[go: up one dir, main page]

JP3856493B2 - Ultrapure water production equipment - Google Patents

Ultrapure water production equipment Download PDF

Info

Publication number
JP3856493B2
JP3856493B2 JP2661996A JP2661996A JP3856493B2 JP 3856493 B2 JP3856493 B2 JP 3856493B2 JP 2661996 A JP2661996 A JP 2661996A JP 2661996 A JP2661996 A JP 2661996A JP 3856493 B2 JP3856493 B2 JP 3856493B2
Authority
JP
Japan
Prior art keywords
water
treated
dissolved oxygen
ultrapure water
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2661996A
Other languages
Japanese (ja)
Other versions
JPH09220560A (en
Inventor
嗣 阿部
雅彦 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2661996A priority Critical patent/JP3856493B2/en
Publication of JPH09220560A publication Critical patent/JPH09220560A/en
Application granted granted Critical
Publication of JP3856493B2 publication Critical patent/JP3856493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶や半導体素子を製造する電子工業、原子力発電所あるいは医薬品製造工場等で広く利用される超純水を製造する超純水製造装置に係り、特に、有機物成分を効率的に除去するとともに、溶存酸素濃度の低い超純水を安定してユースポイントに供給可能な超純水製造装置に関する。
【0002】
【従来の技術】
従来から、液晶や半導体素子(LSI)、あるいは医薬品の製造工程においては、イオン状物質、微粒子、有機物、溶存ガスおよび生菌等の含有量の極めて少ない超純水が要求されている。この中でも、電子工業においては、多量の超純水が使用されており、LSIの集積度の増加に伴って超純水の純度に対する要求は益々厳しくなってきている。特に、超純水中のΤOC濃度および溶存酸素濃度の低減が大きな課題となっている。
【0003】
一般に、超純水の製造は、原水中の濁質成分を除去する前処理システム、イオン状物質、微粒子、有機物、溶存ガスおよび生菌等を除去する一次系システムおよび一次系システムより得られた一次純水の精密仕上げを目的とした二次系システムの組み合わせにより行われている。そして、通常、製造された超純水は、ユースポイントに供給されて必要量が消費されるとともに、過剰量の超純水は二次系システムに還流され、再度処理されている。
【0004】
しかしながら、過剰量の超純水をユースポイントから二次系システムに還流すると、二次系システム内における溶存酸素濃度が著しく上昇し、製造された超純水の純度が悪化するという問題があった。
【0005】
また、一次純水の精密仕上げを目的とした二次系システムにおいては、超純水中の有機物濃度を減少させるための処理方法として、イオン交換処理や逆浸透法による膜処理の施された一次純水に紫外線を照射して溶存有機物を分解し、次いで、この分解した有機物を混床式イオン交換装置により除去する方法が知られている。また、一次純水に照射する紫外線として、180〜190nm(特に184.9nm)の波長を有する紫外線を用いることにより、効率的に溶存有機物の分解が達成されることも知られている(特開平1−164488号公報)。
【0006】
ところが、一次系システムにより溶存酸素濃度を低濃度にまで減少させた被処理水である一次純水を、180〜190nmの波長を有する紫外線を発生する紫外線照射装置と混床式イオン交換装置とを有する二次系システムにおいて処理した場合、溶存有機物の分解効率が低いことから、被処理水中のTOC濃度が容易には減少せず、TOC濃度を減少させるために紫外線照射装置による紫外線照射量を増やすことから、紫外線照射装置の電力消費量が増加するという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の問題を解決すべくなされたもので、超純水中のΤOC濃度の増加をほぼ防止し、溶存酸素濃度を低減した、運転コストの安価な超純水製造装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述したように、ユースポイントから過剰の処理水(超純水)を二次系システムに還流すると、二次系システム内における溶存酸素濃度が著しく上昇し、製造された超純水の純度が悪化した。
【0009】
また、溶存酸素を除去した一次純水に紫外線を照射して混床式イオン交換装置で仕上げ処理する場合、溶存有機物濃度を下げるために紫外線照射装置の電力消費量が多くなり、イニシャルコストとランニングコストの増加を招いていた。
【0010】
そこで、これらの間題について本発明者らが鋭意研究した結果、ユースポイントから二次系システムに還流される処理水中には、溶存酸素が数ppb〜数十ppb程度混入していることが判明した。処理水中への酸素の混入の原因は不明であるが、ユースポイントに接続されている洗浄装置等の配管の接続部から混入することが推測される。
【0011】
一方、180〜190nm、とりわけ184.9nmの波長を有する紫外線による溶存有機物の分解反応は以下に示す通りであり、(1)一次純水より生成したOHラジカル(ヒドロキシラジカル)により、(2)被処理水である一次純水中の有機物がカルボン酸等の有機酸の段階まで酸化分解され、(3)さらに一部は二酸化炭素にまで酸化分解されるというものであるというものである。
【0012】
(1)H2 O+hν→・OH
(2)R−C+・OH→RCOOΗ
(3)RCOOΗ+・OH→CO2 +H2
上記の反応は、被処理水中の溶存酸素が極めて少ない条件での反応であるが、被処理水中に溶存酸素の存在する条件では、(4)酸素分子より生成したオゾン分子により、(5)被処理水中の溶存有機物がカルボン酸等の有機酸の段階まで酸化分解され、(6)さらに一部は二酸化炭素にまで酸化分解される。
【0013】
(4)3O2 +hν→2O3
(5)R−C+O3 →RCOOΗ
(6)RCOOΗ+O3 →CO2 +H2
また、(7)生成したオゾンの一部が水と反応して生成したOHラジカルにより、(8)被処理水中の溶存有機物がカルボン酸等の有機酸の段階まで酸化分解され、(9)さらに一部は二酸化炭素にまで酸化分解される。
【0014】
(7)O3 +H2 O→・OH+・OH・+O2
(8)R−C+・OH→RCOOΗ
(9)RCOOΗ+・OH→CO2 +H2
本発明者らの実験によると、180〜190nmの波長を有する紫外線を照射可能な紫外線照射装置においては、被処理水中の溶存有機物を分解する際に溶存酸素が同時に消費されており、上記(1)〜(3)の反応に比べて、(4)〜
(6)、もしくは(7)〜(9)の反応が優先的に進行していることが示唆された。
【0015】
即ち、従来の超純水製造装置のように、例えば、真空脱気塔の後段に180〜190nmの波長を有する紫外線を照射可能な紫外線照射装置を設置している場合には、被処理水中の溶存酸素量が著しく低下しているので、溶存酸素の存在下にて180〜190nmの波長を有する紫外線を照射して溶存有機物を分解する場合と比べて、被処理水中の溶存有機物の分解効率が低くなるものと推測されたのである。
【0016】
そこで、本発明に係る超純水製造装置は、180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置と、第1の混床式イオン交換装置と、溶存酸素除去装置と、180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置と、第2の混床式イオン交換装置とを流路に沿って配置したことを特微としている。
【0017】
本発明においては、被処理水が180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置に導入され、被処理水中の溶存有機物が効率的に分解される。次に、被処理水は第1の混床式イオン交換装置に導入され、被処理水中のイオン成分等が除去される。次いで、被処理水は溶存酸素除去装置に導入され、被処理水中の酸素等が除去される。次に、被処理水は180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置に導入され、被処理水中の微量の溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にまで効率的に分解される。最後に、被処理水は第2の混床式イオン交換装置に導入され、被処理水中の微量のイオン成分等が除去される。
【0018】
また、本発明に係る超純水製造装置は、180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置と、第1の混床式イオン交換装置と、溶存酸素除去装置と、180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置と、第2の混床式イオン交換装置と、限外濾過膜装置とを流路に沿って配置したことを特微としている。
【0019】
本発明においては、被処理水が180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置に導入され、被処理水中の溶存有機物が効率的に分解される。次に、被処理水は第1の混床式イオン交換装置に導入され、被処理水中のイオン成分等が除去される。次いで、被処理水は溶存酸素除去装置に導入され、被処理水中の酸素等が除去される。次に、被処理水は180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置に導入され、被処理水中の微量の溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にまで効率的に分解される。次いで、被処理水は第2の混床式イオン交換装置に導入され、被処理水中の微量のイオン成分等が除去される。最後に、被処理水は限外濾過膜装置に導入されて、被処理水中に残存している微細な非イオン状物質を主体とする微粒子等が除去される。
【0020】
さらに、本発明に係る超純水製造装置は、180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置と、第1の混床式イオン交換装置と、溶存酸素除去装置と、180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置と、第2の混床式イオン交換装置と、処理水を必要量供給するユースポイントとを流路に沿って配置し、前記ユースポイントから過剰量の処理水を前記溶存酸素除去装置の前段に還流するようにしたことを特徴としている。
【0021】
本発明においては、被処理水が180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置に導入され、被処理水中の溶存有機物が効率的に分解される。次に、被処理水は第1の混床式イオン交換装置に導入され、被処理水中のイオン成分等が除去される。次いで、被処理水は溶存酸素除去装置に導入され、被処理水中の酸素等が除去される。次に、被処理水は180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置に導入され、被処理水中の微量の溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にまで効率的に分解される。次いで、被処理水は第2の混床式イオン交換装置に導入され、被処理水中の微量のイオン成分等が除去される。次に、処理水は、ユースポイントに供給され、必要量が消費されるとともに、過剰量の処理水は溶存酸素除去装置の前段に還流され、混入した溶存酸素は溶存酸素除去装置により除去される。
【0022】
また、本発明に係る超純水製造装置は、180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置と、第1の混床式イオン交換装置と、溶存酸素除去装置と、180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置と、第2の混床式イオン交換装置と、限外濾過膜装置と、処理水を必要量供給するユースポイントとを流路に沿って配置し、前記ユースポイントから過剰量の処理水を前記溶存酸素除去装置の前段に還流するようにしたことを特徴としている。
【0023】
本発明においては、被処理水が180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置に導入され、被処理水中の溶存有機物が効率的に分解される。次に、被処理水は第1の混床式イオン交換装置に導入され、被処理水中のイオン成分等が除去される。次いで、被処理水は溶存酸素除去装置に導入され、被処理水中の酸素等が除去される。次に、被処理水は180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置に導入され、被処理水中の微量の溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にまで効率的に分解される。次いで、被処理水は第2の混床式イオン交換装置に導入され、被処理水中の微量のイオン成分等が除去される。次に、被処理水は限外濾過膜装置に導入されて、被処理水中に残存している微細な非イオン状物質を主体とする微粒子等が除去される。次いで、処理水はユースポイントに供給され、必要量が消費されるとともに、過剰量の処理水は溶存酸素除去装置の前段に還流され、混入した溶存酸素は溶存酸素除去装置により除去される。
【0024】
上述したように、本発明の本質は、被処理水中の溶存有機物量や有機物種等に応じて溶存酸素濃度を調整することで、紫外線照射による溶存有機物の分解効率を高め、溶存酸素量の増加をも抑制するものである。したがって、180〜190nmの波長を有する紫外線を発生する紫外線照射装置、混床式イオン交換装置および溶存酸素除去装置等の機器の選定や稼働条件および被処理水の流量等の条件は、被処理水中の溶存有機物量や有機物種によって適宜変更されるものであるが、本発明の超純水製造装置の構成にしたがえば、どのような被処理水に対しても確実に本発明の課題を達成可能な条件を設定できるのである。
【0025】
本発明において、ユースポイントより超純水製造装置へ過剰量の処理水を還流させる場合には、還流場所は溶存酸素除去装置の前であれば特に限定はされず、必要ならば原水と合流するように構成することも可能である。
【0026】
本発明において、溶存酸素除去装置としては、不活性ガス添加型真空脱気装置を用いることができる。不活性ガス添加型真空脱気装置を用いた場合には、真空度を35torr以下とし、被処理水の体積を基準にして体積流量比0.001〜1.0の不活性ガスを系内に送入させて真空脱気処理を行うことが好ましい。不活性ガス添加型真空脱気装置内の真空度が35Torrを越えると、最終的に得られる超純水の溶存酸素濃度を1ppb以下に保つことが困難となる。また、不活性ガス添加型真空脱気装置に添加される不活性ガスの体積流量比が被処理水の体積を基準として1.0をこえると、脱気効率がほぼ頭打ちになるのに対してランニングコストのみが上昇し、不活性ガス添加型真空脱気装置に添加される不活性ガスの体積流量比が被処理水の体積を基準として0.001を下回ると、被処理水から酸素等の溶存気体を効果的に除去するのが困難となる。
【0027】
不活性ガス添加型真空脱気装置に添加される不活性ガスとしては、通常、窒素ガス、アルゴンガス等が好適に用いられる。
【0028】
第一および第二の紫外線照射装置としては、180〜190nm、とりわけ184.9nmの波長を有する紫外線を発生するものであれば、254nmの殺菌波長を有する紫外線を同時に発生していてもよく、特に制限は無いが、本発明においては、紫外線酸化用低圧紫外線ランプを用いるのが好ましい。
【0029】
第一および第二の混床式イオン交換装置としては、被処理水中の有機酸、微量の二酸化炭素あるいは他のイオン成分を除去するための強塩基性アニオン交換樹脂及びカチオン交換樹脂を充填した再生型もしくは非再生型の混床式イオン交換装置を好ましく用いることができる。これに用いるイオン交換樹脂としては、新品もしくはそれに類する破砕が無く、イオン交換性能が高く、また溶出の無いものが望ましい。
【0030】
また、限外濾過膜装置としては、PAN、セルロースアセテートあるいはフッ素系等の各種限外濾過膜を装備した一般的な限外濾過膜装置を適宜用いることができる。
【0031】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施例について詳細に説明する。なお、各図面において、同一の構成には同一符号を付し、詳細な説明は省略する。また、本発明は、その要旨を逸脱しないならば、本発明に限定されるものではない。
【0032】
参考例1および参考例2)図3は、参考例1および参考例2に用いた一次純水の製造装置を示した図である。
【0033】
図3において、符号1は原水中の濁質成分を除去するための膜前処理装置(野村マイクロ・サイエンス(株)、NML−E)、符号2は逆浸透膜装置(東レ
(株)、SU−720)、符号3は混床式イオン交換装置であって、アニオン交換樹脂として強塩基性アニオン交換樹脂デュオライトA−113plus(ローム&ハース社)を33l、カチオン交換樹脂として強酸性カチオン交換樹脂デュオライトC−20(ローム&ハース社)を23l使用し、これらを予め再生してOH型とΗ型とに変換した後に混合充填したものである。この混床式イオン交換装置のイオン交換容量は0.9当量/l−Resinである。
【0034】
参考例1および参考例2は、このように構成された純水製造装置により製造された一次純水を対象として実施された。なお、膜前処理装置1に供給される原水としては厚木市水を使用し、製造された一次純水の平均水質は、電気伝導度16.0MΩ・cm、ΤOC濃度120ppb、溶存酸素濃度7600ppbであった。
【0035】
図1は、本発明の一参考例である超純水製造装置(二次系システム)の構成を示した図である。図1において、符号4および7は低圧紫外線ランプ酸化装置(千代田工販(株)、TDFL−4、照射量0.25kWh/m3 )であり、185nm付近の波長をピークとする紫外線が照射される。符号5および8は混床式イオン交換装置であって、アニオン交換樹脂として強塩基性アニオン交換樹脂デュオライトA−113plus(ローム&ハース社)を33l、カチオン交換樹脂として強酸性カチオン交換樹脂デュオライトC−20(ローム&ハース社)を23l使用し、これらを予め再生してOΗ型とH型に変換した後に混合充填したものである。この混床式イオン交換装置のイオン交換容量は0.9当量/l−Resinである。符号6は、充填材としてテラレットSタイプ(日鉄化工機(株)、充填径250mm、充填層高2000mm)を充填し、窒素ガスと被処理水との体積比率を0.03:1とした窒素ガス添加方式の真空脱気装置であり真空度は25torrに保たれている。
【0036】
参考例は、図3に示された純水製造装置を用いて製造された一次純水を、流量2m3 /hで二次系システムに供給し、超純水を経時的に連続して製造することにより行われた(参考例1)。なお、参考例1において、被処理水の温度は、25℃一定に保たれていた。
【0037】
また、図2は、本発明の参考例2における超純水製造装置(二次系システム)の構成を示した図である。本参考例の超純水製造装置においては、参考例1と同一の機器を使用し、窒素ガス添加方式の真空脱気装置6を低圧紫外線ランプ酸化装置4の前段に設置したこと以外は、参考例1と全く同一となっている。
【0038】
参考例は、図3に示された純水製造装置を用いて製造された一次純水を、流量2m3 /hで二次系システムに供給し、超純水を経時的に連続して製造することにより行われた(参考例2)。なお、参考例2においても、被処理水の温度は25℃一定に保たれていた。
【0039】
表1に、参考例1および参考例2のポイント(ポイントBおよびポイントC)において測定されたTOC濃度および溶存酸素濃度の測定結果を示す。なお、TOC濃度および溶存酸素濃度の測定には、オンラインTOC計(アナテル社、A−1000 S−20)および高感度溶存酸素計(オービスフェア ラボラトリーズ、モデル2713)を使用した。また、参考例1および参考例2において得られた超純水の電気伝導度(ポイントBおよびCにおける電気伝導度)は、ともに18.2MΩ・cmであった。
【0040】
【表1】

Figure 0003856493
参考例1においては、低圧紫外線ランプ酸化装置4に導入される被処理水は一次純水そのものであるので、TOC濃度と溶存酸素濃度がともに高いが、参考例2においては、被処理水は真空脱気装置6で溶存酸素を脱気された後、低圧紫外線ランプ酸化装置4に導入されることから、低圧紫外線ランプ酸化装置4に導入される被処理水は、参考例1と比べてTOC濃度がほぼ変わらないものの溶存酸素濃度は低い。したがって、参考例2においては、参考例1と比べて溶存有機物量に対する溶存酸素量が低く、低圧紫外線ランプ酸化装置4による溶存有機物の分解効率が低くなるものと推定される。
【0041】
すなわち、参考例1においては、溶存有機物の低圧紫外線ランプ酸化装置での分解に際し、溶存有機物量に対する溶存酸素量が参考例2に比べてバランスしているために溶存有機物の分解効率が高いと考えられる。
【0042】
そして、表1から明らかなように、参考例1において得られた超純水は、参考例2において得られた超純水と比べて、溶存酸素濃度がほとんど変わらないにも拘らず、TOC濃度が著しく低減される結果となった。
【0043】
(実施例および比較例)図4は、本発明の一実施例である超純水製造装置の構成を示した図である。図4において、原水は、前処理装置10に導入され、原水中の懸濁物質等が分離、除去される。次いで、前処理装置10で処理された被処理水は、カチオン交換樹脂塔、脱炭酸塔およびアニオン交換樹脂塔からなる2床3塔11によりイオン成分が除去された後、逆浸透装置12に導入されて微粒子およびコロイド状物質等の除去が行われる。
【0044】
次に、被処理水は、逆浸透装置12から低圧紫外線ランプ酸化装置13に導入されて溶存有機物が分解され、混床式イオン交換装置14により被処理水中のイオン成分が除去される。続いて、被処理水は、窒素ガス添加方式の真空脱気装置15に導入されて溶存酸素等の溶存気体が除去されて、再び、低圧紫外線ランプ酸化装置16に導入されて溶存有機物が分解され、混床式イオン交換装置17により被処理水中のイオン成分が除去される。最後に、被処理水は限外濾過膜装置18に導入され、極微量の微粒子等が除去される。
【0045】
こうして製造された超純水は、ユースポイント19に供給されるとともに、過剰量の超純水は真空脱気装置15の前段に還流される構成となっている。また、真空脱気装置15は、窒素ガスと被処理水との体積比率を0.03:1とされており、真空度は25torrに保たれている。なお、ここでは膜前処理装置10が前処理システム、2床3塔11から真空脱気装置15までが一次系システム、低圧紫外線ランプ酸化装置16から限外濾過膜装置18までが二次系システムと区分される。
【0046】
経路Aは、本発明の超純水製造方法との比較のために、ユースポイント19において使用されなかった過剰量の超純水を、真空脱気装置15の後段に還流するためのラインである。
【0047】
膜前処理装置10に供給する原水として工業用水を使用し、一次系システムにより一次純水を生成し、次いで、真空脱気装置15より、一次純水を二次系システムに供給し、超純水を経時的に連続して製造した(実施例)。
【0048】
一方、経路Aにより、ユースポイント19から過剰量の超純水を真空脱気装置15の後段に還流した以外は、実施例と全く同一の条件で超純水を製造した。なお、被処理水の水温は、実施例および比較例ともに25℃一定に保たれていた。
【0049】
表2に、実施例および比較例における、ポイントDで測定されたTOC濃度および溶存酸素濃度の測定結果を示す。なお、TOC濃度および溶存酸素濃度の測定には、オンラインTOC計(アナテル社、A−1000 S−20)および高感度溶存酸素計(オービスフェア ラボラトリーズ、モデル2713)を使用した。また、実施例および比較例において得られた超純水の電気伝導度(ポイントDにおける電気伝導度)は、ともに18.2MΩ・cmであった。
【0050】
【表2】
Figure 0003856493
実施例においては、被処理水は、真空脱気装置15で溶存酸素を脱気された後、低圧紫外線ランプ酸化装置16に導入されるので、TOC濃度と溶存酸素濃度がともに低いが、比較例においては、経路Aによりユースポイント19からの被処理水がそのまま低圧紫外線ランプ酸化装置16に導入されることから、低圧紫外線ランプ酸化装置16に導入される被処理水は、実施例と比べてTOC濃度がほぼ変わらないものの溶存酸素濃度は高くなっている。したがって、比較例においては、実施例と比べて、被処理水中の溶存酸素濃度が著しく高くなる結果となった。
【0051】
【発明の効果】
本発明の超純水製造装置によれば、被処理水である一次純水に、180〜190nmの波長を有する紫外線を照射して溶存有機物を分解する際、被処理水中の溶存有機物に対して溶存酸素量をほぼ最適に調整するので、被処理水中の溶存有機物が効率的に分解される。さらに、ユースポイントからの過剰の処理水(超純水)を溶存酸素除去装置の前段に還流するので、二次系システム内における溶存酸素濃度の上昇が防止される。したがって、超純水中の有機物成分および溶存酸素濃度が低減された、運転コストの安価な超純水製造装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による超純水製造装置(二次系システム)の一参考例を示した図。
【図2】本発明の参考例2における超純水製造装置(二次系システム)の構成を示した図。
【図3】参考例1および参考例2に用いた一次純水の製造装置(一次系システム)を示した図。
【図4】本発明の実施例である超純水製造装置の構成を示した図。
【符号の説明】
1………膜前処理装置 2………逆浸透膜装置
3………混床式イオン交換装置 4………低圧紫外線ランプ酸化装置
5………混床式イオン交換装置 6………真空脱気装置
7………低圧紫外線ランプ酸化装置 8………混床式イオン交換装置
9………真空ポンプ 10………前処理装置
11………2床3塔 12………逆浸透装置
13………低圧紫外線ランプ酸化装置 14………混床式イオン交換装置
15………真空脱気装置 16………低圧紫外線ランプ酸化装置
17………混床式イオン交換装置 18………限外濾過膜装置
19………ユースポイント[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrapure water production apparatus for producing ultrapure water widely used in electronic industries, nuclear power plants or pharmaceutical manufacturing factories that produce liquid crystal and semiconductor elements, and in particular, efficiently removes organic components. In addition, the present invention relates to an ultrapure water production apparatus capable of stably supplying ultrapure water having a low dissolved oxygen concentration to a use point.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, ultrapure water with extremely low contents of ionic substances, fine particles, organic substances, dissolved gases, viable bacteria, and the like has been required in the manufacturing process of liquid crystals, semiconductor devices (LSIs), and pharmaceuticals. Among these, in the electronics industry, a large amount of ultrapure water is used, and the demand for the purity of ultrapure water is becoming increasingly severe as the integration degree of LSI increases. In particular, reduction of the soot OC concentration and dissolved oxygen concentration in ultrapure water has become a major issue.
[0003]
In general, the production of ultrapure water was obtained from a pretreatment system that removes turbid components in raw water, a primary system that removes ionic substances, fine particles, organic matter, dissolved gas, and viable bacteria, and a primary system. This is done by a combination of secondary systems for the purpose of precision finishing of primary pure water. Usually, the manufactured ultrapure water is supplied to the use point and a necessary amount is consumed, and the excessive amount of ultrapure water is returned to the secondary system and processed again.
[0004]
However, if excessive amount of ultrapure water is recirculated from the point of use to the secondary system, there is a problem that the dissolved oxygen concentration in the secondary system increases remarkably and the purity of the produced ultrapure water deteriorates. .
[0005]
In addition, in secondary systems for the purpose of precision finishing of primary pure water, as a treatment method to reduce the organic matter concentration in ultrapure water, the primary treated with membrane by ion exchange treatment or reverse osmosis method. A method is known in which pure water is irradiated with ultraviolet rays to decompose dissolved organic substances, and then the decomposed organic substances are removed by a mixed bed ion exchange apparatus. It is also known that the decomposition of dissolved organic substances can be efficiently achieved by using an ultraviolet ray having a wavelength of 180 to 190 nm (particularly 184.9 nm) as the ultraviolet ray irradiated to the primary pure water (Japanese Patent Laid-Open No. Hei. 1-164488).
[0006]
However, the primary pure water, which is the treated water whose dissolved oxygen concentration is reduced to a low concentration by the primary system, is converted into an ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm and a mixed bed ion exchange device. When processing in the secondary system, the decomposition efficiency of dissolved organic matter is low, so the TOC concentration in the water to be treated does not decrease easily, and the UV irradiation amount by the UV irradiation device is increased to reduce the TOC concentration. For this reason, there is a problem that the power consumption of the ultraviolet irradiation device increases.
[0007]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described conventional problems, and provides an ultrapure water production apparatus with low operating cost that substantially prevents an increase in the concentration of soot OC in ultrapure water and reduces the dissolved oxygen concentration. The purpose is to do.
[0008]
[Means for Solving the Problems]
As described above, when excess treated water (ultra pure water) is recirculated from the point of use to the secondary system, the dissolved oxygen concentration in the secondary system significantly increases and the purity of the manufactured ultra pure water deteriorates. did.
[0009]
In addition, when the primary pure water from which dissolved oxygen has been removed is irradiated with ultraviolet rays and finished with a mixed bed ion exchanger, the amount of power consumed by the ultraviolet irradiation device increases to reduce the concentration of dissolved organic matter, and the initial cost and running The cost was increased.
[0010]
Therefore, as a result of intensive studies by the present inventors on these problems, it has been found that dissolved oxygen is mixed into the treated water refluxed from the use point to the secondary system by about several ppb to several tens of ppb. did. Although the cause of oxygen contamination in the treated water is unknown, it is presumed that the oxygen enters from the connection part of piping such as a cleaning device connected to the use point.
[0011]
On the other hand, the decomposition reaction of dissolved organic matter by ultraviolet rays having a wavelength of 180 to 190 nm, particularly 184.9 nm is as follows: (1) OH radicals (hydroxy radicals) generated from primary pure water, The organic matter in the primary pure water which is treated water is oxidatively decomposed to the stage of an organic acid such as carboxylic acid, and (3) further part is oxidatively decomposed to carbon dioxide.
[0012]
(1) H 2 O + hν → OH
(2) R−C + · OH → RCOOΗ
(3) RCOOΗ + .OH → CO 2 + H 2 O
The above reaction is a reaction under a condition in which dissolved oxygen in the water to be treated is extremely low. Under the condition in which dissolved oxygen exists in the water to be treated, (4) Dissolved organic substances in the treated water are oxidatively decomposed to the stage of an organic acid such as carboxylic acid, and (6) a part is further oxidatively decomposed to carbon dioxide.
[0013]
(4) 3O 2 + hν → 2O 3
(5) R−C + O 3 → RCOOΗ
(6) RCOOΗ + O 3 → CO 2 + H 2 O
Further, (7) OH radicals generated by a part of the generated ozone reacting with water, (8) dissolved organic matter in the water to be treated is oxidatively decomposed to the stage of an organic acid such as carboxylic acid, and (9) Some are oxidatively decomposed to carbon dioxide.
[0014]
(7) O 3 + H 2 O → OH + .OH. + O 2
(8) R−C + · OH → RCOOΗ
(9) RCOOΗ + .OH → CO 2 + H 2 O
According to the experiments by the present inventors, in the ultraviolet irradiation apparatus capable of irradiating ultraviolet rays having a wavelength of 180 to 190 nm, dissolved oxygen is consumed simultaneously when decomposing dissolved organic matter in the water to be treated. ) ~ (3) reaction, (4) ~
It was suggested that the reactions (6) or (7) to (9) proceeded preferentially.
[0015]
That is, as in the case of a conventional ultrapure water production apparatus, for example, when an ultraviolet irradiation device capable of irradiating ultraviolet rays having a wavelength of 180 to 190 nm is installed after the vacuum deaeration tower, Since the amount of dissolved oxygen is significantly reduced, the decomposition efficiency of dissolved organic matter in the water to be treated is lower than that in the case of decomposing dissolved organic matter by irradiating ultraviolet rays having a wavelength of 180 to 190 nm in the presence of dissolved oxygen. It was speculated that it would be lower.
[0016]
Therefore, an ultrapure water production apparatus according to the present invention includes a first ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removal device, and 180 A feature is that a second ultraviolet irradiation device that generates ultraviolet rays having a wavelength of ˜190 nm and a second mixed-bed ion exchange device are arranged along the flow path.
[0017]
In this invention, to-be-processed water is introduce | transduced into the 1st ultraviolet irradiation device which generate | occur | produces the ultraviolet-ray which has a wavelength of 180-190 nm, and the dissolved organic substance in to-be-processed water is decomposed | disassembled efficiently. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and ion components and the like in the water to be treated are removed. Next, the water to be treated is introduced into a dissolved oxygen removing device, and oxygen and the like in the water to be treated are removed. Next, the water to be treated is introduced into a second ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, and a very small amount of dissolved organic matter in the water to be treated is almost completely efficiently converted to an organic acid or carbon dioxide. Disassembled. Finally, the water to be treated is introduced into the second mixed bed ion exchange apparatus, and a small amount of ion components and the like in the water to be treated are removed.
[0018]
Moreover, the ultrapure water production apparatus according to the present invention includes a first ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removal device, and 180 A feature is that a second ultraviolet irradiation device that generates ultraviolet rays having a wavelength of ˜190 nm, a second mixed bed ion exchange device, and an ultrafiltration membrane device are arranged along the flow path.
[0019]
In this invention, to-be-processed water is introduce | transduced into the 1st ultraviolet irradiation device which generate | occur | produces the ultraviolet-ray which has a wavelength of 180-190 nm, and the dissolved organic substance in to-be-processed water is decomposed | disassembled efficiently. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and ion components and the like in the water to be treated are removed. Next, the water to be treated is introduced into a dissolved oxygen removing device, and oxygen and the like in the water to be treated are removed. Next, the water to be treated is introduced into a second ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, and a very small amount of dissolved organic matter in the water to be treated is almost completely efficiently converted to an organic acid or carbon dioxide. Disassembled. Next, the water to be treated is introduced into the second mixed bed ion exchange apparatus, and a small amount of ion components and the like in the water to be treated are removed. Finally, the water to be treated is introduced into the ultrafiltration membrane device to remove fine particles mainly composed of fine nonionic substances remaining in the water to be treated.
[0020]
Furthermore, an ultrapure water production apparatus according to the present invention includes a first ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removal device, and 180 A second ultraviolet irradiation device that generates ultraviolet light having a wavelength of ˜190 nm, a second mixed bed ion exchange device, and a use point for supplying a necessary amount of treated water are disposed along the flow path, and the use It is characterized in that an excessive amount of treated water is refluxed from the point to the front stage of the dissolved oxygen removing device.
[0021]
In this invention, to-be-processed water is introduce | transduced into the 1st ultraviolet irradiation device which generate | occur | produces the ultraviolet-ray which has a wavelength of 180-190 nm, and the dissolved organic substance in to-be-processed water is decomposed | disassembled efficiently. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and ion components and the like in the water to be treated are removed. Next, the water to be treated is introduced into a dissolved oxygen removing device, and oxygen and the like in the water to be treated are removed. Next, the water to be treated is introduced into a second ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, and a very small amount of dissolved organic matter in the water to be treated is almost completely efficiently converted to an organic acid or carbon dioxide. Disassembled. Next, the water to be treated is introduced into the second mixed bed ion exchange apparatus, and a small amount of ion components and the like in the water to be treated are removed. Next, the treated water is supplied to the point of use, and a necessary amount is consumed, and an excessive amount of treated water is returned to the previous stage of the dissolved oxygen removing device, and the mixed dissolved oxygen is removed by the dissolved oxygen removing device. .
[0022]
Moreover, the ultrapure water production apparatus according to the present invention includes a first ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removal device, and 180 A second ultraviolet irradiation device that generates ultraviolet light having a wavelength of ˜190 nm, a second mixed-bed ion exchange device, an ultrafiltration membrane device, and a use point for supplying a necessary amount of treated water as a flow path It arrange | positions along, and it was made to recirculate | reflux the excessive amount of treated water from the said use point to the front | former stage of the said dissolved oxygen removal apparatus.
[0023]
In this invention, to-be-processed water is introduce | transduced into the 1st ultraviolet irradiation device which generate | occur | produces the ultraviolet-ray which has a wavelength of 180-190 nm, and the dissolved organic substance in to-be-processed water is decomposed | disassembled efficiently. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and ion components and the like in the water to be treated are removed. Next, the water to be treated is introduced into a dissolved oxygen removing device, and oxygen and the like in the water to be treated are removed. Next, the water to be treated is introduced into a second ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, and a very small amount of dissolved organic matter in the water to be treated is almost completely efficiently converted to an organic acid or carbon dioxide. Disassembled. Next, the water to be treated is introduced into the second mixed bed ion exchange apparatus, and a small amount of ion components and the like in the water to be treated are removed. Next, the water to be treated is introduced into the ultrafiltration membrane device, and fine particles mainly composed of fine nonionic substances remaining in the water to be treated are removed. Then, the treated water is supplied to the use point, and a necessary amount is consumed, and an excessive amount of treated water is returned to the front stage of the dissolved oxygen removing device, and the mixed dissolved oxygen is removed by the dissolved oxygen removing device.
[0024]
As described above, the essence of the present invention is to adjust the dissolved oxygen concentration according to the amount of dissolved organic matter and organic species in the water to be treated, thereby increasing the decomposition efficiency of dissolved organic matter by ultraviolet irradiation and increasing the amount of dissolved oxygen. Is also suppressed. Accordingly, conditions such as the selection of the ultraviolet irradiation apparatus that generates ultraviolet rays having a wavelength of 180 to 190 nm, mixed bed ion exchange apparatus, dissolved oxygen removal apparatus, operating conditions, and the flow rate of the water to be treated are as follows. However, according to the configuration of the ultrapure water production apparatus of the present invention, the object of the present invention can be reliably achieved for any water to be treated. Possible conditions can be set.
[0025]
In the present invention, when an excessive amount of treated water is refluxed from the use point to the ultrapure water production apparatus, the reflux location is not particularly limited as long as it is in front of the dissolved oxygen removing apparatus, and if necessary, merges with the raw water. It is also possible to configure as described above.
[0026]
In the present invention, an inert gas addition type vacuum degassing apparatus can be used as the dissolved oxygen removing apparatus . When an inert gas addition type vacuum degassing apparatus is used, the degree of vacuum is set to 35 torr or less, and an inert gas having a volume flow rate ratio of 0.001 to 1.0 based on the volume of water to be treated is introduced into the system. It is preferable to carry out vacuum deaeration treatment by feeding. If the degree of vacuum in the inert gas addition type vacuum deaerator exceeds 35 Torr, it will be difficult to keep the dissolved oxygen concentration of the ultrapure water finally obtained at 1 ppb or less. In addition, when the volume flow ratio of the inert gas added to the inert gas addition type vacuum deaerator exceeds 1.0 on the basis of the volume of the water to be treated, the deaeration efficiency almost reaches a peak. If only the running cost is increased and the volume flow ratio of the inert gas added to the inert gas addition type vacuum degassing apparatus is less than 0.001 based on the volume of the water to be treated, oxygen, etc. It becomes difficult to effectively remove dissolved gas.
[0027]
Usually, nitrogen gas, argon gas, etc. are used suitably as an inert gas added to an inert gas addition type vacuum deaerator.
[0028]
As the first and second ultraviolet irradiation devices, as long as ultraviolet rays having a wavelength of 180 to 190 nm, particularly 184.9 nm are generated, ultraviolet rays having a sterilization wavelength of 254 nm may be simultaneously generated. Although there is no limitation, in the present invention, it is preferable to use a low-pressure ultraviolet lamp for ultraviolet oxidation.
[0029]
As the first and second mixed bed type ion exchange devices, regeneration filled with strongly basic anion exchange resin and cation exchange resin for removing organic acid, trace amount of carbon dioxide or other ion components in treated water A type or non-regenerative type mixed bed type ion exchange apparatus can be preferably used. As the ion exchange resin used for this, it is desirable that the ion exchange resin is new or has no crushing, high ion exchange performance, and no elution.
[0030]
Moreover, as an ultrafiltration membrane apparatus, the general ultrafiltration membrane apparatus equipped with various ultrafiltration membranes, such as PAN, a cellulose acetate, or a fluorine-type, can be used suitably.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the present invention is not limited to the present invention without departing from the gist thereof.
[0032]
( Reference Example 1 and Reference Example 2 ) FIG. 3 is a diagram showing a primary pure water production apparatus used in Reference Example 1 and Reference Example 2 .
[0033]
In FIG. 3, reference numeral 1 is a membrane pretreatment apparatus (Nomura Micro Science Co., Ltd., NML-E) for removing turbid components in raw water, and reference numeral 2 is a reverse osmosis membrane apparatus (Toray Industries, Inc., SU). -720), 3 is a mixed bed type ion exchanger, 33 l of strongly basic anion exchange resin Duolite A-113plus (Rohm & Haas) as anion exchange resin, and strongly acidic cation exchange resin as cation exchange resin Duolite C-20 (Rohm & Haas) was used in 23 liters, and these were regenerated in advance and converted into OH type and saddle type, and then mixed and filled. The ion exchange capacity of this mixed bed ion exchange apparatus is 0.9 equivalent / l-Resin.
[0034]
This Reference Example 1 and Reference Example 2 were carried out on primary pure water produced by the pure water production apparatus configured as described above. The raw water supplied to the membrane pretreatment apparatus 1 is Atsugi City water, and the average quality of the produced primary pure water is 16.0 MΩ · cm in electrical conductivity, 120 ppb in OC concentration, and 7600 ppb in dissolved oxygen concentration. there were.
[0035]
FIG. 1 is a diagram showing a configuration of an ultrapure water production apparatus (secondary system) as one reference example of the present invention. In FIG. 1, reference numerals 4 and 7 denote low-pressure ultraviolet lamp oxidizers (Chiyoda Industrial Sales Co., Ltd., TDFL-4, irradiation amount 0.25 kWh / m 3 ), which are irradiated with ultraviolet rays having a peak at a wavelength around 185 nm. The Reference numerals 5 and 8 are mixed bed type ion exchange apparatuses, 33 l of strongly basic anion exchange resin duolite A-113plus (Rohm & Haas) as anion exchange resin, and strongly acidic cation exchange resin duolite as cation exchange resin. 23 liters of C-20 (Rohm & Haas) was used, and these were regenerated in advance and converted into O-type and H-type, and then mixed and filled. The ion exchange capacity of this mixed bed ion exchange apparatus is 0.9 equivalent / l-Resin. Reference numeral 6 is filled with Terrarette S type as a filler (Nittetsu Koki Co., Ltd., filling diameter 250 mm, filling layer height 2000 mm), and the volume ratio of nitrogen gas to water to be treated is 0.03: 1. This is a nitrogen gas addition type vacuum deaerator, and the degree of vacuum is maintained at 25 torr.
[0036]
In this reference example, primary pure water produced using the pure water production apparatus shown in FIG. 3 is supplied to a secondary system at a flow rate of 2 m 3 / h, and ultrapure water is continuously added over time. This was carried out by manufacturing ( Reference Example 1). In Reference Example 1, the temperature of the water to be treated was kept constant at 25 ° C.
[0037]
FIG. 2 is a diagram showing the configuration of the ultrapure water production apparatus (secondary system) in Reference Example 2 of the present invention. In ultrapure water production apparatus of the present embodiment, except that using the same equipment as in Reference Example 1, was placed a vacuum degasser 6 nitrogen gas addition method in front of the low-pressure ultraviolet lamp oxidizer 4, reference It is exactly the same as Example 1.
[0038]
In this reference example , primary pure water produced using the pure water production apparatus shown in FIG. 3 is supplied to a secondary system at a flow rate of 2 m 3 / h, and ultrapure water is continuously added over time. This was carried out by manufacturing ( Reference Example 2 ). In Reference Example 2 , the temperature of the water to be treated was kept constant at 25 ° C.
[0039]
Table 1 shows the measurement results of the TOC concentration and the dissolved oxygen concentration measured at the points of Reference Example 1 and Reference Example 2 (point B and point C). In addition, an online TOC meter (Anatel, A-1000 S-20) and a high-sensitivity dissolved oxygen meter (Orbis Fair Laboratories, Model 2713) were used for the measurement of the TOC concentration and the dissolved oxygen concentration. Moreover, the electrical conductivities (electric conductivities at points B and C) obtained in Reference Examples 1 and 2 were both 18.2 MΩ · cm.
[0040]
[Table 1]
Figure 0003856493
In Reference Example 1, since the water to be treated introduced into the low-pressure ultraviolet lamp oxidizer 4 is primary pure water itself, both the TOC concentration and the dissolved oxygen concentration are high. In Reference Example 2 , the water to be treated is vacuum. Since the dissolved oxygen is degassed by the deaeration device 6 and then introduced into the low-pressure ultraviolet lamp oxidation device 4, the water to be treated introduced into the low-pressure ultraviolet lamp oxidation device 4 has a TOC concentration as compared with the reference example 1. Although there is almost no change, the dissolved oxygen concentration is low. Therefore, in Reference Example 2, it is estimated that the amount of dissolved oxygen relative to the amount of dissolved organic matter is lower than that in Reference Example 1, and the decomposition efficiency of dissolved organic matter by the low-pressure ultraviolet lamp oxidizer 4 is lowered.
[0041]
That is, in Reference Example 1, when the dissolved organic matter is decomposed by the low-pressure ultraviolet lamp oxidizer, the dissolved organic matter amount is more balanced than that in Reference Example 2 because the dissolved oxygen amount is balanced compared to Reference Example 2. It is done.
[0042]
As is clear from Table 1, the ultrapure water obtained in Reference Example 1 was compared with the ultrapure water obtained in Reference Example 2 , although the dissolved oxygen concentration was almost unchanged, the TOC concentration Was significantly reduced.
[0043]
(Example 1 and Comparative Example 1 ) FIG. 4 is a diagram showing the configuration of an ultrapure water production apparatus which is an example of the present invention. In FIG. 4, raw water is introduced into the pretreatment device 10, and suspended substances and the like in the raw water are separated and removed. Next, the water to be treated treated by the pretreatment apparatus 10 is introduced into the reverse osmosis apparatus 12 after the ionic components are removed by the two-bed 3 tower 11 comprising a cation exchange resin tower, a decarboxylation tower and an anion exchange resin tower. Then, fine particles and colloidal substances are removed.
[0044]
Next, the water to be treated is introduced from the reverse osmosis device 12 to the low pressure ultraviolet lamp oxidizer 13 to decompose the dissolved organic matter, and the mixed bed ion exchanger 14 removes ionic components in the water to be treated. Subsequently, the water to be treated is introduced into the vacuum degassing device 15 of the nitrogen gas addition type to remove dissolved gases such as dissolved oxygen, and again introduced into the low-pressure ultraviolet lamp oxidizing device 16 to decompose the dissolved organic matter. The mixed-bed ion exchanger 17 removes ion components in the water to be treated. Finally, the water to be treated is introduced into the ultrafiltration membrane device 18 to remove a very small amount of fine particles and the like.
[0045]
The ultrapure water produced in this way is supplied to the use point 19 and an excessive amount of ultrapure water is returned to the front stage of the vacuum deaerator 15. Further, the vacuum deaerator 15 has a volume ratio of nitrogen gas to water to be treated of 0.03: 1, and the degree of vacuum is maintained at 25 torr. In this case, the membrane pretreatment device 10 is a pretreatment system, the second bed 3 tower 11 to the vacuum deaeration device 15 is a primary system, and the low pressure ultraviolet lamp oxidation device 16 to the ultrafiltration membrane device 18 is a secondary system. It is classified as
[0046]
The path A is a line for returning an excessive amount of ultrapure water that has not been used at the use point 19 to the rear stage of the vacuum deaerator 15 for comparison with the ultrapure water production method of the present invention. .
[0047]
Industrial water is used as raw water to be supplied to the membrane pretreatment device 10, primary pure water is generated by the primary system, and then the primary pure water is supplied from the vacuum degassing device 15 to the secondary system. Water was produced continuously over time (Example 1 ).
[0048]
On the other hand, ultrapure water was produced under exactly the same conditions as in Example 1 except that an excessive amount of ultrapure water was refluxed from the use point 19 to the subsequent stage of the vacuum deaerator 15 via the route A. The water temperature of the water to be treated was kept constant at 25 ° C. in both Example 1 and Comparative Example 1 .
[0049]
Table 2 shows the measurement results of the TOC concentration and the dissolved oxygen concentration measured at point D in Example 1 and Comparative Example 1 . In addition, an online TOC meter (Anatel, A-1000 S-20) and a high-sensitivity dissolved oxygen meter (Orbis Fair Laboratories, Model 2713) were used for the measurement of the TOC concentration and the dissolved oxygen concentration. Moreover, the electrical conductivity (electric conductivity at point D) of the ultrapure water obtained in Example 1 and Comparative Example 1 was 18.2 MΩ · cm.
[0050]
[Table 2]
Figure 0003856493
In Example 1 , since the water to be treated is degassed by the vacuum deaerator 15 and then introduced into the low-pressure ultraviolet lamp oxidizer 16, both the TOC concentration and the dissolved oxygen concentration are low. In Example 1 , since the water to be treated from the use point 19 is directly introduced into the low-pressure ultraviolet lamp oxidizer 16 through the route A, the water to be treated introduced into the low-pressure ultraviolet lamp oxidizer 16 is the same as that in Example 1 . In comparison, the dissolved oxygen concentration is high although the TOC concentration is almost unchanged. Therefore, in Comparative Example 1 , the dissolved oxygen concentration in the water to be treated was significantly higher than that in Example 1 .
[0051]
【The invention's effect】
According to the ultrapure water production apparatus of the present invention, when decomposing dissolved organic matter by irradiating primary pure water which is treated water with ultraviolet rays having a wavelength of 180 to 190 nm, the dissolved organic matter in treated water is decomposed. Since the amount of dissolved oxygen is adjusted almost optimally, the dissolved organic matter in the water to be treated is efficiently decomposed. Furthermore, since the excess treated water (ultra pure water) from the use point is recirculated to the front stage of the dissolved oxygen removing apparatus, an increase in the dissolved oxygen concentration in the secondary system is prevented. Therefore, it is possible to provide an ultrapure water production apparatus that is low in operating cost and has reduced organic components and dissolved oxygen concentration in ultrapure water.
[Brief description of the drawings]
FIG. 1 is a diagram showing a reference example of an ultrapure water production apparatus (secondary system) according to the present invention.
FIG. 2 is a diagram showing a configuration of an ultrapure water production apparatus (secondary system) in Reference Example 2 of the present invention.
FIG. 3 is a diagram showing a primary pure water production apparatus (primary system) used in Reference Example 1 and Reference Example 2 ;
FIG. 4 is a diagram showing a configuration of an ultrapure water production apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ......... Membrane pretreatment apparatus 2 ......... Reverse osmosis membrane apparatus 3 ......... Mixed bed type ion exchange apparatus 4 ......... Low pressure ultraviolet lamp oxidation apparatus 5 ......... Mixed bed type ion exchange apparatus 6 ......... Vacuum Degassing device 7 ......... Low pressure ultraviolet lamp oxidizer 8 ......... Mixed bed type ion exchanger 9 ......... Vacuum pump 10 ......... Pretreatment device 11 ... …… Two beds 3 towers 12 ... …… Reverse osmosis device 13 ......... Low pressure ultraviolet lamp oxidizer 14 ......... Mixed bed ion exchanger 15 ......... Vacuum degasser 16 ......... Low pressure ultraviolet lamp oxidizer 17 ......... Mixed bed ion exchanger 18 ......... Ultrafiltration membrane device 19 ... Use point

Claims (1)

原水の処理前にあらかじめ溶存酸素を除去することなく、ユースポイントにおいて供給される超純水の溶存酸素濃度を1ppb以下とすることが可能な超純水製造装置であって、180〜190nmの波長を有する紫外線を発生する第1の紫外線照射装置と、第1の混床式イオン交換装置と、微量の不活性ガスを系内に送入して真空脱気を行う不活性ガス添加型真空脱気装置と、180〜190nmの波長を有する紫外線を発生する第2の紫外線照射装置と、第2の混床式イオン交換装置と、限外濾過膜装置と、処理水を必要量供給するユースポイントとを流路に沿って配置し、前記ユースポイントから過剰量の処理水を前記不活性ガス添加型真空脱気装置の前段に還流するようにしたことを特徴とする超純水製造装置。 An ultrapure water production apparatus capable of reducing the dissolved oxygen concentration of ultrapure water supplied at a use point to 1 ppb or less without removing dissolved oxygen in advance before processing raw water, and having a wavelength of 180 to 190 nm A first ultraviolet irradiation device for generating ultraviolet rays having a first gas , a first mixed-bed ion exchange device, and an inert gas addition type vacuum degassing in which a small amount of inert gas is fed into the system for vacuum deaeration. Use point for supplying a necessary amount of a gas device , a second ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, a second mixed-bed ion exchange device, an ultrafiltration membrane device, and treated water Is disposed along the flow path, and an excessive amount of treated water is recirculated to the front stage of the inert gas addition type vacuum deaeration device from the use point.
JP2661996A 1996-02-14 1996-02-14 Ultrapure water production equipment Expired - Lifetime JP3856493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2661996A JP3856493B2 (en) 1996-02-14 1996-02-14 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2661996A JP3856493B2 (en) 1996-02-14 1996-02-14 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JPH09220560A JPH09220560A (en) 1997-08-26
JP3856493B2 true JP3856493B2 (en) 2006-12-13

Family

ID=12198499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2661996A Expired - Lifetime JP3856493B2 (en) 1996-02-14 1996-02-14 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP3856493B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390441B1 (en) * 2008-03-31 2014-04-30 쿠리타 고교 가부시키가이샤 Method for producing pure water and pure water production system
JP5430983B2 (en) * 2009-03-18 2014-03-05 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP2020157225A (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Decarbonation method, water treatment method, decarbonation apparatus, and water treatment apparatus

Also Published As

Publication number Publication date
JPH09220560A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JP4932757B2 (en) Ultrapure water production method and ultrapure water production apparatus
US5554295A (en) Method for producing pure water
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP6752692B2 (en) Water treatment method and equipment
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2014168743A (en) Pure water manufacturing method
JP3856493B2 (en) Ultrapure water production equipment
JPH0818040B2 (en) Purification method and device for pure water or ultrapure water
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH09253638A (en) Ultrapure water making apparatus
JPH09192658A (en) Manufacturing device of ultrapure water
JPH0929251A (en) Ultrapure water production equipment
JP2002263643A (en) Ultrapure water production equipment
JP2000308815A (en) Ozone dissolved water production equipment
JP3928484B2 (en) Functional water recovery method
JP3645007B2 (en) Ultrapure water production equipment
JPH0639366A (en) Method and equipment for producing ultrapure water
JPH05305297A (en) Treatment equipment for acidic wastewater containing organic substances
JPH10180243A (en) Ultrapure water production device
JPH0655171A (en) Method for producing ultrapure water from primary pure water and apparatus therefor
JP4159823B2 (en) Ultrapure water production method
JP3580648B2 (en) Ultrapure water production equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term