[go: up one dir, main page]

JPH0653591A - Element for converting optical frequency - Google Patents

Element for converting optical frequency

Info

Publication number
JPH0653591A
JPH0653591A JP20668692A JP20668692A JPH0653591A JP H0653591 A JPH0653591 A JP H0653591A JP 20668692 A JP20668692 A JP 20668692A JP 20668692 A JP20668692 A JP 20668692A JP H0653591 A JPH0653591 A JP H0653591A
Authority
JP
Japan
Prior art keywords
region
diffraction grating
optical frequency
wavelength
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20668692A
Other languages
Japanese (ja)
Inventor
Kiyoto Takahata
清人 高畑
Hiroshi Yasaka
洋 八坂
Yuichi Tomori
裕一 東盛
Yuzo Yoshikuni
裕三 吉国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20668692A priority Critical patent/JPH0653591A/en
Publication of JPH0653591A publication Critical patent/JPH0653591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to sweep the wavelength of conversion light over a wide range by forming diffraction gratings partially or totally on the inactive waveguide layers on the front and rear sides, and by forming each of the diffraction gratings by repeating in different cycles the provision of the area in which the pitches vary continuously. CONSTITUTION:An element for converting the optical frequency having a semiconductor laser structure of a distributional reflectance comprises an active waveguide layer 2, an inactive waveguide layer 3, a cladding layer 4, a capping layer 5, current block layers 6 and 7, an n type electrode 8 and a p type electrode 9 on an n type InP base board 1. On both sides of the active area formed by a gain region 101, and a saturable absorption region 102, the areas 103 and 104 for a distributional reflectors are arranged on the front and rear sides. At the same time, adjacent to the area 104 for the distributional reflector, a phase adjustment area 105 is arranged. In this case, it is assumed that diffraction gratings 11a and 11b are formed partially or totally on the inactive waveguide layer 3. Each of the diffraction gratings is formed by repeating at first and second cycles the provision of the area in which the pitches vary continuously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光交換、光情報処理に
用いられる光周波数変換素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical frequency conversion element used for optical switching and optical information processing.

【0002】[0002]

【従来の技術】光交換や光情報処理の分野で用いること
を目的とした従来の光周波数変換素子は、例えばH.Kawa
guchi らの報告(IEEE Journal of Quantum Electronic
s, vol.24, pp.2153-2159,1988)による可飽和吸収領域
を有する多電極分布帰還型レーザ構造のものと、例えば
延原らの報告(1991 年春季電気通信学会講演論文集.
4、c−160)による分布反射型レーザ構造のものが
あった。
2. Description of the Related Art Conventional optical frequency conversion elements intended for use in the fields of optical switching and optical information processing are described in H. Kawa.
guchi et al.'s report (IEEE Journal of Quantum Electronic
s, vol.24, pp.2153-2159, 1988) and a multi-electrode distributed feedback laser structure with a saturable absorption region, and a report by Nobehara et al.
4, c-160).

【0003】[0003]

【発明を解決しようとする課題】しかしながら、従来の
光周波数変換素子では非活性導波路領域に形成された回
折格子のピッチは一様であるため、λ=2Λneq(Λ:
回折格子のピッチ、neq:等価屈折率)で決まるブラッ
グ波長λ近傍の変換光波長の掃引幅は、非活性導波路領
域の等価屈折率neqの電気的な等価屈折率変化量Δneq
で決まっていた。よって、通常電流注入による半導体の
最大屈折率変化量Δn/nは1%程度であるため、上記
従来例の光周波数変換素子の波長掃引幅は理論的にも1
0nm程度に留まり、実際に報告された素子については
変換光波長掃引幅3nm程度であった。光波長多重通信
システム、光交換などへの応用を考えた場合、さらなる
変換光波長掃引幅の拡大が必要である。
However, in the conventional optical frequency conversion element, since the pitch of the diffraction grating formed in the inactive waveguide region is uniform, λ = 2Λneq (Λ:
The sweep width of the converted light wavelength in the vicinity of the Bragg wavelength λ, which is determined by the pitch of the diffraction grating, neq: equivalent refractive index, is the electrical equivalent refractive index change Δneq of the equivalent refractive index neq of the inactive waveguide region.
Was decided by. Therefore, the maximum refractive index change Δn / n of the semiconductor due to the normal current injection is about 1%, and thus the wavelength sweep width of the optical frequency conversion element of the above-mentioned conventional example is theoretically 1%.
It stayed at about 0 nm, and in the element actually reported, the converted light wavelength sweep width was about 3 nm. In consideration of applications to optical wavelength division multiplexing communication systems, optical switching, etc., it is necessary to further expand the conversion light wavelength sweep width.

【0004】本発明の目的は、上記の課題に鑑み、非活
性導波路領域の等価屈折率変化量が従来と同程度でも、
活性導波路領域の利得帯域幅にわたって広帯域変換光波
長掃引が可能な光周波数変換素子を提供することにあ
る。
In view of the above-mentioned problems, an object of the present invention is to provide the same amount of change in the equivalent refractive index of the non-active waveguide region as the conventional one,
An object of the present invention is to provide an optical frequency conversion device capable of sweeping a wavelength of a wideband conversion light over the gain bandwidth of the active waveguide region.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1では、前側及び後側の非活性導波
路領域の一部または全部に回折格子が形成されていて、
前側の非活性導波路領域に形成される回折格子は、ピッ
チがΛaからΛbまで連続的もしくは断続的に変化する
領域が周期Mf(但し、Mf>Λa、Λb)で繰り返し
形成されており、後側の非活性導波路領域に形成される
回折格子は、ピッチがΛa´からΛb´まで連続的もし
くは断続的に変化する領域が周期Mr(ただし、Mr>
Λa´、Λb´)で繰り返し形成されており、前及び後
の非活性導波路領域の屈折率をそれぞれ電気的に独立に
制御し、発振波長を変化させるようにした。また請求項
2では、請求項1に記載の光周波数変換素子において、
活性領域と回折格子光導波路領域の間に、回折格子が形
成されていない非活性導波路である位相調整領域を有
し、その位相調整領域に設けられた電極に流す電流値を
調整することにより、変換光波長の微調整を行えるよう
にした。
In order to achieve the above object, according to claim 1 of the present invention, a diffraction grating is formed in a part or all of the front and rear inactive waveguide regions,
In the diffraction grating formed in the inactive waveguide region on the front side, a region in which the pitch continuously or intermittently changes from Λa to Λb is repeatedly formed with a period Mf (where Mf> Λa, Λb). In the diffraction grating formed in the non-active waveguide region on the side, the region where the pitch changes continuously or intermittently from Λa ′ to Λb ′ has a period Mr (where Mr>
Λa ′, Λb ′) are repeatedly formed, and the refractive indices of the front and rear inactive waveguide regions are electrically independently controlled to change the oscillation wavelength. According to claim 2, in the optical frequency conversion element according to claim 1,
Between the active region and the diffraction grating optical waveguide region, there is a phase adjustment region that is a non-active waveguide in which no diffraction grating is formed, and by adjusting the current value flowing through the electrode provided in the phase adjustment region, , The fine adjustment of the converted light wavelength was made possible.

【0006】[0006]

【作 用】本発明の請求項1によれば、前側の分布反射
器領域は、図2に示すように回折格子のピッチがΛaか
らΛbまで連続的に変化する領域が周期Mfで繰り返し
形成されているため、その分布反射器領域の反射特性は
図3(a) に示すように、波長λa=2Λaneqから波長
λb=2Λbneqまでの間に、波長間隔Δλf=λo 2
/2neqMf(λo =neq(Λa+Λb))で周期的に
反射ピークを持つ特性となる。そこで、便宜的にこの反
射ピーク点の波長をλ1〜λnとする。同様に、後側の
分布反射器の反射特性は、波長λa´=2Λa´neqか
ら波長λb´=2neqΛb´までの間に、波長間隔Δλ
r=λo 2 /2neqMrで周期的に反射ピークλ1´〜
λk´を持つ特性となる。ここで、前後の分布反射領域
の回折格子のピッチ変調の周期Mf及びMrはそれぞれ
異なる周期で形成しておく。
According to claim 1 of the present invention, in the distributed reflector region on the front side, as shown in FIG. 2, a region in which the pitch of the diffraction grating continuously changes from Λa to Λb is repeatedly formed with a period Mf. Therefore, the reflection characteristic of the distributed reflector region is, as shown in FIG. 3 (a), the wavelength interval Δλf = λo 2 between the wavelength λa = 2Λaneq and the wavelength λb = 2Λbneq.
/ 2neqMf (λo = neq (Λa + Λb)) has a characteristic having a periodic reflection peak. Therefore, for convenience, the wavelengths of the reflection peak points are set to λ1 to λn. Similarly, the reflection characteristic of the distributed reflector on the rear side has a wavelength interval Δλ between the wavelength λa ′ = 2Λa′neq and the wavelength λb ′ = 2neqΛb ′.
r = λo 2 / 2neq Mr with periodic reflection peaks λ1′˜
The characteristic has λk ′. Here, the pitch modulation periods Mf and Mr of the diffraction grating in the front and rear distributed reflection regions are formed in different periods.

【0007】そこで、上記前側及び後側の分布反射器領
域の屈折率をそれぞれ電気的に独立に制御すると、λ1
〜λnのうちの一波長λi(i=1〜n)にλ1´〜λ
k´のうちの1つを同調させて、そのλi近傍のみでレ
ーザ発振させることができる。図3(b) は、λ1とλ2
の発振例、すなわちiが1及び2の場合を示したもので
ある。図に示す如く、λ1=λ1´あるいはλ2=λ2
´となるように前後の分布反射器領域の等価屈折率を調
整することにより、λ1あるいはλ2近傍のみでレーザ
発振させることができる。
Therefore, if the refractive indices of the front and rear distributed reflector regions are electrically controlled independently, λ1
Λ1 ′ to λ for one wavelength λi (i = 1 to n) of
One of k'can be tuned to oscillate only near its λi. Figure 3 (b) shows λ1 and λ2
2 shows an example of oscillation of i.e., i is 1 and 2. As shown in the figure, λ1 = λ1 ′ or λ2 = λ2
By adjusting the equivalent refractive index of the front and rear distributed reflector regions so as to be ', laser oscillation can be performed only in the vicinity of λ1 or λ2.

【0008】λ1〜λn及びλ1´〜λk´を半導体の
利得帯域がカバーできる程度に設定すれば、利得帯域を
カバーする変換光波長制御を行うことができ、広帯域変
換光波長掃引が得られる。
By setting λ1 to λn and λ1 'to λk' to such an extent that the gain band of the semiconductor can be covered, it is possible to control the wavelength of the converted light that covers the gain band and obtain a wide band converted wavelength sweep.

【0009】さらに、非活性領域導波路層のなかで回折
格子を形成していない位相調整領域の屈折率を、前述の
分布反射器領域とは独立に制御することにより、前述の
波長λi近傍で発振波長を連続的に掃引することがで
き、したがって、λ1〜λ2の全範囲の波長で変換光波
長を設定することができる。
Further, by controlling the refractive index of the phase adjusting region in which the diffraction grating is not formed in the non-active region waveguide layer independently of the above-mentioned distributed reflector region, in the vicinity of the above-mentioned wavelength λi. The oscillation wavelength can be continuously swept, so that the converted light wavelength can be set in the wavelength range of λ1 to λ2.

【0010】[0010]

【実施例】図1は、本発明による分布反射半導体レーザ
構造の光周波数変換素子の一実施例の構造図を示す。図
1において、1はn型InP基板、2はバンドギャップ
波長が1.55μmのInGaAsP活性導波路層、3
はバンドギャップ波長が1.3μmのInGaAsP非
活性導波路層、4はp型InPクラッド層、5はp+型
InGaAsPキャップ層、6はp型InP電流ブロッ
ク層、7はn型電流ブロック層、8はn型電極、9はp
型電極、10aはピッチがΛaからΛbまで連続的に変
化する回折格子の領域が周期Mfで繰り返し形成された
部分、10bはピッチがΛa´からΛb´まで連続的に
変化する回折格子の領域が周期Mrで繰り返し形成され
た部分、11は活性導波路層と非活性導波路層の結合部
分、101は利得領域、102は可飽和吸収領域、10
3及び104はそれぞれ前側及び後側の分布反射器領
域、105は位相調整領域である。
1 is a structural diagram of an embodiment of an optical frequency conversion device having a distributed Bragg reflector semiconductor laser structure according to the present invention. In FIG. 1, 1 is an n-type InP substrate, 2 is an InGaAsP active waveguide layer having a bandgap wavelength of 1.55 μm, 3
Is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm, 4 is a p-type InP cladding layer, 5 is a p + -type InGaAsP cap layer, 6 is a p-type InP current blocking layer, 7 is an n-type current blocking layer, 8 Is an n-type electrode, 9 is p
The pattern electrode 10a is a portion in which a diffraction grating region whose pitch continuously changes from Λa to Λb is repeatedly formed with a period Mf, and 10b is a diffraction grating region whose pitch continuously changes from Λa 'to Λb'. A portion which is repeatedly formed with a period Mr, 11 is a coupling portion between an active waveguide layer and an inactive waveguide layer, 101 is a gain region, 102 is a saturable absorption region, 10
3 and 104 are front and rear distributed reflector regions, and 105 is a phase adjustment region.

【0011】前記実施例の分布反射型レーザ構造の光周
波数変換素子の作製方法を簡単に説明する。最初に、有
機金属気相エピタキシャル成長法を用いて、n型InP
基板1上に活性導波路層2と非活性導波路層3を作製す
る。その後、非活性導波路層3の表面に塗布したレジス
トに、電子ビーム露光法によって、ピッチが変調された
回折格子のパターンを転写し、その転写パターンをマス
クとしてエッチングによって各部分10a及び10bの
回折格子を形成する。そして、横モードを制御するため
にストライプ状に導波路を加工し、再度有機金属気相エ
ピタキシャル成長法を用いて、p型InP電流ブロック
層6、n型電流ブロック層7、p型InPクラッド層
4、及びp+型InGaAsPキャップ層5を順次作製
する。その後、p型電極9及びn型電極8を形成し、さ
らに、活性導波路層2を含む利得領域101及び可飽和
吸収領域102、回折格子が形成された部分10a及び
10bを有する分布反射器領域103及び104、及び
回折格子が形成されていない非活性導波路層3を有する
位相調整領域105をそれぞれ互いに電気的に分離する
ために、それらの結合部分の上方のp型電極9、及びp
+型InGsAsPキャップ層5を除去する。
A method of manufacturing the optical frequency conversion element having the distributed Bragg reflector laser structure of the above embodiment will be briefly described. First, n-type InP is formed by using a metalorganic vapor phase epitaxial growth method.
The active waveguide layer 2 and the inactive waveguide layer 3 are formed on the substrate 1. After that, the pattern of the diffraction grating whose pitch is modulated is transferred to the resist applied on the surface of the inactive waveguide layer 3 by the electron beam exposure method, and the transferred pattern is used as a mask to perform the diffraction of the portions 10a and 10b by etching. Form a grid. Then, the waveguide is processed into a stripe shape to control the transverse mode, and the p-type InP current block layer 6, the n-type current block layer 7, and the p-type InP clad layer 4 are again formed by using the metalorganic vapor phase epitaxial growth method. , And p + type InGaAsP cap layer 5 are sequentially manufactured. Then, a p-type electrode 9 and an n-type electrode 8 are formed, and a distributed reflector region having a gain region 101 including the active waveguide layer 2, a saturable absorption region 102, and portions 10a and 10b in which a diffraction grating is formed. In order to electrically isolate 103 and 104 and the phase adjusting region 105 having the non-active waveguide layer 3 in which the diffraction grating is not formed from each other, the p-type electrodes 9 and p above their coupling portions are provided.
The + type InGsAsP cap layer 5 is removed.

【0012】本実施例の分布反射型半導体レーザ構造の
光周波数変換素子における回折格子では、部分10aで
はピッチが245.9nmから238.9nmまで連続
的に変化する領域が周期75μmで繰り返し形成されて
おり、部分10bではピッチが245.4nmから23
8.5nmまで連続的に変化する領域が周期67.5μ
mで繰り返し形成されている。
In the diffraction grating of the optical frequency conversion element having the distributed Bragg reflector semiconductor laser structure of the present embodiment, in the portion 10a, regions in which the pitch continuously changes from 245.9 nm to 238.9 nm are repeatedly formed with a cycle of 75 μm. In the portion 10b, the pitch is from 235.4 nm to 23.
67.5μ period is a region that continuously changes to 8.5nm
It is repeatedly formed by m.

【0013】以上のような構成の分布反射型半導体レー
ザ構造の光周波数変換素子では、利得領域101と可飽
和吸収領域102に所定の比で電流を注入することによ
って、図4に示すヒステリシス特性を得る。図4の状態
Aに本素子をバイアスし、図5に示す如く後側の分布反
射器領域104端面より信号光21を入力すると可飽和
吸収領域102が励起され素子が発振に至り(状態
B)、前側の分布反射器領域103端面より変換光22
を出力する。分布反射器領域103及び104、位相調
整領域105にそれぞれ独立に電流を流したり、電圧を
印加することによって変換光波長が変化する。活性領域
101と可飽和吸収領域102に一定電流を流し、分布
反射器領域103と位相調整領域105には電流を流さ
ない状態で、分布反射器領域104の電流を変化させた
ときの変換光波長の変化の様子を図6に示す。図6に示
すように、本実施例の分布反射型半導体レーザ構造の光
周波数変換素子では、分布反射器領域104に電流を流
すことによって、変換光波長が1.575μmから1.
530μmまで約5nmおきに変化し、最大45nmの
波長掃引が得られる。さらに、分布反射器領域103お
よび位相調整領域105に流す電流をそれぞれ制御する
ことによって、45nmの全範囲にわたって、変換光波
長を変化させることができる。
In the optical frequency conversion element having the distributed Bragg reflector semiconductor laser structure having the above-described structure, the hysteresis characteristics shown in FIG. 4 are obtained by injecting current into the gain region 101 and the saturable absorption region 102 at a predetermined ratio. obtain. When the present element is biased in the state A of FIG. 4 and the signal light 21 is input from the end surface of the distributed reflector region 104 on the rear side as shown in FIG. 5, the saturable absorption region 102 is excited and the device oscillates (state B). , Converted light 22 from the end surface of the front distributed reflector region 103
Is output. The wavelength of the converted light is changed by independently flowing a current or applying a voltage to the distributed reflector regions 103 and 104 and the phase adjustment region 105. The converted light wavelength when the current of the distributed reflector region 104 is changed in a state where a constant current is passed through the active region 101 and the saturable absorption region 102 and no current is passed through the distributed reflector region 103 and the phase adjustment region 105. FIG. 6 shows the state of the change of. As shown in FIG. 6, in the optical frequency conversion element having the distributed Bragg reflector semiconductor laser structure of the present embodiment, the converted light wavelength is changed from 1.575 μm to 1.75 by passing a current through the distributed reflector region 104.
A wavelength sweep of up to 45 nm is obtained, changing up to 530 μm about every 5 nm. Further, by controlling the currents flowing through the distributed reflector region 103 and the phase adjusting region 105, respectively, the converted light wavelength can be changed over the entire range of 45 nm.

【0014】なお、上述の実施例では、活性導波路層、
及び非活性導波路層が単一の半導体層で構成されている
場合について説明したが、多重量子井戸構造等のよう
な、組成の異なる複数の半導体層が積層された構造であ
っても本発明は適用可能である。 また、上述の実施例
におけるp型InP電流ブロック層5、及びn型InP
電流ブロック層7のかわりにFeドープInP電流ブロ
ック層を用いた構造であっても本実施例は適用可能であ
る。
In the above embodiment, the active waveguide layer,
Also, the case where the inactive waveguide layer is composed of a single semiconductor layer has been described, but the present invention can be applied to a structure in which a plurality of semiconductor layers having different compositions are laminated, such as a multiple quantum well structure. Is applicable. Further, the p-type InP current blocking layer 5 and the n-type InP in the above-described embodiment
This embodiment can be applied even to a structure using an Fe-doped InP current blocking layer instead of the current blocking layer 7.

【0015】[0015]

【発明の効果】以上説明した如く本発明によれば、活性
導波路層の利得帯域幅にわたって、広帯域の変換光波長
掃引が可能な分布反射型半導体レーザ構造の光周波数変
換素子を得ることができる。
As described above, according to the present invention, it is possible to obtain an optical frequency conversion element having a distributed Bragg reflector semiconductor laser structure capable of sweeping a converted light wavelength in a wide band over the gain bandwidth of the active waveguide layer. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による分布反射型半導体レーザ構造の光
周波数変換素子の一実施例の概略図
FIG. 1 is a schematic view of an embodiment of an optical frequency conversion device having a distributed Bragg reflector semiconductor laser structure according to the present invention.

【図2】本発明の光周波数変換素子において、分布反射
器領域に形成してある回折格子の概念図
FIG. 2 is a conceptual diagram of a diffraction grating formed in a distributed reflector region in the optical frequency conversion element of the present invention.

【図3】本発明の周波数変換素子による変換光波長の設
定方法を示した図
FIG. 3 is a diagram showing a method of setting a converted light wavelength by the frequency conversion element of the present invention.

【図4】本発明の分布反射型半導体レーザ構造光周波数
変換素子のヒステリシス特性を示した図
FIG. 4 is a diagram showing hysteresis characteristics of the distributed reflection type semiconductor laser structure optical frequency conversion element of the present invention.

【図5】本発明による光周波数変換素子の光周波数変換
動作を簡単に示した図
FIG. 5 is a diagram simply showing an optical frequency conversion operation of the optical frequency conversion element according to the present invention.

【図6】本発明による実施例において、発振波長の変化
する様子を示した図
FIG. 6 is a diagram showing how the oscillation wavelength changes in an example according to the present invention.

【符号の説明】[Explanation of symbols]

1…n型InP基板、2…InGaAsP活性導波路
層、3…InGaAsP非活性導波路層、4…p型In
Pクラッド層、5…p+型InGaAsPキャップ層、
6…p型InP電流ブロック層、7…n型InP電流ブ
ロック層、8…n型電極、9…p型電極、10a…ピッ
チがΛaからΛbまで変化する領域が周期Mfで繰り返
し形成されている回折格子の部分、10b…ピッチがΛ
a´からΛb´まで変化する領域が周期Mrで繰り返し
形成されている回折格子の部分、11…活性導波路層と
非活性導波路層の結合部分、101…活性領域、102
…可飽和吸収領域、103…前側分布反射器領域、10
4…後側分布反射器領域、21…信号光、22…変換
光。
1 ... n-type InP substrate, 2 ... InGaAsP active waveguide layer, 3 ... InGaAsP inactive waveguide layer, 4 ... p-type In
P clad layer, 5 ... p + type InGaAsP cap layer,
6 ... p-type InP current blocking layer, 7 ... n-type InP current blocking layer, 8 ... n-type electrode, 9 ... p-type electrode, 10a ... regions in which the pitch changes from Λa to Λb are repeatedly formed with a cycle Mf. Diffraction grating part, 10b ... Pitch is Λ
A portion of the diffraction grating in which a region varying from a ′ to Λb ′ is repeatedly formed with a period Mr, 11 ... A coupling portion between an active waveguide layer and an inactive waveguide layer, 101 ... An active region, 102
... saturable absorption region, 103 ... front distributed reflector region, 10
4 ... Rear distributed reflector region, 21 ... Signal light, 22 ... Converted light.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉国 裕三 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yuzo Yoshikuni 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 利得領域と可飽和吸収領域よりなる活性
領域の両側にそれぞれ活性領域と光学的に結合した回折
格子光導波路領域を有する分布反射型半導体レーザ構造
の光周波数変換素子において、 前側及び後側の非活性導波路領域の一部または全部に回
折格子が形成されていて、 前側の非活性導波路領域に形成される回折格子は、ピッ
チがΛaからΛbまで連続的もしくは断続的に変化する
領域が周期Mf(ただし、Mf>Λa、Λb)で繰り返
し形成されており、 後側の非活性導波路領域に形成される回折格子は、ピッ
チがΛa´からΛb´まで連続的もしくは断続的に変化
する領域が周期Mr(ただし、Mr>Λa´、Λb´)
で繰り返し形成されており、 前側及び後側の非活性導波路領域の屈折率をそれぞれ独
立に電流注入、あるいは電圧印加を行うことにより制御
し、変換光波長を変化させるようにしたことを特徴とす
る光周波数変換素子。
1. An optical frequency conversion device having a distributed reflection type semiconductor laser structure having a diffraction grating optical waveguide region optically coupled to an active region on both sides of an active region consisting of a gain region and a saturable absorption region, wherein A diffraction grating is formed in a part or all of the rear inactive waveguide region, and the diffraction grating formed in the front inactive waveguide region changes in pitch continuously or intermittently from Λa to Λb. Region is repeatedly formed with a period Mf (where Mf> Λa, Λb), and the diffraction grating formed in the inactive waveguide region on the rear side is continuous or intermittent with a pitch from Λa 'to Λb'. The region that changes to is the period Mr (where Mr> Λa ′, Λb ′)
It is characterized in that the converted light wavelength is changed by controlling the refractive index of the front and rear inactive waveguide regions independently by injecting current or applying voltage. Optical frequency conversion element.
【請求項2】 活性領域と回折格子光導波路領域の間
に、回折格子が形成されていない非活性導波路である位
相調整領域を有し、その位相調整領域に設けられた電極
に流す電流値を調整することにより、変換光波長の微調
整を行えるようにしたことを特徴とする請求項1に記載
の光周波数変換素子。
2. A phase adjustment region, which is a non-active waveguide in which no diffraction grating is formed, is provided between the active region and the diffraction grating optical waveguide region, and a current value flowing through an electrode provided in the phase adjustment region. 2. The optical frequency conversion element according to claim 1, wherein the wavelength of the converted light can be finely adjusted by adjusting.
JP20668692A 1992-08-03 1992-08-03 Element for converting optical frequency Pending JPH0653591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20668692A JPH0653591A (en) 1992-08-03 1992-08-03 Element for converting optical frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20668692A JPH0653591A (en) 1992-08-03 1992-08-03 Element for converting optical frequency

Publications (1)

Publication Number Publication Date
JPH0653591A true JPH0653591A (en) 1994-02-25

Family

ID=16527438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20668692A Pending JPH0653591A (en) 1992-08-03 1992-08-03 Element for converting optical frequency

Country Status (1)

Country Link
JP (1) JPH0653591A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724108A1 (en) 1995-01-27 1996-07-31 Showa Aluminum Corporation Pipe joint
WO2000078102A1 (en) * 1999-06-10 2000-12-21 Seiko Epson Corporation Light-emitting device
JP2003533037A (en) * 2000-05-04 2003-11-05 アジリティー コミュニケイションズ インコーポレイテッド Improved mirror and cavity design for sample grating distributed Bragg reflection lasers
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser
US8720232B2 (en) 2001-05-28 2014-05-13 Ocv Intellectual Capital, Llc Continuous glass filaments manufacturing equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724108A1 (en) 1995-01-27 1996-07-31 Showa Aluminum Corporation Pipe joint
WO2000078102A1 (en) * 1999-06-10 2000-12-21 Seiko Epson Corporation Light-emitting device
US6512250B1 (en) 1999-06-10 2003-01-28 Seiko Epson Corporation Light-emitting device
JP2003533037A (en) * 2000-05-04 2003-11-05 アジリティー コミュニケイションズ インコーポレイテッド Improved mirror and cavity design for sample grating distributed Bragg reflection lasers
US8720232B2 (en) 2001-05-28 2014-05-13 Ocv Intellectual Capital, Llc Continuous glass filaments manufacturing equipment
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser

Similar Documents

Publication Publication Date Title
EP0847116B1 (en) Distributed reflector and wavelength-tunable semiconductor laser
US5581572A (en) Wavelength-tunable, distributed bragg reflector laser having selectively activated, virtual diffraction gratings
KR100541913B1 (en) Extraction Lattice Distribution Feedback Wavelength Semiconductor Laser Combined with Extraction Lattice Bragg Reflector
US20040228384A1 (en) Widely tunable sampled-grating distributed feedback laser diode
JP3237733B2 (en) Semiconductor laser
JPH06204610A (en) Semiconductor laser and manufacture thereof
JP2011003591A (en) Wavelength locker integrated type semiconductor laser element
EP0480697B1 (en) Tunable semiconductor laser
JPH0653591A (en) Element for converting optical frequency
JPH06125138A (en) Laser
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JP3185930B2 (en) Integrated tunable optical filter
JP2770900B2 (en) Distributed reflector and tunable semiconductor laser using the same
JPH06112570A (en) Distributed bragg-reflection type semiconductor laser
JP2832920B2 (en) Semiconductor laser with wavelength sweep function
JPH10261837A (en) Polarization-modulatable semiconductor laser having ring resonator, method for using it, and optical communication system using it
US6734464B2 (en) Hetero-junction laser diode
KR100626270B1 (en) Wideband Tunable Coupled Ring Reflector Laser Diode
JPH11150324A (en) Semiconductor laser
JP2770897B2 (en) Semiconductor distributed reflector and semiconductor laser using the same
JP2713445B2 (en) Semiconductor laser device
JP2630035B2 (en) Tunable semiconductor laser
JPH06175169A (en) Light frequency converter element
JPS60178685A (en) Single-axial mode semiconductor laser device
JP2840902B2 (en) Semiconductor laser