JP2713445B2 - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JP2713445B2 JP2713445B2 JP29793988A JP29793988A JP2713445B2 JP 2713445 B2 JP2713445 B2 JP 2713445B2 JP 29793988 A JP29793988 A JP 29793988A JP 29793988 A JP29793988 A JP 29793988A JP 2713445 B2 JP2713445 B2 JP 2713445B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor laser
- laser device
- quantum well
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1228—DFB lasers with a complex coupled grating, e.g. gain or loss coupling
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、閾値電流が小さく、かつスペクトラルライ
ン巾の狭い量子井戸構造を有する分布帰還型半導体レー
ザ素子に関する。Description: TECHNICAL FIELD The present invention relates to a distributed feedback semiconductor laser device having a quantum well structure having a small threshold current and a narrow spectral line width.
回折格子で構成した反射器をレーザ結晶内につくりつ
けた分布帰還型(DFB:Distributed Feedback)の半導体
レーザ素子は、特定の単一縦モード発振が得られるた
め、高速光通信の光源として利用される。従来のDFB型
半導体レーザ素子は、例えば第3図に示すように、n−
InP基板(1)の上にn−InP層(2)、1.55μm発振組
成のGaInAsP活性層(3)および1.3μm発振組成のGaIn
AsPアンチメルトバック層(4)を順次エピタキシャル
成長させた後、周期Λをもつグレーティング(5)を干
渉露光法およびエッチングによって形成し、さらに、p
−InP層(6)およびp−GAInAsPコンタクト層(7)を
再成長させ、最後にp電極(8)とn電極(9)を蒸着
により形成する。このようにして製作されたDFB型半導
体レーザ素子は周期Λで決まるブラッグ波長近傍でレー
ザ発振を行う。発振のスレッシュホールドゲインgthは
グレーティングの結合係数Kと素子長Lの関数であり、
gthはKLの単調減少関数となっていることはよく知られ
ている。したがって、スレッシュホールド電流を小さく
するためには、KまたはLを大きくすることが必要にな
る。A distributed feedback (DFB) semiconductor laser device in which a reflector composed of a diffraction grating is built in a laser crystal is used as a light source for high-speed optical communication because a specific single longitudinal mode oscillation can be obtained. You. Conventional DFB type semiconductor laser devices are, for example, as shown in FIG.
On an InP substrate (1), an n-InP layer (2), a GaInAsP active layer (3) having an oscillation composition of 1.55 μm, and GaIn having an oscillation composition of 1.3 μm
After sequentially growing the AsP anti-melt back layer (4) by epitaxial growth, a grating (5) having a period Λ is formed by an interference exposure method and etching.
-Regrow the InP layer (6) and the p-GAInAsP contact layer (7), and finally form a p-electrode (8) and an n-electrode (9) by vapor deposition. The DFB semiconductor laser device manufactured in this manner oscillates in the vicinity of the Bragg wavelength determined by the period Λ. The oscillation threshold gain g th is a function of the coupling coefficient K of the grating and the element length L,
It is well known that g th is a monotonically decreasing function of KL. Therefore, to reduce the threshold current, it is necessary to increase K or L.
従来のDFB型半導体レーザ素子では、結合係数Kの値
には限度があるため、素子長Lを一定にすると、最小ス
レッシュホールド電流に限界が生ずる。また、発振スペ
クトラルライン巾は、高速変調時に屈折率のゆらぎによ
り広くなり、狭線巾化にも限界がある。In the conventional DFB type semiconductor laser device, the value of the coupling coefficient K has a limit. Therefore, if the device length L is fixed, the minimum threshold current is limited. Also, the oscillation spectral line width becomes wider due to the fluctuation of the refractive index during high-speed modulation, and there is a limit in narrowing the line width.
本発明は以上のような点にかんがみてなされたもの
で、その目的とするところは、スレッシュホールド電流
が低く、発振スペクトル巾が狭いDFB型半導体レーザ素
子を提供することにあり、その要旨は、半導体基板上
に、第1クラッド層、活性領域、および第2クラッド層
が順次積層され、第1クラッド層にグレーティングが形
成されている半導体レーザ素子において、活性領域が前
記グレーティングの山または谷の少なくとも一方に局所
的に成長させた量子井戸構造よりなることを特徴とする
半導体レーザ素子を第1発明とし、活性領域が前記量子
井戸構造と該量子井戸構造に近接する層状の活性層とよ
りなることを特徴とする請求項1記載の半導体レーザ素
子を第2発明とするものである。The present invention has been made in view of the above points, and an object thereof is to provide a DFB type semiconductor laser device having a low threshold current and a narrow oscillation spectrum width. In a semiconductor laser device in which a first cladding layer, an active region, and a second cladding layer are sequentially stacked on a semiconductor substrate, and a grating is formed in the first cladding layer, the active region has at least a peak or a valley of the grating. A semiconductor laser device comprising a quantum well structure locally grown on one side according to the first invention, wherein an active region comprises the quantum well structure and a layered active layer adjacent to the quantum well structure. A second aspect of the present invention is a semiconductor laser device according to the first aspect.
DFBレーザの理論によると、DFB発振には屈折率または
光ゲインに周期構造が必要である。また、光ゲインに周
期構造がある場合のスレッシュホールド電流は、光ゲイ
ンが一様である場合よりも低下することが知られてい
る。従来のDFB型半導体レーザ素子では、光ゲインは一
様であり、グレーティングの誘起する屈折率の周期的変
化によるDFB発振を利用しているが、本発明では、屈折
率の周期変化に加えて、光ゲインの周期的変化をも利用
している。すなわち、グレーティングの山または谷の少
なくとも一方に局所的に量子井戸構造を形成し、グレー
ティングと同じ周期をもつ光ゲインの周期構造を得てい
る。According to DFB laser theory, DFB oscillation requires a periodic structure in refractive index or optical gain. It is known that the threshold current when the optical gain has a periodic structure is lower than that when the optical gain is uniform. In the conventional DFB type semiconductor laser device, the optical gain is uniform, and the DFB oscillation due to the periodic change in the refractive index induced by the grating is used. In the present invention, in addition to the periodic change in the refractive index, The periodic change of the optical gain is also used. That is, a quantum well structure is locally formed on at least one of the peaks and valleys of the grating, and a periodic structure of optical gain having the same period as the grating is obtained.
以下図面に示した実施例に基づいて本発明を詳細に説
明する。Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
第1図は本発明にかかる一実施例の要部断面図であ
り、n−InP基板(11)上に、n−InP層(12)とGaxIn
1-xAsyP1-y層(13)を順次成長させて第1クラッド層を
形成し、GaxIn1-xAsyP1-y層(13)に干渉露光法および
エッチングによりグレーティング(15)を形成し、グレ
ーティングの山と谷にCax′In1-x′Asの量子井戸線(1
4)を成長させ、さらに、Cax″In1-x″Asy″P1-y″層
(16)、p−InP層(17)およびp−GaInAsPコンタクト
層(20)を順次成長させて第2クラッド層を形成し、最
後に、p電極(18)およびn電極(19)を蒸着したもの
である。量子井戸線(14)はX方向の厚みを200Å以下
にし、Z方向についてはグレーティング(15)の山と谷
に局在化しているため、X−Zの2次元においてキャリ
ア閉じ込め効果を有する量子井戸線となっている。GaxI
n1-xAsyP1-y層(13)とCax″In1-x″Asy″P1-y″層(1
6)は、x,y,x″,y″を適当に選ぶことにより、エネルギ
ーギャップをn−InP層(12)、(17)と量子井戸線(1
4)のエネルギーギャップの中間にし、屈折率をInP層
(12)、(17)より高くする。そうすることにより光波
をGaxIn1-xAsyP1-y層(13)とCax″In1-x″Asy″P1-y″
層(16)の間に効率よく閉じ込めることができる。FIG. 1 is a cross-sectional view of a main part of an embodiment according to the present invention. An n-InP layer (12) and a Ga x In layer are formed on an n-InP substrate (11).
1-x As y P 1- y layer (13) sequentially to thereby form a first cladding layer by growing a, Ga x In 1-x As y P 1-y layer (13) in interference exposure method and a grating etched (15) is formed, and Ca x InIn 1-x AsAs quantum well lines (1
4) is grown, and a Ca x ″ In 1-x ″ As y ″ P 1-y ″ layer (16), a p-InP layer (17) and a p-GaInAsP contact layer (20) are sequentially grown. A second clad layer is formed, and finally, a p-electrode (18) and an n-electrode (19) are deposited. Since the quantum well line (14) has a thickness of 200 ° or less in the X direction and is localized at the peaks and valleys of the grating (15) in the Z direction, the quantum well line has a carrier confinement effect in two dimensions of XZ. It is a line. Ga x I
n 1-x As y P 1 -y layer (13) and the Ca x "In 1-x" As y "P 1-y" layer (1
6), by appropriately selecting x, y, x ″, and y ″, the energy gap can be increased with the n-InP layers (12) and (17) and the quantum well line (1).
In the middle of the energy gap of 4), make the refractive index higher than that of the InP layers (12) and (17). Ga x In 1-x As y P 1-y layer light waves by doing so (13) and the Ca x "In 1-x" As y "P 1-y"
It can be efficiently confined between the layers (16).
例えば、x=x″=0.28、y=y″=0.6、x′=0.4
7、y′=1、グレーティングの周期を230nmとすると、
スペクトラルライン巾が1MHz以下である1.5μmの発振
を得ることができた。For example, x = x ″ = 0.28, y = y ″ = 0.6, x ′ = 0.4
7, y '= 1 and the grating period is 230nm
An oscillation of 1.5 μm with a spectral line width of 1 MHz or less was obtained.
第2図は本発明の他の実施例を示し、n−InP基板(2
1)上に第1クラッド層としてn−InP層(22)、一様な
厚みをもつGaInAsP活性層(33)およびGaxIn1-xAsyP1-y
層(23)を順次積層し、活性層(33)に近接してGaxIn
1-xAsyP1-y層(23)上にグレーティング(25)を形成
し、該グレーティング(25)の谷部にCax′In1-x′A
sy′P1-y′の量子井戸線(24)を形成する。次に、C
ax″In1-x″Asy″P1-y″層(26)、p−InP層(27)お
よびp−GaInAsPコンタクト層(30)を順次成長させて
第2クラッド層とし、最後に、p電極(28)およびn電
極(29)を蒸着させることは前記実施例と同様である。
本実施例では、活性層(33)から一定の光ゲインを得、
グレーティング(25)の谷に成長させた量子井戸線(2
4)からは光ゲインの周期的変化分を得る。FIG. 2 shows another embodiment of the present invention, in which an n-InP substrate (2
1) An n-InP layer (22) as a first cladding layer, a GaInAsP active layer (33) having a uniform thickness, and a Ga x In 1-x As y P 1-y
The layers (23) are sequentially stacked, and the Ga x In
1-x As y P 1- y layer (23) to form a grating (25) on, the valleys of the grating (25) Ca x 'In 1 -x' A
A quantum well line (24) of s y 'P 1-y ' is formed. Then C
a x "In 1-x" As y "P 1-y" layer (26), a p-InP layer (27) and p-GaInAsP contact layer (30) sequentially grown by the second cladding layer, and finally The deposition of the p-electrode (28) and the n-electrode (29) is the same as in the previous embodiment.
In this embodiment, a constant optical gain is obtained from the active layer (33),
Quantum well wires (2
From 4), a periodic change in the optical gain is obtained.
以上説明したように本発明によれば、活性領域がグレ
ーティングの山または谷の少なくとも一方に局所的に成
長させた量子井戸構造を有するため、スレッシュホール
ド電流が低下し、量子効果により発振スペクトルライン
巾が減少するという優れた効果がある。As described above, according to the present invention, since the active region has a quantum well structure locally grown on at least one of the peaks and valleys of the grating, the threshold current is reduced, and the oscillation spectrum line width is reduced due to the quantum effect. Has an excellent effect of reducing
第1図は本発明にかかる一実施例の要部断面図、第2図
は本発明にかかる他の実施例の要部断面図、第3図は一
従来例の要部断面図である。 1,11,21…n−InP基板、2,12,22…n−InP層、3,33…Ga
InAsP活性層、4…GaInAsPアンチメルトバック層、5,1
5,25…グレーティング、6,17,27…p−InP層、7,20,30
…p−GaInAsPコンタクト層、8,18,28…p電極、9,19,2
9…n電極、13,23…GaxIn1-xAsyP1-y層、14,24…量子井
戸線、16,26…Cax″In1-x″Asy″P1-y″層。FIG. 1 is a sectional view of a principal part of one embodiment according to the present invention, FIG. 2 is a sectional view of a principal part of another embodiment according to the present invention, and FIG. 3 is a sectional view of a principal part of one conventional example. 1,11,21 ... n-InP substrate, 2,12,22 ... n-InP layer, 3,33 ... Ga
InAsP active layer, 4 ... GaInAsP anti-melt back layer, 5,1
5,25… Grating, 6,17,27… p-InP layer, 7,20,30
... p-GaInAsP contact layer, 8,18,28 ... p electrode, 9,19,2
9 ... n electrode, 13,23 ... Ga x In 1-x As y P 1-y layer, 14,24… quantum well line, 16,26… Ca x ″ In 1-x ″ As y ″ P 1-y "layer.
Claims (2)
域、および第2クラッド層が順次積層され、第1クラッ
ド層にグレーティングが形成されている半導体レーザ素
子において、活性領域が前記グレーティングの山または
谷の少なくとも一方に局所的に成長させた量子井戸構造
よりなることを特徴とする半導体レーザ素子。1. A semiconductor laser device having a first clad layer, an active region, and a second clad layer sequentially laminated on a semiconductor substrate, wherein a grating is formed in the first clad layer. A semiconductor laser device having a quantum well structure locally grown on at least one of a peak and a valley.
構造に近接する層状の活性層とよりなることを特徴とす
る請求項1記載の半導体レーザ素子。2. The semiconductor laser device according to claim 1, wherein an active region comprises said quantum well structure and a layered active layer adjacent to said quantum well structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29793988A JP2713445B2 (en) | 1988-11-25 | 1988-11-25 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29793988A JP2713445B2 (en) | 1988-11-25 | 1988-11-25 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02143580A JPH02143580A (en) | 1990-06-01 |
JP2713445B2 true JP2713445B2 (en) | 1998-02-16 |
Family
ID=17853051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29793988A Expired - Lifetime JP2713445B2 (en) | 1988-11-25 | 1988-11-25 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2713445B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5138625A (en) * | 1991-01-08 | 1992-08-11 | Xerox Corporation | Quantum wire semiconductor laser |
IT1245541B (en) * | 1991-05-13 | 1994-09-29 | Cselt Centro Studi Lab Telecom | SEMICONDUCTOR LASER WITH DISTRIBUTED REACTION AND PAIR OF GAIN, AND PROCEDURE FOR ITS MANUFACTURE |
JP3204474B2 (en) * | 1993-03-01 | 2001-09-04 | キヤノン株式会社 | Gain-coupled distributed feedback semiconductor laser and its fabrication method |
US6151351A (en) * | 1994-09-28 | 2000-11-21 | Matsushita Electric Industrial Co., Ltd. | Distributed feedback semiconductor laser and method for producing the same |
-
1988
- 1988-11-25 JP JP29793988A patent/JP2713445B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02143580A (en) | 1990-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6107112A (en) | Distributed feedback semiconductor laser and method for producing the same | |
JPH0636457B2 (en) | Method for manufacturing monolithic integrated optical device incorporating semiconductor laser and device obtained by this method | |
US4796274A (en) | Semiconductor device with distributed bragg reflector | |
US5143864A (en) | Method of producing a semiconductor laser | |
JP2746326B2 (en) | Semiconductor optical device | |
US6224667B1 (en) | Method for fabricating semiconductor light integrated circuit | |
JP2982422B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPH11220212A (en) | Optical element and its drive method, and semiconductor laser element | |
JP2701569B2 (en) | Method for manufacturing optical semiconductor device | |
JP2713445B2 (en) | Semiconductor laser device | |
US6084901A (en) | Semiconductor laser device | |
JPH0337874B2 (en) | ||
JP2763090B2 (en) | Semiconductor laser device, manufacturing method thereof, and crystal growth method | |
JPH0951142A (en) | Semiconductor light emitting device | |
JPH0716079B2 (en) | Semiconductor laser device | |
JPH0555689A (en) | Distributed reflection type semiconductor laser provided with wavelength control function | |
JP2917950B2 (en) | Tunable semiconductor laser and method of manufacturing the same | |
JP3700245B2 (en) | Phase-shifted distributed feedback semiconductor laser | |
JPS60102788A (en) | Distributed feedback semiconductor laser | |
JP2924714B2 (en) | Distributed feedback semiconductor laser device | |
JP2852663B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH05327111A (en) | Semiconductor laser device and manufacturing method thereof | |
JP2894285B2 (en) | Distributed feedback semiconductor laser and method of manufacturing the same | |
JPH1168221A (en) | Semiconductor laser | |
JPH06283802A (en) | Semiconductor laser device and fabrication thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20081031 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20091031 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20091031 |