JPH0651280A - Driving method for ferroelectric liquid crystal element - Google Patents
Driving method for ferroelectric liquid crystal elementInfo
- Publication number
- JPH0651280A JPH0651280A JP20377692A JP20377692A JPH0651280A JP H0651280 A JPH0651280 A JP H0651280A JP 20377692 A JP20377692 A JP 20377692A JP 20377692 A JP20377692 A JP 20377692A JP H0651280 A JPH0651280 A JP H0651280A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- selection
- scanning
- signal
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 19
- 230000003287 optical effect Effects 0.000 claims abstract 3
- 239000000758 substrate Substances 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 15
- 230000006641 stabilisation Effects 0.000 description 13
- 238000011105 stabilization Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 210000002858 crystal cell Anatomy 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 239000004990 Smectic liquid crystal Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- BYKNGMLDSIEFFG-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptan-1-ol Chemical compound OCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)F BYKNGMLDSIEFFG-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強誘電性液晶素子の駆
動方法に関し、特に強誘電性液晶素子の時分割駆動方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a ferroelectric liquid crystal element, and more particularly to a time division driving method for a ferroelectric liquid crystal element.
【0002】[0002]
【従来の技術】1980年に、N.A.Clark,S.T.Lagerwal
l により、いわゆるSSFLCD(SurfaceStabilized Ferroel
ectric Liquid Crystal Display)が提案されて以降、強
誘電性液晶素子は、高速応答性、双安定メモリ性とい
う、ネマティック液晶素子にはない特徴を有するため次
世代の液晶素子として注目されてきた。その後、強誘電
性液晶素子が時分割駆動が可能であることが見出される
中で、ディスプレイ素子としての応用研究が活発にされ
てきた。2. Description of the Related Art In 1980, NAClark, ST Lagerwal
l allows the so-called SSFLCD (Surface Stabilized Ferroel
Since the ectric Liquid Crystal Display) was proposed, the ferroelectric liquid crystal element has been attracting attention as a next-generation liquid crystal element because it has characteristics such as high-speed response and bistable memory characteristics which are not present in the nematic liquid crystal element. Since then, it has been found that the ferroelectric liquid crystal device can be driven in a time-division manner, and thus applied research as a display device has been actively conducted.
【0003】強誘電性液晶は、カイラルスメクティック
液晶がこれに当たり、コーンに沿ってカイラリティを有
するが、薄いセル内では、そのカイラリティが消失し、
2つの安定状態をとるようになる。図1に強誘電性液晶
セル(以下液晶セルという)の構造を示す。1は配向膜
3を形成した基板であり、強誘電性液晶2、例えば、S
mC* 液晶を挟持している。上下基板の配向膜が、一軸
配向性を有するように処理されていると、両基板の一軸
配向方向がスメクティック液晶の層の法線方向となるよ
うに、そして、液晶分子が基板にほぼ平行になるように
配向する。これを上部から見ると、層の法線方向4に対
し、+θ傾いた第一の安定状態5と、−θ傾いた第二の
安定状態6の2つの双安定状態が生じ、それぞれ自発分
極7の向きは上向き、下向きである。Ferroelectric liquid crystals correspond to chiral smectic liquid crystals and have chirality along the cone, but in a thin cell, the chirality disappears.
It comes in two stable states. FIG. 1 shows the structure of a ferroelectric liquid crystal cell (hereinafter referred to as a liquid crystal cell). Reference numeral 1 is a substrate on which an alignment film 3 is formed, and a ferroelectric liquid crystal 2, for example, S
It holds mC * liquid crystal. When the alignment films on the upper and lower substrates are processed so as to have uniaxial alignment, the uniaxial alignment directions of both substrates are aligned with the normal direction of the smectic liquid crystal layer, and the liquid crystal molecules are almost parallel to the substrate. Orient it. When viewed from above, two bistable states, that is, a first stable state 5 tilted by + θ and a second stable state 6 tilted by −θ with respect to the normal direction 4 of the layer, are generated, and each spontaneous polarization 7 The orientation is upward and downward.
【0004】そして、印加される電界の方向に、自発分
極の向きを揃えるように液晶分子は運動するので、正負
の直流パルスにより双安定状態のいずれか一方を選択す
る。2枚の偏光板8により、2つの安定状態を光学的に
識別する。例えば、第一の安定状態を光遮断状態(以下
黒という)とすると、第二の安定状態即ち光透過状態
(以下白という)に変換する。Since the liquid crystal molecules move so that the directions of the spontaneous polarization are aligned with the direction of the applied electric field, one of the bistable states is selected by the positive and negative DC pulses. The two polarizing plates 8 optically identify the two stable states. For example, if the first stable state is a light blocking state (hereinafter referred to as black), it is converted into a second stable state, that is, a light transmitting state (hereinafter referred to as white).
【0005】図2に、液晶層に駆動電圧を印加するため
のマトリクス電極を示す。9は走査電極(以下セグメン
トという)、10は信号電極(以下コモンという)であ
る。図3は、交流バイアス平均化法を用いた線順次駆動
において1つのマトリクス絵素(以下ドットという)に
印加される駆動波形を示す。第1フレームにおいて選択
期間中に、このパルス幅での閾値電圧以上の波高値を有
する正負(コモン10基準)のパルスP1 及びP2 が連
続して加えられる。正パルスP1 により、液晶分子は第
二の安定状態に配列し続く負パルスP2 でスイッチング
し第一の安定状態に配列する。FIG. 2 shows a matrix electrode for applying a drive voltage to the liquid crystal layer. Reference numeral 9 is a scanning electrode (hereinafter referred to as segment), and 10 is a signal electrode (hereinafter referred to as common). FIG. 3 shows a drive waveform applied to one matrix picture element (hereinafter referred to as a dot) in the line sequential drive using the AC bias averaging method. During the selection period in the first frame, positive and negative (common 10 reference) pulses P 1 and P 2 having a peak value equal to or higher than the threshold voltage in this pulse width are continuously applied. The positive pulse P 1 causes the liquid crystal molecules to be aligned in the second stable state, and the subsequent negative pulse P 2 causes switching to be aligned in the first stable state.
【0006】そして、この状態が非選択中交流パルス印
加により持続する。交流パルスの波高値が閾値以下だか
らである。よって、第1フレームでは、第一の安定状態
の黒が書き込まれ、維持され、続いて第2フレームで、
又、その表示状態がスイッチングされる。ただし、本図
では第2フレームのP4 、P5 は閾値以下、即ち、非選
択のコモン信号が入った状態の駆動波形となっているた
め、白は書き込まれず、第1フレームで書き込まれた黒
が維持される。Then, this state is maintained by the application of the AC pulse during non-selection. This is because the peak value of the AC pulse is below the threshold value. Thus, in the first frame, the first steady state black is written and maintained, followed by the second frame,
Also, the display state is switched. However, in this figure, P 4 and P 5 of the second frame are equal to or less than the threshold value, that is, the drive waveform in the state where the non-selected common signal is input, so that white is not written, but white is written. Black is maintained.
【0007】ところで、こうした一般的な波形では交流
バイアス部による液晶分子の振動があるため、コントラ
ストが低下するという問題があった。そのため、誘電異
方性が負の液晶を用いて、電界と液晶との誘電的相互作
用で、図1で示されたθの値、いわゆる見かけのコーン
角を大きくし、コントラストを上げる方法がある。これ
がACスタビライズ効果を利用する方法、ACスタビラ
イズ法である。こうしたACスタビライズ法を利用する
ための駆動方法は、図3に示したような駆動波形に高周
波の電圧を重畳するのが一般的な方法であった。By the way, in such a general waveform, there is a problem that the contrast is lowered because the liquid crystal molecules are vibrated by the AC bias portion. Therefore, there is a method of increasing the contrast by using a liquid crystal having a negative dielectric anisotropy and increasing the value of θ shown in FIG. 1, that is, an apparent cone angle, by the dielectric interaction between the electric field and the liquid crystal. . This is an AC stabilization method that utilizes the AC stabilization effect. As a driving method for utilizing such an AC stabilization method, it is a general method to superimpose a high frequency voltage on the driving waveform as shown in FIG.
【0008】[0008]
【発明が解決しようとする課題】図4が、図3に高周波
電圧を重畳した駆動波形図である。しかし、このような
高周波を重畳するためには駆動回路が複雑にならざるを
得ない。又、図4のような駆動波形では、画像を書き込
むに当たって、白を書き込み、その次に黒を書き込む
か、黒を書き込んだ上で、白を書き込むか、1枚の画像
を書き込むのに、2フレーム必要であり、書き込み時間
が長くかかる。1フレームで、白と黒が同時に書き込
め、かつACスタビライズ効果を合わせもつ駆動波形が
求められていた。FIG. 4 is a drive waveform diagram in which a high frequency voltage is superimposed on FIG. However, in order to superimpose such a high frequency, the drive circuit must be complicated. In addition, in the drive waveform as shown in FIG. 4, when writing an image, it is necessary to write white and then black, or to write black and then white, or to write one image. It requires a frame and takes a long time to write. There has been a demand for a drive waveform in which white and black can be simultaneously written in one frame and which also has an AC stabilization effect.
【0009】[0009]
【課題を解決するための手段】本発明は、前述した従来
技術の課題を解決することを目的とし、走査電極の選択
走査電圧+Vr1,−Vr1(又は−Vr1,+Vr
1)のパルスが印加される直前に2パルス分2tの+V
r3(又は−Vr3)を前選択走査電圧として印加し、
走査電極の非選択走査電圧として±Vr2が印加され、
信号電極の選択信号電圧として、パルス幅tの±Vc1
が走査電極の選択走査電圧と逆極性で印加され、信号電
極の非選択信号電圧として、±Vc2が印加され、走査
電極の非選択走査電圧は信号電極の選択信号電圧と非選
択信号電圧の中間の値である駆動を行うものである。SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems of the prior art, and the selective scanning voltages + Vr1, -Vr1 (or -Vr1, + Vr) of the scanning electrodes.
Immediately before the pulse of 1) is applied, + V of 2t for 2 pulses
r3 (or −Vr3) is applied as the preselection scanning voltage,
± Vr2 is applied as the non-selective scan voltage of the scan electrodes,
± Vc1 of pulse width t as the selection signal voltage of the signal electrode
Is applied with the opposite polarity to the selection scanning voltage of the scanning electrode, ± Vc2 is applied as the non-selection signal voltage of the signal electrode, and the non-selection scanning voltage of the scanning electrode is between the selection signal voltage of the signal electrode and the non-selection signal voltage. The value of is to be driven.
【0010】図5に、1本の走査電極に印加される前選
択走査電圧、選択走査電圧、非選択走査電圧を示す。選
択走査電圧が印加される直前に前選択走査電圧が印加さ
れ、選択走査電圧の1つ目のパルスと同極性である。図
6に、走査電極、信号電極に印加される電圧波形と、そ
れぞれの交点即ち、実際のドットに印加される電圧波形
を示している。ドットに印加される電圧波形は(走査電
圧−信号電圧)の値を示してある。走査電極の非選択走
査電極±Vr2は、信号電極の選択信号電圧±Vc1と
非選択信号電圧±Vc2の中間の値に設定されている。
図6では、信号電極の選択走査電圧と非選択走査電圧は
逆極性なので、 Vr2=(Vc1−Vc2)/2 の関係が成立している。そのため、非選択走査ラインに
は±(Vc1−Vr2)の電圧が印加され、信号電極に
選択信号電圧が印加されるか、非選択信号電圧が印加さ
れるかで逆極性の電圧が絵素に印加される。FIG. 5 shows the pre-selection scan voltage, the selection scan voltage, and the non-selection scan voltage applied to one scan electrode. The previous selection scan voltage is applied immediately before the selection scan voltage is applied, and has the same polarity as the first pulse of the selection scan voltage. FIG. 6 shows the voltage waveforms applied to the scan electrodes and the signal electrodes and the voltage waveforms applied to the respective intersections, that is, the actual dots. The voltage waveform applied to the dots shows the value of (scanning voltage-signal voltage). The non-selected scan electrode ± Vr2 of the scan electrode is set to an intermediate value between the select signal voltage ± Vc1 of the signal electrode and the non-select signal voltage ± Vc2.
In FIG. 6, since the selection scanning voltage and the non-selection scanning voltage of the signal electrode have opposite polarities, the relationship of Vr2 = (Vc1-Vc2) / 2 is established. Therefore, a voltage of ± (Vc1-Vr2) is applied to the non-selected scan lines, and a voltage of the opposite polarity is applied to the picture element depending on whether the selection signal voltage is applied to the signal electrode or the non-selection signal voltage is applied. Is applied.
【0011】[0011]
【作用】本発明は、上記手段により、1回の書き込みで
白と黒の状態を同時に書き込み、一画面の書き込み速度
を向上させ、さらに液晶に印加される電圧が交流化して
いるため、液晶材料の劣化を防止でき、さらにACスタ
ビライズ効果をも持たせることができるものである。According to the present invention, by the above means, the white and black states are simultaneously written by one writing, the writing speed of one screen is improved, and the voltage applied to the liquid crystal is made alternating. Can be prevented from being deteriorated, and further, an AC stabilizer effect can be provided.
【0012】[0012]
【実施例】以下、本発明について図面によって詳細に説
明する。図7に、走査電極の前選択走査電圧、選択走査
電圧の部分に信号電極から、選択、非選択の信号が印加
されたときの波形例を示してある。(a)が走査電極の
前選択走査電圧部、選択走査電圧部に、信号電極から両
方に選択信号が印加された場合であり、前選択走査電圧
部の2パルスと選択走査電圧部の1つ目のパルスの3パ
ルス分の電圧印加が双安定状態の一方の安定状態(例え
ば黒とする)が選択された後に、走査電極の選択走査電
圧の2つ目のパルスで、白に書き込まれる。即ち、
(a)の斜線を施した上向きのパルスで黒に、そして下
向きのパルスで白に書き込まれた後に、白の状態が保持
される。The present invention will be described in detail below with reference to the drawings. FIG. 7 shows an example of waveforms when selection signals and non-selection signals are applied from the signal electrodes to the pre-selection scan voltage and selection scan voltage portions of the scan electrodes. (A) is a case where a selection signal is applied to both the pre-selection scanning voltage section and the selection scanning voltage section of the scanning electrode from the signal electrode, and two pulses of the pre-selection scanning voltage section and one of the selection scanning voltage section After one stable state (for example, black) of the bistable state is selected for the voltage application for three pulses of the eye pulse, white is written by the second pulse of the selected scan voltage of the scan electrode. That is,
The state of white is retained after the black pulse is written by the upward pulse and the white pulse is written by the downward pulse of (a).
【0013】図7(b)が、走査電極の前選択走査電圧
部分に信号電極から非選択信号電圧が印加され、走査電
極の選択走査電圧部分に信号電極から選択信号電圧が印
加された場合の波形である。この場合も走査電極の前選
択走査電圧部の2パルスと、選択走査電圧部の1つ目の
パルスの3パルス分の電圧で黒を書き込んだ上で、走査
電極の選択走査電圧の2つ目のパルスの部分、下向きに
斜線を入れたパルスで白に書き込まれる。そして白の状
態が保持される。FIG. 7B shows a case where the non-selection signal voltage is applied from the signal electrode to the pre-selection scanning voltage portion of the scan electrode and the selection signal voltage is applied from the signal electrode to the selection scanning voltage portion of the scanning electrode. It is a waveform. Also in this case, black is written by the voltage of 3 pulses of the first pulse of the previous selection scanning voltage section of the scanning electrode and the first pulse of the selection scanning voltage section, and then the second of the selection scanning voltage of the scanning electrode is written. The portion of the pulse of, is written in white by the pulse with the diagonal line downward. Then, the white state is retained.
【0014】ここで、Vr1+Vc1>Vthであれば
上向きのパルスで必ず一端黒が書き込まれた後に、白が
書き込まれる。そして、こうして書き込まれた状態が走
査電極の非選択走査電圧部で維持されるためには、2
(Vc1−Vr2)<Vthであればよい。これは、図
7(b)や(d)の走査電極の非選択走査電圧部分に、
2tのパルス幅の波形が印加されているが、これは信号
電極から印加される信号が、選択信号から非選択信号に
切り換わるときや、非選択信号から選択信号に切り換わ
るときに、Vc1−Vr2のパルスが2つ重なることに
なるからである。If Vr1 + Vc1> Vth, black is always written by the upward pulse, and then white is written. Then, in order to maintain the written state in the non-selective scan voltage portion of the scan electrode,
It is sufficient if (Vc1-Vr2) <Vth. This is due to the non-selective scan voltage portion of the scan electrodes in FIGS.
A waveform with a pulse width of 2t is applied, which is Vc1- when the signal applied from the signal electrode switches from the selection signal to the non-selection signal or from the non-selection signal to the selection signal. This is because two Vr2 pulses will overlap.
【0015】図7(c)では、走査電極の前選択走査電
圧部の2パルスと選択走査電圧部の1パルスの3パルス
分で黒を書き込む。このための条件は、 Vr3+Vc1−(Vc1−Vr3)+Vr1−Vc2
>Vth 即ち、 2Vr3+Vr1−Vc2>Vth であれば、黒が書き込める。これは(d)の場合も同様
である。そして、(c)(d)ともに走査電極の選択走
査電圧部に信号電極から非選択信号が印加されているた
めに、白に書き込まれずに、黒のまま保持される。白を
書き込むパルスである、走査電極の選択走査電圧部の2
つ目のパルスの値(Vr1−Vc2)がVth以下であ
ればよい。In FIG. 7C, black is written by three pulses of two pulses of the pre-selection scanning voltage section of the scanning electrode and one pulse of the selection scanning voltage section. The conditions for this are: Vr3 + Vc1- (Vc1-Vr3) + Vr1-Vc2
> Vth That is, if 2Vr3 + Vr1-Vc2> Vth, black can be written. This also applies to the case of (d). Then, in both (c) and (d), since the non-selection signal is applied from the signal electrode to the selected scanning voltage portion of the scanning electrode, it is not written in white but held as black. 2 of the selective scanning voltage part of the scanning electrode, which is a pulse for writing white
The value of the second pulse (Vr1-Vc2) may be Vth or less.
【0016】即ち、 Vc1−Vc1<Vth であ
る。以上説明したように、走査電極の前選択走査電圧部
の2パルスと選択走査電圧部の1つ目の3パルスで黒に
書き込み、選択走査電圧部の2つ目のパルスで白を書き
込むという駆動ができる。こうした書き込みができるの
は、強誘電性液晶素子の場合、2つの安定状態間の遷移
は、一定の高いエネルギー状態を越えてもう一方の低い
エネルギー状態の安定状態にスイッチングすることであ
り、印加される電圧と印加時間の積が一定値を越えれば
スイッチングするからである。That is, Vc1-Vc1 <Vth. As described above, driving is performed in which black is written by two pulses of the pre-selection scanning voltage section of the scan electrode and the first three pulses of the selection scanning voltage section, and white is written by the second pulse of the selection scanning voltage section. You can In the case of a ferroelectric liquid crystal device, such writing is possible because the transition between two stable states switches over a certain high energy state to the stable state of the other low energy state. This is because switching occurs if the product of the voltage applied and the application time exceeds a certain value.
【0017】図7(d)で説明すると、走査電極の前選
択走査電圧部の2パルスと、選択走査電圧部の1つ目の
パルスで黒に書き込まれるためには、パルス幅tのとき
の閾値電圧Vthとすると、 (Vr3−Vc2)×t+(Vr3+Vc2)×t+
(Vr1+Vc2)×t>Vth×tが条件となり、 2Vr3×t+Vr1×t−Vc2×t>Vth×t 即ち、 2Vr3+Vr1−Vc2>Vth であ
り、図7(c)のときと、同じ式が条件として導き出さ
れる。Explaining with reference to FIG. 7D, in order to write in black by the two pulses of the pre-selection scanning voltage section of the scanning electrode and the first pulse of the selection scanning voltage section, in order to write in black, Assuming that the threshold voltage is Vth, (Vr3−Vc2) × t + (Vr3 + Vc2) × t +
The condition is (Vr1 + Vc2) × t> Vth × t, and 2Vr3 × t + Vr1 × t−Vc2 × t> Vth × t, that is, 2Vr3 + Vr1-Vc2> Vth, and the same expression as in FIG. Be derived.
【0018】以上、図6、図7で、本発明の波形例を示
し説明したが、この場合は信号電極の選択信号電圧±V
c1と非選択信号電圧±Vc2が逆極性であり、 Vr1−Vc2<Vth<Vr1+Vc1 2(Vc1−Vr2)<Vth<Vr1+2Vr3−V
c2 が満たされるなら、一端、双安定状態の一方の安定状態
を書き込んだ上で、もう一方の安定状態を選択的に書き
込む駆動、即ち、1回の走査で、白と黒の両方を書き込
む駆動が可能となる。The waveform examples of the present invention have been described above with reference to FIGS. 6 and 7. In this case, the selection signal voltage ± V of the signal electrode is used.
c1 and the non-selection signal voltage ± Vc2 have opposite polarities, and Vr1-Vc2 <Vth <Vr1 + Vc12 (Vc1-Vr2) <Vth <Vr1 + 2Vr3-V
If c2 is satisfied, one stable state of the bistable state is written at one end and then the other stable state is selectively written, that is, a drive for writing both white and black in one scan. Is possible.
【0019】さらに、図8に、信号電極の選択信号電圧
±Vc1と非選択信号電圧±Vc2が同極性の場合の波
形例を示したが、この場合に1回の走査で、白と黒を書
き込むことができる条件は、 Vr1+Vc2<Vth<Vr1+Vc1 2(Vc1−Vr2)<Vth<Vr1+2Vr3+V
c2 となる。Further, FIG. 8 shows a waveform example in the case where the selection signal voltage ± Vc1 of the signal electrode and the non-selection signal voltage ± Vc2 have the same polarity. In this case, white and black are obtained by one scanning. The writing condition is Vr1 + Vc2 <Vth <Vr1 + Vc1 2 (Vc1-Vr2) <Vth <Vr1 + 2Vr3 + V
It becomes c2.
【0020】本発明の駆動波形は、走査電極の非選択走
査電圧±Vr2を信号電極の選択信号電圧±Vc1と非
選択信号電圧±Vc2の中間の値に設定してあるため、
非選択走査部には、±(Vc1−Vr2)の交流波形が
印加される。パルス幅は、tの場合と信号電極から印加
される信号電圧が選択信号電圧と非選択信号電圧が切り
換わるときは2tとなる場合があり、パルス幅2tのと
きのACスタビライズ効果が現れる電圧Vstより(V
c1−Vr2)が大きければ、ACスタビライズ効果に
より、2つの双安定状態間の見かけのコーン角が広が
り、コントラストが向上できる。ACスタビライズ効果
は、液晶のΔεが負のときに生じるので、ACスタビラ
イズ効果を利用するためには、Δε<θの液晶でなけれ
ばならない。In the drive waveform of the present invention, the non-selection scanning voltage ± Vr2 of the scanning electrode is set to an intermediate value between the selection signal voltage ± Vc1 of the signal electrode and the non-selection signal voltage ± Vc2.
An AC waveform of ± (Vc1-Vr2) is applied to the non-selection scanning unit. The pulse width may be 2t when the signal voltage applied from the signal electrode is switched between the selected signal voltage and the non-selected signal voltage in the case of t, and the voltage Vst at which the AC stabilization effect appears when the pulse width is 2t. Than (V
If c1−Vr2) is large, the AC cone stabilization effect widens the apparent cone angle between the two bistable states, and the contrast can be improved. Since the AC stabilization effect occurs when Δε of the liquid crystal is negative, the liquid crystal of Δε <θ must be used in order to use the AC stabilization effect.
【0021】以上見てきたように、走査電極の走査信号
の印加において、選択走査電圧の直前に前選択走査電圧
を設け双安定状態の一方に書き込んだ上で、もう一方の
表示状態を選択的に書き込む方法によって、従来提案さ
れていたような前選択走査電圧の期間も含め選択走査期
間とする。即ち、図5のような走査波形の場合は4パル
ス分を1走査期間とするのに比較して本発明では、1ラ
インの走査期間を半分にでき、1画面書き込みの時間を
半分に短縮できる。As described above, in the application of the scanning signal to the scanning electrodes, the pre-selection scanning voltage is provided immediately before the selection scanning voltage to write in one of the bistable states, and then the other display state is selectively selected. Depending on the writing method, the selection scanning period includes the period of the pre-selection scanning voltage as conventionally proposed. That is, in the case of the scanning waveform as shown in FIG. 5, four pulses are set as one scanning period, but in the present invention, the scanning period for one line can be halved and the time for writing one screen can be halved. .
【0022】更に、走査電極の選択走査電圧±Vr2を
信号電極の選択信号電圧±Vc1と非選択信号電圧±V
c2の間の値とすることにより、Vc1−Vr2の値の
交流電圧が非選択走査電圧に印加され、上述したよう
に、 2(Vc1−Vr2)<Vth であれば、書き込まれた状態は安定に保持される。ま
た、強誘電性液晶のΔεが負であり、パルス幅が2tの
ときのACスタビライズ効果が生じる電圧Vstより、
このVc1−Vr2の値が大きければ、この非選択走査
部にはACスタビライズ効果による見かけのコーン角の
拡大が生じ、高コントラスト化がはかれる。この駆動波
形は、これまでのACスタビライズ効果を利用する駆動
波形のように、高周波のAC波形を重畳印加することが
不要であり、簡便な駆動回路で済ませるというメリット
がある。Further, the selection scanning voltage ± Vr2 of the scanning electrode is set to the selection signal voltage ± Vc1 of the signal electrode and the non-selection signal voltage ± V.
By setting the value between c2, the AC voltage having the value of Vc1-Vr2 is applied to the non-selective scanning voltage, and as described above, if 2 (Vc1-Vr2) <Vth, the written state is stable. Held in. Further, from the voltage Vst at which the Δst of the ferroelectric liquid crystal is negative and the AC stabilization effect occurs when the pulse width is 2t,
If the value of Vc1-Vr2 is large, the apparent cone angle is enlarged by the AC stabilization effect in the non-selective scanning portion, and high contrast is achieved. This drive waveform does not need to have a high-frequency AC waveform superimposed and applied, unlike the drive waveforms that use the AC stabilization effect up to now, and has the advantage that a simple drive circuit is sufficient.
【0023】図6、図8は、本発明の駆動方法を一般的
な形で図示したが、図9のように走査電極の非選択走査
電圧を0Vにすることもできる。そうすると、信号電極
の選択信号電圧±Vc1と非選択信号電圧±Vc2が同
じ値で逆極性となる。即ち、Vc1=Vc2となる。そ
のために、ドライバーからの出力値を減少でき、駆動回
路が簡便で済む。また、図10に示したように、信号電
極の非選択信号電圧を0Vに設定することも可能であ
る。その場合はVc2=0Vとなるため、2Vr2=V
cとなる。この場合も上と同様ドライバーからの出力値
を減少させ、回路の簡便化が達成できる。6 and 8 show the driving method of the present invention in a general form, the non-selective scanning voltage of the scanning electrodes can be set to 0V as shown in FIG. Then, the selection signal voltage ± Vc1 of the signal electrode and the non-selection signal voltage ± Vc2 have the same value and opposite polarities. That is, Vc1 = Vc2. Therefore, the output value from the driver can be reduced and the driving circuit can be simple. Further, as shown in FIG. 10, it is possible to set the non-selection signal voltage of the signal electrode to 0V. In that case, Vc2 = 0V, so 2Vr2 = V
c. In this case as well, the output value from the driver can be reduced and the circuit can be simplified as in the above case.
【0024】更に、ドライバーの出力値を減少させるた
めにVr1=Vr3とすれば良い。図9で、Vr1=V
r3とすると、簡便な波形となる。ところで、この駆動
方法では、信号電極には完全交流の電圧が印加される
が、走査電極に印加される波形で前選択走査電圧が直流
電圧なため、この分の直流電圧成分が印加されざるを得
ない。通常の液晶素子の場合、直流電圧分が印加され続
けると寿命が短くなり、好ましくない。そのため走査電
極に印加する走査波形を1フレーム毎に反転させ、2フ
レームで直流成分が印加されないようにすることができ
る。Further, Vr1 = Vr3 may be set in order to reduce the output value of the driver. In FIG. 9, Vr1 = V
With r3, a simple waveform is obtained. By the way, in this driving method, a complete AC voltage is applied to the signal electrodes, but since the pre-selected scan voltage is a DC voltage in the waveform applied to the scan electrodes, a DC voltage component of this amount must be applied. I don't get it. In the case of a normal liquid crystal element, if a direct current voltage is continuously applied, the life is shortened, which is not preferable. Therefore, the scanning waveform applied to the scanning electrodes can be inverted every frame so that the DC component is not applied in two frames.
【0025】例えは、図10が具体的な波形とすると、
この波形を偶数フレームとし、図11に示した走査電極
に印加する電圧の極性を反転させ、信号電極に印加する
電圧の極性を反転させ、選択、非選択を入れ換えた駆動
波形を奇数フレームとし、交互に印加し続けると直流成
分はキャンセルできる。For example, if FIG. 10 has a specific waveform,
This waveform is set as an even frame, the polarity of the voltage applied to the scan electrode shown in FIG. 11 is inverted, the polarity of the voltage applied to the signal electrode is inverted, and the drive waveform in which selection and non-selection are switched is set as an odd frame. The DC component can be canceled by continuously applying the voltage.
【0026】図10の駆動波形が一端黒を書き込んだ上
で白を選択的に書き込む波形とすると、図11は、一端
白を書き込んだ上で、黒を選択的に書き込んでいく波形
となる。そのため、例えば、黒を書き込み続けるために
は、偶数フレームでは非選択信号を信号電極に印加し続
け、奇数フレームでは一端白に書き込んだ上で、黒に書
き込む波形、即ち、図11では信号電極の非選択信号電
圧として示されてある±Vc1を印加し続けることにな
る。If the drive waveform in FIG. 10 is a waveform in which black is first written and then white is selectively written, FIG. 11 shows a waveform in which white is once written and then black is selectively written. Therefore, for example, in order to continue writing black, a non-selection signal is continuously applied to the signal electrode in the even numbered frame, and in the odd numbered frame, white is written once and then black is written, that is, in FIG. The ± Vc1 indicated as the non-selection signal voltage will be continuously applied.
【0027】更に、完全交流化をはかる方法して、図1
2に示したように、走査電極の走査信号の印加におい
て、前選択走査電圧が印加される直前に、前選択走査電
圧と逆極性のVr2を印加し、パルス幅2tとすると
(この電圧パルスを図12に示したように、以下交流化
走査電圧と呼ぶ)、前選択走査電圧と交流化走査電圧で
直流成分はキャンセルされるため、走査電極に印加され
る走査波形は完全交流化される。この交流化走査電圧が
印加される期間にも、信号電極から選択、非選択の信号
が印加されるが、その後すぐに、前選択走査電圧、選択
走査電圧部で書き込まれるため、交流化走査電圧期間
で、表示状態が変化したとしても、全体の表示状態には
影響を与えることはない。Further, as a method for achieving complete alternating current, FIG.
As shown in FIG. 2, in the application of the scan signal to the scan electrode, immediately before the application of the pre-selection scan voltage, Vr2 having the opposite polarity to the pre-selection scan voltage is applied and the pulse width is set to 2t (this voltage pulse is As shown in FIG. 12, hereinafter, referred to as AC scanning voltage), the DC component is canceled by the preselection scanning voltage and the AC scanning voltage, so that the scanning waveform applied to the scanning electrodes is completely AC-converted. Even during the period in which this AC scanning voltage is applied, the selection and non-selection signals are applied from the signal electrodes, but immediately after that, the pre-selection scanning voltage and the selection scanning voltage are written in, so the AC scanning voltage is applied. Even if the display state changes during the period, it does not affect the overall display state.
【0028】この方法を採用すると、図10、図11で
説明したように、偶数フレーム、奇数フレームで走査電
極に印加する電圧波形の極性を逆転させなくても完全交
流化がはかれる。図13に、本発明の駆動波形を印加し
たときに絵素に印加される電圧波形(a)とその時の絵
素の透過光強度(b)、(c)を示す。駆動波形は、走
査電極に印加する走査波形として、交流化走査電圧部を
設け、完全交流化し、かつ、Vr1=Vr2の例を示し
た。交流化走査電圧部、前選択走査電圧部、選択電圧部
それぞれに信号電極から選択信号が印加された波形であ
る。そのときの透過光強度として、(b)、(c)で示
したが、(b)がACスタビライズ効果をもたない一般
の強誘電性液晶素子のものであり、(c)はACスタビ
ライズ効果を有する強誘電性液晶素子のものである。そ
れぞれ選択走査される前の表示状態が、黒だったときと
白だっとときの両方の場合について示してある。By adopting this method, as described with reference to FIGS. 10 and 11, complete alternating current can be achieved without reversing the polarities of the voltage waveforms applied to the scan electrodes in even and odd frames. FIG. 13 shows the voltage waveform (a) applied to the picture element when the drive waveform of the present invention is applied, and the transmitted light intensities (b) and (c) of the picture element at that time. As the driving waveform, an example in which an AC scanning voltage unit is provided as a scanning waveform to be applied to the scanning electrodes so as to be completely AC and Vr1 = Vr2 is shown. It is a waveform in which a selection signal is applied from the signal electrode to each of the alternating scan voltage section, the pre-select scan voltage section, and the select voltage section. The transmitted light intensity at that time is shown in (b) and (c), but (b) is for a general ferroelectric liquid crystal element having no AC stabilizer effect, and (c) is the AC stabilizer effect. Of a ferroelectric liquid crystal device having The display states before the selective scanning are both black and white, respectively.
【0029】図13の波形では交流化電圧部、前選択電
圧部、選択電圧部に同じ波高値の電圧が印加されるた
め、その波高値のパルスで全て表示状態がスイッチング
する。よって、交流化電圧部で、一端黒に書き込まれ、
前選択電圧部と選択電圧部の1つ目のパルスで、白に書
き込まれた後に選択電圧部の2つ目のパルスで再度黒に
書き込まれている。(b)、(c)を比較すれば、明ら
かに非選択電圧部の交流波形によるACスタビライズ効
果が生じる(c)方が表示のコントラストが良好なこと
がわかる。In the waveform of FIG. 13, since the voltage of the same peak value is applied to the alternating voltage section, the pre-selection voltage section and the selection voltage section, all the display states are switched by the pulse of the peak value. Therefore, in the alternating voltage section, one end is written in black,
It is written in white by the first pulse of the previous selection voltage section and the selection voltage section, and then written again in black by the second pulse of the selection voltage section. Comparing (b) and (c), it can be seen that the display contrast is better in (c) where the AC stabilization effect due to the AC waveform of the non-selected voltage portion is apparently produced.
【0030】200本の走査電極を有するガラス基板お
よび200本の信号電極を有するガラス基板に、1H,
1H,7H−ドデカフルオロー1−ヘプタノールに、ポ
リフマル酸ジイソプロピルを1%溶解させた配向剤をス
ピンナー塗布し、加熱、乾燥させた後に、ラビング方向
が同一となるようにパラレルにラビング処理した。この
2枚の基板間のギャップが1.5μmとなるように、セ
ル組みし、以下の液晶組成物を注入し、封止した。On a glass substrate having 200 scanning electrodes and a glass substrate having 200 signal electrodes, 1H,
1H, 7H-dodecafluoro-1-heptanol was spinner coated with an aligning agent having 1% of diisopropyl polyfumarate dissolved therein, heated and dried, and then rubbed in parallel so that the rubbing directions were the same. A cell was assembled so that the gap between the two substrates was 1.5 μm, and the following liquid crystal composition was injected and sealed.
【0031】[0031]
【化1】 [Chemical 1]
【0032】組立てた液晶セルに、直交ニコルに偏光板
をはり、モジュール基板に接続し、実際の駆動波形でコ
ントラストを測定した。駆動波形としては走査電極に
は、Vr1=Vr3=10V、Vr2=8Vの値の2図
に示された波形を印加し、信号電極にはVc1=16V
の図10に示された信号電圧波形を印加した。Polarizing plates were placed in crossed Nicols on the assembled liquid crystal cell and connected to a module substrate, and the contrast was measured with an actual drive waveform. As the drive waveform, the waveform shown in FIG. 2 having values of Vr1 = Vr3 = 10V and Vr2 = 8V is applied to the scan electrodes, and Vc1 = 16V is applied to the signal electrodes.
The signal voltage waveform shown in FIG. 10 was applied.
【0033】パルス幅が33μsから50μsまで表示
のON−OFFのコントラストがとれ、パルス幅が小さ
いときの方がコントラストが良く、パルス幅40μse
cのときに、絵素部のON−OFFのコントラストとし
て、16:1が得られた。これは非選択のときに印加さ
れる±8V、パルス幅40μsecの駆動波形で、AC
スタビライズ効果が生じていることを示している。The ON / OFF contrast of the display can be obtained from the pulse width of 33 μs to 50 μs, the contrast is better when the pulse width is small, and the pulse width is 40 μse.
At c, 16: 1 was obtained as the ON-OFF contrast of the picture element portion. This is the drive waveform of ± 8V and pulse width of 40μsec that is applied when not selected.
It shows that the stabilizer effect is generated.
【0034】パルス幅40μsecのときは、1選択走
査期間が80μsecであり、この200本の液晶セル
では、62.5画面/secの画面書き換え速度が得ら
れた。When the pulse width was 40 μsec, one selective scanning period was 80 μsec, and a screen rewriting speed of 62.5 screen / sec was obtained with this 200 liquid crystal cells.
【0035】[0035]
【発明の効果】本発明の駆動方法を使うことにより、マ
トリクス電極構成の強誘電性液晶素子において、1回の
走査で白と黒の書き込みができ、1画面の書き換え速度
を倍にすることができた。更に、絵素に印加される電圧
は完全に交流化し、直流電圧が印加される場合の素子の
劣化の問題を除去することができた。また、Δε<0の
強誘電性液晶を使用することにより、ACスタビライズ
効果を持たせることができ、高コントラストが達成でき
た。By using the driving method of the present invention, black and white can be written by one scanning in a ferroelectric liquid crystal device having a matrix electrode structure, and the rewriting speed of one screen can be doubled. did it. Furthermore, the voltage applied to the picture element was completely AC, and the problem of element deterioration when a DC voltage was applied could be eliminated. Further, by using the ferroelectric liquid crystal with Δε <0, the AC stabilization effect can be provided and high contrast can be achieved.
【図1】強誘電性液晶の斜視図である。FIG. 1 is a perspective view of a ferroelectric liquid crystal.
【図2】液晶セルの電極配置図である。FIG. 2 is an electrode layout diagram of a liquid crystal cell.
【図3】強誘電性液晶セルの従来の駆動波形図である。FIG. 3 is a conventional drive waveform diagram of a ferroelectric liquid crystal cell.
【図4】強誘電性液晶セルの従来の駆動波形図である。FIG. 4 is a conventional drive waveform diagram of a ferroelectric liquid crystal cell.
【図5】走査電極に印加される走査電圧波形図である。FIG. 5 is a scan voltage waveform diagram applied to scan electrodes.
【図6】走査電圧波形、信号電圧波形および絵素に印加
される電圧波形を示す図である。FIG. 6 is a diagram showing a scanning voltage waveform, a signal voltage waveform, and a voltage waveform applied to a pixel.
【図7】絵素に印加される電圧波形図である。FIG. 7 is a voltage waveform diagram applied to a pixel.
【図8】走査電圧波形、信号電圧波形および絵素に印加
される電圧波形を示す図である。FIG. 8 is a diagram showing a scanning voltage waveform, a signal voltage waveform, and a voltage waveform applied to a pixel.
【図9】走査電圧波形、信号電圧波形および絵素に印加
される電圧波形を示す図である。FIG. 9 is a diagram showing a scanning voltage waveform, a signal voltage waveform, and a voltage waveform applied to a pixel.
【図10】走査電圧波形、信号電圧波形および絵素に印
加される電圧波形を示す図である。FIG. 10 is a diagram showing a scanning voltage waveform, a signal voltage waveform, and a voltage waveform applied to a pixel.
【図11】走査電圧波形、信号電圧波形および絵素に印
加される電圧波形を示す図である。FIG. 11 is a diagram showing a scanning voltage waveform, a signal voltage waveform, and a voltage waveform applied to a pixel.
【図12】走査電極に印加される走査電圧波形図であ
る。FIG. 12 is a scan voltage waveform diagram applied to scan electrodes.
【図13】絵素に印加される電圧波形とその波形が印加
されたときの透過光強度を示す出力である。FIG. 13 is an output showing the voltage waveform applied to a pixel and the transmitted light intensity when the waveform is applied.
1 基板 2 偏向板 8 偏光板 9 走査電極 10 信号電極 1 Substrate 2 Deflection Plate 8 Polarizing Plate 9 Scanning Electrode 10 Signal Electrode
Claims (4)
号電極を有する基板間に強誘電性液晶組成物を挟持し、
該走査電極と該信号電極の交差部に絵素を形成し、安定
な光学状態を反転させて動作する強誘電性液晶素子の駆
動方法において、 該走査電極の選択期間において、パルス幅t、大きさV
r1の極性の異なる2つの電圧パルスを含む選択走査電
圧を該走査電極に印加し、該走査電極の非選択期間にお
いて、大きさVr2を越えない非選択走査電圧を該走査
電極に印加し、 該走査電極の選択される直前の期間2tにおいて、該選
択走査電圧の最初の電圧パルスと極性が同じであり、大
きさVr3の前選択走査電圧を該走査電極に印加し、 該信号電極には、パルス幅t、大きさVc1である両極
性の電圧パルスを含み、かつ、該選択走査電圧と逆極性
を持つ選択信号電圧と、パルス幅t、大きさVc2を持
つ非選択信号電圧を印加して明暗情報を該絵素に書き込
む際に、 該非選択走査電圧Vr2は次式(1)を満たし、 Vc1>Vr2>Vc2 ・・・(1) 電圧パルスの時間幅tにおいて光学状態が反転するしき
い値電圧をVthとして、該信号電極の、選択信号電圧
と非選択信号電圧とに含まれる電圧パルスの極性が同じ
であるとき、次式(2)と(3)を満たし、 Vr1+Vc2<Vth<Vr1+Vc1 ・・・(2) 2(Vc1−Vr2)<Vth<Vr1+2Vr3+Vc2・・・(3) 該信号電極の、選択信号電圧と非選択信号電圧とに含ま
れる電圧パルスの極性が逆であるとき、次式(4)と
(5)を満たす Vr1−Vc2<Vth<Vr1+Vc1 ・・・(4) 2(Vc1−Vr2)<Vth<Vr1+2Vr3−Vc2・・・(5) ことを特徴とする強誘電性液晶素子の駆動方法。1. A ferroelectric liquid crystal composition is sandwiched between a substrate having a plurality of scanning electrodes and a substrate having a plurality of signal electrodes,
In a method of driving a ferroelectric liquid crystal device, in which a pixel is formed at the intersection of the scan electrode and the signal electrode and a stable optical state is inverted, the pulse width t and the size are increased during a selection period of the scan electrode. Sa V
A selective scan voltage including two voltage pulses of r1 having different polarities is applied to the scan electrode, and a non-selective scan voltage that does not exceed the magnitude Vr2 is applied to the scan electrode during a non-selection period of the scan electrode, In the period 2t immediately before the selection of the scan electrode, the polarity is the same as that of the first voltage pulse of the selection scan voltage, the pre-selection scan voltage having the magnitude Vr3 is applied to the scan electrode, and the signal electrode is A selection signal voltage including a bipolar voltage pulse having a pulse width t and a magnitude Vc1 and having a polarity opposite to that of the selection scanning voltage and a non-selection signal voltage having a pulse width t and a magnitude Vc2 are applied. When writing the brightness information in the picture element, the non-selection scanning voltage Vr2 satisfies the following equation (1), and Vc1>Vr2> Vc2 (1) Threshold at which the optical state is inverted in the time width t of the voltage pulse. Value voltage is Vt When the polarity of the voltage pulse included in the selection signal voltage and the non-selection signal voltage of the signal electrode is the same, the following expressions (2) and (3) are satisfied, and Vr1 + Vc2 <Vth <Vr1 + Vc1 ( 2) 2 (Vc1-Vr2) <Vth <Vr1 + 2Vr3 + Vc2 (3) When the polarity of the voltage pulse included in the selection signal voltage and the non-selection signal voltage of the signal electrode is opposite, the following formula (4) And (5) are satisfied: Vr1-Vc2 <Vth <Vr1 + Vc1 (4) 2 (Vc1-Vr2) <Vth <Vr1 + 2Vr3-Vc2 (5) A method for driving a ferroelectric liquid crystal element. .
スタビライズ効果が生じる電圧をVstとしたとき、次
式(6)を満たす Vst<Vc1−Vr2 ・・・(6) ことを特徴とする請求項1記載の強誘電性液晶素子の駆
動方法。2. AC when the time width of the voltage pulse is 2t
The method for driving a ferroelectric liquid crystal device according to claim 1, wherein Vst <Vc1-Vr2 (6) that satisfies the following expression (6), where Vst is a voltage at which the stabilizing effect occurs.
性が、偶数フレームと奇数フレームで逆転し、それに同
期して信号電極に極性も逆転し、かつ、選択−非選択の
信号が逆になることを特徴とする請求項1記載の強誘電
性液晶素子の駆動方法。3. The polarity of the scanning signal voltage applied to the scanning electrodes is reversed between the even frame and the odd frame, the polarities of the signal electrodes are also reversed in synchronization with it, and the selection-non-selection signals are reversed. The method for driving a ferroelectric liquid crystal element according to claim 1, wherein
間幅をtとしたときの、2tに相当する前選択走査電圧
Vr3と逆極性の2tのパルスが前選択走査電圧の直前
に印加されることを特徴とする請求項1記載の強誘電性
液晶素子の駆動方法。4. A pulse of 2t having a polarity opposite to that of the pre-selection scanning voltage Vr3 corresponding to 2t is applied immediately before the pre-selection scanning voltage, where t is a time width of the voltage pulse of the rectangular wave AC to be applied. The method for driving a ferroelectric liquid crystal element according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20377692A JPH0651280A (en) | 1992-07-30 | 1992-07-30 | Driving method for ferroelectric liquid crystal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20377692A JPH0651280A (en) | 1992-07-30 | 1992-07-30 | Driving method for ferroelectric liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0651280A true JPH0651280A (en) | 1994-02-25 |
Family
ID=16479602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20377692A Pending JPH0651280A (en) | 1992-07-30 | 1992-07-30 | Driving method for ferroelectric liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0651280A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229852A (en) * | 2008-03-24 | 2009-10-08 | Citizen Holdings Co Ltd | Ferroelectric liquid crystal device |
-
1992
- 1992-07-30 JP JP20377692A patent/JPH0651280A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229852A (en) * | 2008-03-24 | 2009-10-08 | Citizen Holdings Co Ltd | Ferroelectric liquid crystal device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4909607A (en) | Addressing liquid crystal cells | |
KR100269849B1 (en) | Active matrix type lcd | |
JPS6261931B2 (en) | ||
GB2204172A (en) | Electro optical modulation devices | |
JPH0225834A (en) | Liquid crystal device | |
US5436743A (en) | Method for driving optical modulation device | |
JPH0485517A (en) | Liquid crystal element and liquid crystal driving method | |
JPH0535848B2 (en) | ||
JPH0651280A (en) | Driving method for ferroelectric liquid crystal element | |
JP2502292B2 (en) | Driving method of optical modulator | |
KR920007127B1 (en) | Method for driving a liquid crystal optical apparatus | |
JPH06194623A (en) | Driving method of antiferroelectric liquid crystal display element | |
JPS62299820A (en) | Driving method for liquid crystal electrooptic element | |
JPH0437412B2 (en) | ||
JP3205766B2 (en) | Driving method of ferroelectric liquid crystal device | |
JPH0448366B2 (en) | ||
JPH0448367B2 (en) | ||
JPH0651279A (en) | Driving method for ferroelectric liquid crystal element | |
JPS63259516A (en) | Method for driving matrix type liquid crystal display body | |
JPH0279816A (en) | Method for driving matrix type ferromagnetic liquid crystal panel | |
JPH0695179B2 (en) | Driving method of liquid crystal matrix display panel | |
JPS6224228A (en) | Driving method for liquid crystal display device | |
JPS63253333A (en) | Matrix-type liquid crystal display driving method | |
JP3233925B2 (en) | Driving method of ferroelectric liquid crystal device | |
JPS62273513A (en) | Driving method for liquid-crystal electrooptic element |