。処理水15は、次に超々純水装
置4に送水される。超々純水装置4は、図3に系統図と
して示した構成からなる。The device 3 has, for example, a throughput of 5 m 3 / h.
Or 10 m 3 / h, in this case 5 m 3
/ H device is 1 to 5 m by controlling the rotation speed of the pump used.
3 / h can be supported, and 10m 3 / h equipment can be 4 to 10
m 3 / h is possible. That is, it is possible to perform economical operation corresponding to the actual usage amount. The treated water 15 is then sent to the ultra-super pure water device 4. The ultra-purified water device 4 has a configuration shown as a system diagram in FIG.
【0017】まず、送水された処理水15の一部を分水
し、中空糸状の気体透過膜21で水素29を溶存させ、
処理水15と合流して、紫外線照射装置22に通水され
る。また、紫外線照射装置22は角型で5m3 /h処理
用の本発明の装置では有効容積は約140リットルであ
り、人工石英管を介した消費電力42Wの低圧水銀ラン
プ31本を点灯させた。紫外線照射装置22で処理され
た処理水は、残留する水素を除去するため、水素脱気膜
23に通水して水素を除去したのち、カートリッジ型イ
オン交換樹脂塔24に加圧ポンプを用いて通水される。
なお、26は溶存水素を吸引するための真空ポンプであ
る。First, a part of the fed treated water 15 is divided into water, and the hollow fiber-shaped gas permeable membrane 21 dissolves hydrogen 29 therein.
It joins the treated water 15 and is passed through the ultraviolet irradiation device 22. Further, the ultraviolet irradiation device 22 is a prismatic type, and in the device of the present invention for processing 5 m 3 / h, the effective volume is about 140 liters, and 31 low pressure mercury lamps of 42 W power consumption via the artificial quartz tube were turned on. . In order to remove residual hydrogen, the treated water treated by the ultraviolet irradiation device 22 is passed through a hydrogen degassing membrane 23 to remove hydrogen, and then a pressure pump is used in a cartridge type ion exchange resin tower 24. Water is passed.
Incidentally, 26 is a vacuum pump for sucking dissolved hydrogen.
【0018】カートリッジ型イオン交換樹脂塔24に
は、十分洗浄したH型強酸性カチオン交換樹脂5リット
ルと、OH型強塩基性アニオン交換樹脂25リットルと
を混合してFRP製容器に充填したものを2本を用い
た。イオン交換樹脂塔24で処理された処理水は、加圧
ポンプ28により、限外ろ過装置25に送られて最終的
に処理され、超々純水8となる。限外ろ過装置25は、
外圧型中空糸膜モジュール(旭化成OLT−3026)
を用いた。このような工程によって処理することによ
り、超々純水、例えば16Mビットに相当する表1の水
質の純水が得られる。In the cartridge type ion exchange resin tower 24, a fully washed F-type strongly acidic cation exchange resin (5 liters) and an OH type strongly basic anion exchange resin (25 liters) are mixed and filled in an FRP container. Two were used. The treated water treated in the ion exchange resin tower 24 is sent to the ultrafiltration device 25 by the pressurizing pump 28 and finally treated to be ultra-pure water 8. The ultrafiltration device 25 is
External pressure type hollow fiber membrane module (Asahi Kasei OLT-3026)
Was used. By processing through such steps, ultra-pure water, for example, pure water of the water quality shown in Table 1 corresponding to 16 Mbits can be obtained.
【0019】[0019]
【発明の効果】本発明の製造方法によれば、設置面積が
少なくてすみ、ユースポイント直前で超々純水が製造で
きる。例えば、半導体工場におけるサブシステムの設置
床面積は、処理量40m3 /hを例にとると約150m
2 で、使用樹脂量は約1.6m3 である。サブシステム
に代行される電気再生型純水製造装置の設置床面積は5
m3 /h処理装置で1.2m2 であり、40m3 /hで
は8倍の9.6m2 で設置床面積は約1/15でコンパ
クト化できる。According to the manufacturing method of the present invention, the installation area is small, and ultrapure water can be manufactured immediately before the point of use. For example, the floor space of a subsystem installed in a semiconductor factory is about 150 m when a throughput of 40 m 3 / h is taken as an example.
2 , the amount of resin used is about 1.6 m 3 . The floor space of the electric regeneration type deionized water production device that is substituted for the subsystem is 5
The m 3 / h processing device has a size of 1.2 m 2 , and the 40 m 3 / h is 9.6 m 2 which is eight times as large, and the installation floor area can be reduced to about 1/15.
【0020】使用樹脂量は半年で交換するとして年間約
3.2m3 の樹脂が廃棄物として発生するが本装置に設
置された電気再生型純水製造装置の廃棄物量は零であ
る。更に屋外の一次純水製造装置から本装置迄の長距離
配管の材質も従来のクリーン塩ビで十分であり経済的で
ある等の効果がある。When the amount of resin used is changed every six months, about 3.2 m 3 of resin is generated as waste annually, but the amount of waste of the electric regeneration type pure water producing apparatus installed in this apparatus is zero. Furthermore, the conventional clean PVC is sufficient as the material for the long-distance piping from the outdoor primary pure water producing apparatus to this apparatus, and there is an effect that it is economical.
【図1】本初明の製造方法の概略システムを示す工程
図。FIG. 1 is a process diagram showing a schematic system of a manufacturing method of the present invention.
【図2】電気再生型イオン交換装置の原理説明図。FIG. 2 is an explanatory view of the principle of the electric regeneration type ion exchange device.
【図3】超々純水製造装置の工程図。FIG. 3 is a process diagram of an ultrapure water production system.
【図4】従来の純水供給システムを示す工程図。FIG. 4 is a process diagram showing a conventional pure water supply system.
【符号の説明】 1:一次純水製造装置、2:中間貯槽、3:電気再生型
イオン交換装置、4:超々純水製造装置、5:ユースポ
イント、6、7:一次純水配管、8:超々純水配管、
9:リターン水配管、10:正電極板、11:負電極
板、12:陽イオン交換膜、13:陰イオン交換膜、1
4:イオン交換繊維、15:処理水、16:排液、1
7:電源、18:二次純水配管、19:サブシステム、
21:気体透過膜、22:紫外線照射装置、23:水素
脱気膜、24:カートリッジ型イオン交換樹脂塔、2
5:限外ろ過装置、26:真空ポンプ、27、28:加
圧ポンプ、29:H2 ガス[Explanation of Codes] 1: Primary Pure Water Production Device, 2: Intermediate Storage Tank, 3: Electric Regeneration Type Ion Exchange Device, 4: Ultra Ultra Pure Water Production Device, 5: Use Point, 6, 7: Primary Pure Water Pipe, 8 : Ultra pure water piping,
9: Return water pipe, 10: Positive electrode plate, 11: Negative electrode plate, 12: Cation exchange membrane, 13: Anion exchange membrane, 1
4: ion exchange fiber, 15: treated water, 16: drainage, 1
7: power supply, 18: secondary pure water piping, 19: subsystem,
21: Gas permeable membrane, 22: Ultraviolet irradiation device, 23: Hydrogen degassing membrane, 24: Cartridge type ion exchange resin tower, 2
5: Ultrafiltration device, 26: Vacuum pump, 27, 28: Pressurizing pump, 29: H 2 gas
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河津 秀雄 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Kawazu 4-2-1 Motofujisawa, Fujisawa City, Kanagawa Prefecture EBARA Research Institute
Claims (3)
前で超々純水まで精製する超々純水の製造方法におい
て、(a)一次純水を中間貯槽に受け入れ、ユースポイ
ント直前まで輸送する工程、(b)輸送された一次純水
を電気再生型イオン交換装置で脱塩処理する工程、
(c)(b)の処理水の一部を気体透過膜の接液側に通
水し、接ガス側に水素を供給する工程、(d)(b)の
処理水の残部と(c)の処理水を併せて、紫外線を照射
する工程、(e)(d)の処理水を水素脱気膜を通して
処理する工程、(f)(e)の処理水をイオン交換樹脂
により処理する工程、(g)(f)の処理水を限外ろ過
する工程、の各工程を順次通すことにより、一次純水を
精製して超々純水とすることを特徴とする超々純水の製
造方法。1. A method of manufacturing ultra-ultra pure water in which primary pure water is received and purified to ultra-ultra pure water immediately before a point of use, wherein (a) a step of receiving primary pure water in an intermediate storage tank and transporting it to a point immediately before the point of use b) a step of desalting the transported primary pure water with an electric regeneration type ion exchange device,
(C) A step of passing a portion of the treated water of (b) to the liquid contact side of the gas permeable membrane and supplying hydrogen to the gas contact side, (d) the remaining portion of the treated water and (c) Irradiating ultraviolet rays together with the treated water of (e), (d) treating the treated water through a hydrogen degassing membrane, (f) treating the treated water of (e) with an ion exchange resin, A method for producing ultra-ultra pure water, which comprises purifying primary pure water into ultra-ultra pure water by sequentially passing through each step of (g) (f) a step of ultrafiltration of treated water.
ン交換装置は、イオン交換繊維を用いることを特徴とす
る請求項1記載の超々純水の製造方法。2. The method for producing ultra-ultra pure water according to claim 1, wherein the electric regeneration type ion exchange device in the step (b) uses ion exchange fibers.
前で超々純水まで精製する超々純水の製造装置におい
て、一次純水を受け入れる中間貯槽と、該中間貯槽から
一次純水をユースポイント直前まで輸送する手段を有
し、(a)輸送された一次純水を脱塩処理するイオン交
換繊維を用いる電気再生型イオン交換装置と、(b)処
理水の一部を接液側に通水し、接ガス側に水素を供給す
る手段を有する気体透過膜と、(c)紫外線照射装置
と、(d)水素脱気膜と、(e)イオン交換樹脂装置
と、(f)限外ろ過装置、とを有し、前記(a)、
(c)、(d)、(e)、(f)の各装置を順次配管で
連結すると共に、(a)から(c)の配管にバイパス管
を設けて(b)の気体透過膜を配設したことを特徴とす
る超々純水の製造装置。3. An ultra-ultra pure water production apparatus that receives primary pure water and purifies it to ultra-ultra pure water immediately before the point of use, with an intermediate storage tank that receives the primary pure water and from the intermediate storage tank to the point immediately before the use point. (A) an electric regeneration type ion exchange device using ion exchange fibers for desalting the transported primary pure water, and (b) a part of the treated water is passed to the wetted side. , A gas permeable membrane having means for supplying hydrogen to the gas contact side, (c) ultraviolet irradiation device, (d) hydrogen degassing membrane, (e) ion exchange resin device, and (f) ultrafiltration device And, and (a),
The devices (c), (d), (e), and (f) are sequentially connected by pipes, and a bypass pipe is provided in the pipes (a) to (c) to arrange the gas permeable membrane (b). An ultra-pure water production system characterized by being installed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4224544A JPH0755319B2 (en) | 1992-08-03 | 1992-08-03 | Method and apparatus for producing ultra-ultra pure water from primary pure water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4224544A JPH0755319B2 (en) | 1992-08-03 | 1992-08-03 | Method and apparatus for producing ultra-ultra pure water from primary pure water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0655171A true JPH0655171A (en) | 1994-03-01 |
JPH0755319B2 JPH0755319B2 (en) | 1995-06-14 |
Family
ID=16815463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4224544A Expired - Lifetime JPH0755319B2 (en) | 1992-08-03 | 1992-08-03 | Method and apparatus for producing ultra-ultra pure water from primary pure water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0755319B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5837124A (en) * | 1996-10-29 | 1998-11-17 | Ebara Corporation | Method and apparatus for preventing scale from precipitating in producing deionized water |
KR101066461B1 (en) * | 2003-03-04 | 2011-09-23 | 가부시끼가이샤 르네사스 테크놀로지 | High purity water production system and its operation method |
JP2012196591A (en) * | 2011-03-18 | 2012-10-18 | Kurita Water Ind Ltd | Subsystem for producing ultrapure water |
JP2020116507A (en) * | 2019-01-22 | 2020-08-06 | 栗田工業株式会社 | Boron ultra-high purity removal type ultra pure water production apparatus and method for producing ultra high purity boron removal ultra pure water |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2773227B1 (en) | 2011-11-04 | 2016-12-21 | Arçelik Anonim Sirketi | A refrigerator having frozen food thawing function |
-
1992
- 1992-08-03 JP JP4224544A patent/JPH0755319B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5837124A (en) * | 1996-10-29 | 1998-11-17 | Ebara Corporation | Method and apparatus for preventing scale from precipitating in producing deionized water |
KR101066461B1 (en) * | 2003-03-04 | 2011-09-23 | 가부시끼가이샤 르네사스 테크놀로지 | High purity water production system and its operation method |
JP2012196591A (en) * | 2011-03-18 | 2012-10-18 | Kurita Water Ind Ltd | Subsystem for producing ultrapure water |
JP2020116507A (en) * | 2019-01-22 | 2020-08-06 | 栗田工業株式会社 | Boron ultra-high purity removal type ultra pure water production apparatus and method for producing ultra high purity boron removal ultra pure water |
Also Published As
Publication number | Publication date |
---|---|
JPH0755319B2 (en) | 1995-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0433893B1 (en) | Process and system for purifying pure water or ultrapure water | |
JP5649520B2 (en) | Ultrapure water production equipment | |
KR100687361B1 (en) | Apparatus for producing water containing dissolved ozone | |
JP2677468B2 (en) | Method and apparatus for producing pure water | |
US6991733B2 (en) | Process for removing organics from ultrapure water | |
JP5441714B2 (en) | Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus | |
US20020063088A1 (en) | Organic matter removal apparatus for effectively removing surfactants and other organic substances present in water to be treated | |
JPH0818040B2 (en) | Purification method and device for pure water or ultrapure water | |
JPH0655171A (en) | Method for producing ultrapure water from primary pure water and apparatus therefor | |
JPH1199394A (en) | Method for removing organic matter in water | |
JPH0638953B2 (en) | High-purity water manufacturing equipment | |
JPH11226569A (en) | Apparatus for removing organic substance in water and apparatus for producing ultrapure water | |
JPH09253638A (en) | Ultrapure water making apparatus | |
JPH10202296A (en) | Ultrapure water producer | |
JP2003145148A (en) | Ultrapure water supply device and ultrapure water supply method | |
JP4635827B2 (en) | Ultrapure water production method and apparatus | |
JP2001179252A (en) | Method and apparatus for making pure water reduced in content of oxidizing substance | |
JP2000308815A (en) | Ozone dissolved water production equipment | |
JPH10216749A (en) | Ultrapure water making apparatus | |
JPH09192658A (en) | Manufacturing device of ultrapure water | |
JP3906684B2 (en) | Ultrapure water supply device | |
JP3262949B2 (en) | Low-concentration organic wastewater treatment equipment | |
JP3645007B2 (en) | Ultrapure water production equipment | |
JP3856493B2 (en) | Ultrapure water production equipment | |
JP3580648B2 (en) | Ultrapure water production equipment |