[go: up one dir, main page]

JPH0648755Y2 - Coin type non-aqueous electrolyte secondary battery - Google Patents

Coin type non-aqueous electrolyte secondary battery

Info

Publication number
JPH0648755Y2
JPH0648755Y2 JP1989000894U JP89489U JPH0648755Y2 JP H0648755 Y2 JPH0648755 Y2 JP H0648755Y2 JP 1989000894 U JP1989000894 U JP 1989000894U JP 89489 U JP89489 U JP 89489U JP H0648755 Y2 JPH0648755 Y2 JP H0648755Y2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
secondary battery
electrolyte secondary
type non
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989000894U
Other languages
Japanese (ja)
Other versions
JPH0292663U (en
Inventor
雅明 横川
雅之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1989000894U priority Critical patent/JPH0648755Y2/en
Publication of JPH0292663U publication Critical patent/JPH0292663U/ja
Application granted granted Critical
Publication of JPH0648755Y2 publication Critical patent/JPH0648755Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、コイン型非水電解液二次電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a coin-type non-aqueous electrolyte secondary battery.

〔考案の概要〕[Outline of device]

本考案は、コイン型非水電解液二次電池に関し、更に詳
しくは重負荷放電特性に優れたコイン型非水電解液二次
電池に関する。
The present invention relates to a coin type non-aqueous electrolyte secondary battery, and more particularly to a coin type non-aqueous electrolyte secondary battery having excellent heavy load discharge characteristics.

〔従来の技術〕[Conventional technology]

電解液に非水電解液を使用するいわゆる非水電解液電池
は、自己放電が少なく保存性に優れた電池として、特に
5〜10年という長期間連続使用が要求される電子腕時計
や半導体メモリバックアップ用電源として広く利用され
ている。
A so-called non-aqueous electrolyte battery that uses a non-aqueous electrolyte as the electrolyte is a battery with low self-discharge and excellent storability, especially for electronic wrist watches and semiconductor memory backups that require continuous use for a long period of 5 to 10 years. It is widely used as a power source.

従来より使用されているこれら非水電解液電池は通常一
次電池であるが、長期間経済的に反復して使用できる電
源として、再充電可能な非水電解液二次電池への要望が
強く、各方面で研究が進められている。中でも、負極ペ
レット用の負極活物質として、リチウムイオンをドープ
及び脱ドープできるコークスや有機高分子焼成体等のよ
うな炭素材料を使用するコイン型非水電解液二次電池
は、電池電圧が高く、高エネルギー密度が得られるた
め、小型電子機器の電源として期待されている。以下、
従来のコイン型非水電解液二次電池の構造を第2図に基
づき説明する。
These non-aqueous electrolyte batteries conventionally used are usually primary batteries, but there is a strong demand for rechargeable non-aqueous electrolyte secondary batteries as a power source that can be repeatedly used economically for a long period of time. Research is progressing in various fields. Among them, as a negative electrode active material for negative electrode pellets, a coin type non-aqueous electrolyte secondary battery using a carbon material such as coke or organic polymer fired body that can be doped and dedoped with lithium ions has a high battery voltage. Since it can obtain high energy density, it is expected as a power source for small electronic devices. Less than,
The structure of a conventional coin type non-aqueous electrolyte secondary battery will be described with reference to FIG.

従来のコイン型非水電解液二次電池の断面図を示す第2
図において、2は負極ペレットであり、リチウムイオン
をドープ及び脱ドープできるコークスや有機高分子焼成
体等の炭素材料のごとき材料からなる負極活物質を成型
したものである。3は正極ペレットであり、二酸化マン
ガン、五酸化バナジウムのような遷移金属酸化物や、こ
れら酸化物とリチウムとの複合化合物、または流化鉄の
ような遷移金属カルコゲン化合物や、これらカルコゲン
化合物とリチウムとの複合化合物を正極活物質とし、こ
れを成型したものである。
Second showing a cross-sectional view of a conventional coin-type non-aqueous electrolyte secondary battery
In the figure, reference numeral 2 denotes a negative electrode pellet, which is formed by molding a negative electrode active material made of a material such as a carbon material such as coke or organic polymer fired body that can be doped or dedoped with lithium ions. Reference numeral 3 denotes a positive electrode pellet, which is a transition metal oxide such as manganese dioxide or vanadium pentoxide, a complex compound of these oxides and lithium, a transition metal chalcogen compound such as iron fluke, or a chalcogen compound and lithium. The composite compound of and is used as a positive electrode active material, and this is molded.

負極ペレット2および正極ペレット3は、マイクロポー
ラスフィルムからなるセパレータ4をはさんで負極缶5
および正極外装缶6の中に収納される。正極外装缶6は
その開口端部を封口ガスケット7を介してかしめ、密封
される。
The negative electrode pellet 2 and the positive electrode pellet 3 are sandwiched by a separator 4 made of a microporous film, and a negative electrode can 5
And it is stored in the positive electrode outer can 6. The positive electrode outer can 6 is caulked at its open end via a sealing gasket 7 to be sealed.

電解液としては、例えばリチウム塩を電解質とし、これ
を非水溶媒(有機溶媒)に溶解した非水電解液が使用さ
れる。
As the electrolytic solution, for example, a non-aqueous electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in a non-aqueous solvent (organic solvent) is used.

上述のように構成された従来のコイン型非水電解液二次
電池において、負極缶5の材料としては、コストや封口
性能の観点からステンレス鋼板が通常用いられている。
また特に重負荷放電時の作動電圧特性(以下重荷負放電
特性という)の低下が問題となる場合には、負極缶5の
内部の少なくとも負極ペレット2との接触面に金メッキ
を施して接触抵抗値を低減することが行われていた(例
えば特開昭61−24143号公報)。
In the conventional coin type non-aqueous electrolyte secondary battery configured as described above, a stainless steel plate is usually used as the material of the negative electrode can 5 from the viewpoint of cost and sealing performance.
Further, particularly when the deterioration of the operating voltage characteristic during heavy load discharge (hereinafter referred to as heavy load negative discharge characteristic) becomes a problem, at least the contact surface with the negative electrode pellet 2 inside the negative electrode can 5 is plated with gold to obtain a contact resistance value. Has been reduced (for example, JP-A-61-24143).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述した従来のコイン型非水電解液二次電池において
は、負極缶5にステンレス鋼板を用いているので、表面
の不動体酸化被膜の存在のため負極ペレット2との接触
抵抗値が大きく、このため重負荷放電特性が悪かった。
In the conventional coin-type non-aqueous electrolyte secondary battery described above, since the stainless steel plate is used for the negative electrode can 5, the presence of the passive oxide film on the surface causes a large contact resistance value with the negative electrode pellet 2. Therefore, the heavy load discharge characteristics were poor.

また重負荷放電特性改善のため、負極缶5の内部に金メ
ッキを施す方法は、価格の点で実際の製品への応用は困
難であった。
Further, the method of applying gold plating to the inside of the negative electrode can 5 to improve the heavy load discharge characteristics has been difficult to apply to an actual product in terms of cost.

従って、本考案の課題は、負極ペレット用の負極活物質
としてリチウムイオンをドープ及び脱ドープできる炭素
材料を用いるコイン型非水電解液二次電池において、簡
便で安価な方法により、重負荷放電特性の改善されたコ
イン型非水電解液二次電池を提供することである。
Therefore, an object of the present invention is to provide a coin-type non-aqueous electrolyte secondary battery using a carbon material capable of doping and dedoping lithium ions as a negative electrode active material for a negative electrode pellet, by a simple and inexpensive method, and under heavy load discharge characteristics. Another object of the present invention is to provide an improved coin type non-aqueous electrolyte secondary battery.

〔課題を解決するための手段〕[Means for Solving the Problems]

前述した課題を解決するため、本考案によるコイン型非
水電解液二次電池は、負極ペレットと負極缶との間に、
銅層を配設したものである。銅層の面積は、負極缶の内
部底面積より小さく、かつ負極ペレットの負極缶内部底
面への平面投影面積と同等以上であればよい。銅層の厚
さは、1μm以上100μm以下のものがよい。
In order to solve the above-mentioned problems, the coin-type non-aqueous electrolyte secondary battery according to the present invention includes a negative electrode pellet and a negative electrode can between the negative electrode pellet and the negative electrode can.
It is provided with a copper layer. The area of the copper layer may be smaller than the inner bottom area of the negative electrode can, and may be equal to or larger than the plane projection area of the negative electrode pellet on the inner bottom surface of the negative electrode can. The thickness of the copper layer is preferably 1 μm or more and 100 μm or less.

〔作用〕[Action]

銅はヤング率が12.98×1010N・m-2であり、ステンレス
鋼に比較して軟質の金属である。このため、正極外装缶
の開口端部をかしめてコイン型非水電解液二次電池を組
立てたとき、銅層は負極ペレットとの密着性に優れた性
能を発揮する。従って、負極ペレットと負極缶との接触
抵抗値が低減され、この結果重負荷放電特性が改善され
る。
Copper has a Young's modulus of 12.98 × 10 10 N · m -2 and is a softer metal than stainless steel. Therefore, when the coin-shaped non-aqueous electrolyte secondary battery is assembled by caulking the open end of the positive electrode outer can, the copper layer exhibits excellent adhesiveness with the negative electrode pellet. Therefore, the contact resistance value between the negative electrode pellet and the negative electrode can is reduced, and as a result, the heavy load discharge characteristics are improved.

また、コイン型非水電解液二次電池は、3.5V以上の電圧
で充電されるが、この条件下において、負極側で銅層は
安定に存在でき、非水電解液により腐蝕されることはな
い。しかも充放電サイクルを繰り返しても銅層は腐蝕し
ないので、良好な重負荷放電特性が劣化することがな
い。
Further, the coin-type non-aqueous electrolyte secondary battery is charged at a voltage of 3.5 V or more, but under this condition, the copper layer can exist stably on the negative electrode side and is not corroded by the non-aqueous electrolyte. Absent. Moreover, since the copper layer is not corroded even if the charge / discharge cycle is repeated, good heavy load discharge characteristics are not deteriorated.

〔実施例〕〔Example〕

以下、本考案の実施例を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1 第1図は本考案のコイン型非水電解液二次電池の第1の
実施例を示す断面図である。まず、正極活物質として、
炭酸リチウム1モルと炭酸コバルト1モルを混合し、90
0℃の空気中で5時間焼成してLiCoO2を得た。このLiCoO
291重量部と導電材としてグラファイトパウダー6重量
部、結着剤としてポリテトラフルオロエチレン(PTFE)
パウダー3重量部とを均質に混合し、圧縮成型により外
径15.5mm、高さ0.51mm、重量0.346gの正極ペレット3を
作製した。
Embodiment 1 FIG. 1 is a sectional view showing a first embodiment of a coin type non-aqueous electrolyte secondary battery of the present invention. First, as the positive electrode active material,
Mix 1 mol of lithium carbonate and 1 mol of cobalt carbonate to 90
LiCoO 2 was obtained by firing in air at 0 ° C. for 5 hours. This LiCoO
2 91 parts by weight, 6 parts by weight of graphite powder as conductive material, polytetrafluoroethylene (PTFE) as binder
The powder 3 parts by weight was mixed homogeneously, and the positive electrode pellet 3 having an outer diameter of 15.5 mm, a height of 0.51 mm and a weight of 0.346 g was produced by compression molding.

一方負極活物質としては、ピッチコークスパウダー90重
量部に結着剤としてPTFEパウダー10重量部を加え均質に
混合し、これも圧縮成型することで、外径15.5mm、高さ
0.55mm、重量0.145gの負極ペレット2を作製した。
On the other hand, as the negative electrode active material, 90 parts by weight of pitch coke powder and 10 parts by weight of PTFE powder as a binder were added and mixed homogeneously, and this was also compression-molded to give an outer diameter of 15.5 mm and a height of 15.5 mm.
A negative electrode pellet 2 having a weight of 0.55 mm and a weight of 0.145 g was prepared.

この負極ペレット2を、厚さ5μmの銅箔1を内部底面
に敷いた負極缶5の内側に載せ、その上にマイクロポー
ラスフィルムからなるセパレータ4を重ね、プラスチッ
クス製の封口ガスケット7をセパレータ4を介してその
上部に置き、この上から電解液を滴下した。
This negative electrode pellet 2 is placed inside a negative electrode can 5 having a copper foil 1 having a thickness of 5 μm laid on the inner bottom surface, a separator 4 made of a microporous film is laid on the negative electrode can 5, and a plastic sealing gasket 7 is placed on the separator 4 It was put on the upper part through and the electrolyte solution was dripped from above.

さらに、この上に前述の正極パレット3を載せ、最後に
その上に正極外装缶6をかぶせ、その開口端部をかしめ
てシールし、外径20mm、高さ1.6mmのコイン型非水電解
液二次電池を作製した。これをサンプル電池1とする。
Further, the positive electrode pallet 3 described above is placed on this, finally the positive electrode outer can 6 is placed on it, and the opening end is caulked and sealed, and a coin type non-aqueous electrolyte solution having an outer diameter of 20 mm and a height of 1.6 mm. A secondary battery was produced. This is referred to as sample battery 1.

なお、前記銅箔1の面積は、負極缶5の内部底面積と一
致させた。また電解液としては、プロピレンカーボネー
トと1,2−ジメトキシエタンとを体積比で1:1の割合で混
合した溶媒にLiPF6を1モル/lの割合で溶解させた非水
電解液を用いた。
The area of the copper foil 1 was made to coincide with the inner bottom area of the negative electrode can 5. As the electrolytic solution, a nonaqueous electrolytic solution prepared by dissolving LiPF 6 at a ratio of 1 mol / l in a solvent obtained by mixing propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 was used. .

実施例2 実施例1で用いた厚さ5μmの銅箔の代わりに、厚さ10
μmの銅箔を用い、またこれにより電池の高さを調整す
るために、正極ペレットの高さを0.505mm、重量を0.343
g、負極ペレットの高さを0.545mm、重量を0.144gとし、
そのほかは実施例1と同様にしてコイン型非水電解液二
次電池を作製した。これをサンプル電池2とする。
Example 2 Instead of the copper foil having a thickness of 5 μm used in Example 1, a thickness of 10 μm was used.
In order to adjust the height of the battery by using copper foil of μm, the height of the positive electrode pellet is 0.505mm, the weight is 0.343mm.
g, the height of the negative electrode pellet is 0.545 mm, the weight is 0.144 g,
A coin type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except for the above. This is referred to as sample battery 2.

実施例3 実施例1で用いた厚さ5μmの銅箔の代わりに、厚さ50
μmの銅箔を用い、またこれにより電池の高さを調整す
るために、正極ペレットの高さを0.485mm、重量を0.329
g、負極ペレットの高さを0.525mm、重量を0.139gとし、
そのほかは実施例1と同様にしてコイン型非水電解液二
次電池を作製した。これをサンプル電池3とする。
Example 3 Instead of the copper foil having a thickness of 5 μm used in Example 1, a thickness of 50 μm was used.
In order to adjust the height of the battery by using a copper foil of μm, the height of the positive electrode pellet is 0.485 mm, and the weight is 0.329.
g, the height of the negative electrode pellet is 0.525 mm, the weight is 0.139 g,
A coin type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except for the above. This is referred to as a sample battery 3.

実施例4 実施例1で用いた厚さ5μmの銅箔の代わりに、厚さ10
0μmの銅箔を用い、またこれにより電池の高さを調整
するために、正極ペレットの高さを0.460mm、重量を0.3
12g、負極ペレットの高さを0.500mm、重量を0.132gと
し、そのほかは実施例1と同様にしてコイン型非水電解
液二次電池を作製した。これをサンプル電池4とする。
Example 4 Instead of the copper foil having a thickness of 5 μm used in Example 1, a thickness of 10 μm was used.
In order to adjust the height of the battery by using 0μm copper foil, the height of the positive electrode pellet is 0.460mm, the weight is 0.3mm.
A coin type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the weight of the negative electrode pellet was 12 g, the height of the negative electrode pellet was 0.500 mm, and the weight was 0.132 g. This is referred to as a sample battery 4.

比較例 比較のために、従来の方法である銅箔を用いないコイン
型非水電解液二次電池も作製した。この時用いた正・負
極ペレットは実施例1と同様のものであり、そのほか銅
箔を用いないこと以外、すべて実施例1と同様であっ
た。これをサンプル電池11とした。
Comparative Example For comparison, a coin-type non-aqueous electrolyte secondary battery which does not use a copper foil, which is a conventional method, was also manufactured. The positive and negative electrode pellets used at this time were the same as in Example 1, and all were the same as in Example 1 except that no copper foil was used. This was designated as Sample Battery 11.

前記のように作製したサンプル電池1、2、3、4及び
11ついて、それぞれ5.7mAの電流で、上限電圧4.0Vとし
て5時間充電し、続いて2.2mAの重負荷放電電流で放電
する充放電サイクルを10回繰り返した時の、10サイクル
目の放電容量を測定した。この結果を第3図に示す。
The sample batteries 1, 2, 3, 4 prepared as described above and
11. Then, the discharge capacity at the 10th cycle when the charge and discharge cycle was repeated 10 times by charging each with a current of 5.7mA and setting the upper limit voltage to 4.0V for 5 hours, and then discharging with a heavy load discharge current of 2.2mA. It was measured. The results are shown in FIG.

第3図から明らかなように、本考案の実施例によるサン
プル電池1、2および3は、従来の方法である、銅箔を
用いない比較例によるサンプル電池11より、すべて放電
容量が大きく、重負荷放電特性に優れていることがわか
る。また、100μの厚い銅箔を用いた実施例によるサン
プル電池4は、電池の高さ調整のために、正極ペレット
の高さと重量を減らしたために、放電容量は比較例によ
るサンプル電池11とほぼ同等になってしまい、100μm
を越えて銅箔の厚さを厚くするのは好ましくないと言え
る。
As is clear from FIG. 3, the sample batteries 1, 2 and 3 according to the embodiment of the present invention all have a larger discharge capacity and a heavier weight than the sample battery 11 according to the comparative example which does not use the copper foil, which is the conventional method. It can be seen that the load discharge characteristics are excellent. In addition, the sample battery 4 according to the example using the 100 μm thick copper foil has the discharge capacity almost equal to that of the sample battery 11 according to the comparative example because the height and weight of the positive electrode pellets are reduced to adjust the height of the battery. Became 100 μm
It can be said that it is not preferable to increase the thickness of the copper foil beyond that.

また、実施例には記してないが、重負荷放電特性改善の
効果は厚さ1μm以上の銅箔について認められる。しか
し厚さ5μmに満たない銅箔は機械的強度が小さく、取
り扱いに細心の注意を要し、しかも外周部のカット時に
破れてしまう可能性がある。
Although not described in the examples, the effect of improving the heavy load discharge characteristics is recognized for the copper foil having a thickness of 1 μm or more. However, a copper foil having a thickness of less than 5 μm has low mechanical strength, requires careful handling, and may be torn when the outer peripheral portion is cut.

従って、本考案に用いられる銅箔の厚さは1μm以上10
0μm以下のものがよく、更に好ましくは5μm以上50
μm以下のものがよいことが判る。
Therefore, the thickness of the copper foil used in the present invention is 1 μm or more 10
It is preferably 0 μm or less, more preferably 5 μm or more 50
It can be seen that it is preferable that the thickness is less than μm.

以上、本実施例においては、銅層の一例として、銅箔を
とりあげて説明したが、他に銅の蒸着、イオンプレーテ
ィング等の真空薄膜形成技術や、銅メッキ等の方法によ
り、正極外装缶の内部底面にピンホールの無い銅層を配
設してもよい。また、ステンレス銅板に銅をクラッドし
た材料を負極缶として用いてもよい。また正極活物質と
して、LiCoO2とグラファイトパウダーおよびPTFEパウダ
ーの混合物を圧縮成型して正極パレットとして用いた
が、他に二酸化マンガン、五酸化バナジウム、硫化鉄の
ごとき遷移金属の酸化物、カルコゲン化合物、さらには
これら酸化物、カルコゲン化合物とリチウムとの複合化
合物を用いることが可能である。また負極活物質として
は、ピッチコークスパウダーとPTFEパウダーの混合物を
圧縮成型して負極ペレットとして用いたが、他にリチウ
ムイオンをドープ及び脱ドープできる炭素材料、すなわ
ち石油系コークスや石炭系コークス等のコークス材料、
有機高分子を望ましくは500℃以上の非酸化性雰囲気中
で焼成した有機高分子焼成体、アセチレンブラック等の
カーボンブラック類、グラファイト、ガラス状炭素、活
性炭、炭素繊維、その他の有機物熱分解炭素類を源流と
して用いることができる。また非水電解液としては、例
えばLiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5)4、LiC
l、LiBr、CH3SO3LiまたはCF3SO3Liのごときリチウム塩
を電解質とし、これを例えばプロピレンカーボネート、
エチレンカーボネート、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、γ−ブチロラクトン、テトラヒドロ
フラン、1,3−ジオキソラン、4−メチル−1,3−ジオキ
ソラン、ジエチルエーテル、スルホラン、メチルスルホ
ラン、アセトニトリルまたはプロピオニトリル等の単独
もしくは混合有機溶媒に溶解した非水電解液を使用する
ことができる。
As described above, in the present embodiment, the copper foil is described as an example of the copper layer, but in addition, a vacuum thin film forming technique such as copper vapor deposition or ion plating, or a method such as copper plating may be used to form the positive electrode outer can. A copper layer without pinholes may be provided on the inner bottom surface of the. A material obtained by clad copper on a stainless copper plate may be used as the negative electrode can. As the positive electrode active material, a mixture of LiCoO 2 and graphite powder and PTFE powder was compression molded and used as the positive electrode pallet. Further, it is possible to use a complex compound of these oxides and a chalcogen compound and lithium. As the negative electrode active material, a mixture of pitch coke powder and PTFE powder was compression-molded and used as the negative electrode pellet, but other carbon materials capable of doping and dedoping lithium ions, that is, petroleum-based coke and coal-based coke, Coke material,
An organic polymer fired body obtained by firing an organic polymer in a non-oxidizing atmosphere at 500 ° C or higher, carbon blacks such as acetylene black, graphite, glassy carbon, activated carbon, carbon fiber, and other pyrolyzed carbons of organic substances Can be used as a source. The non-aqueous electrolyte may be, for example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiC.
Li, LiBr, a lithium salt such as CH 3 SO 3 Li or CF 3 SO 3 Li is used as an electrolyte, and this is used, for example, as propylene carbonate,
Ethylene carbonate, 1,2-dimethoxyethane, 1,2-
Non-dissolved in a single or mixed organic solvent such as diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile or propionitrile. A water electrolyte can be used.

〔考案の効果〕[Effect of device]

以上詳述したように、本考案によれば、負極ペレットと
負極缶との間に銅箔等の銅層を配設することにより、重
負荷放電特性に優れ、しかも充放電サイクルを繰り返し
ても重負荷放電特性の劣化の少ない、耐久性に富んだコ
イン型非水電解液二次電池を得ることが可能となる。
As described above in detail, according to the present invention, by providing a copper layer such as a copper foil between a negative electrode pellet and a negative electrode can, excellent heavy load discharge characteristics are achieved, and even after repeated charge and discharge cycles. It is possible to obtain a coin-type non-aqueous electrolyte secondary battery which has little deterioration in heavy load discharge characteristics and is highly durable.

これにより、従来のコイン型非水電解液二次電池の欠点
であった、重負荷放電特性の悪さ、特に充放電サイクル
を繰り返したときの重負荷放電特性の劣化を、簡単で安
価な方法で解決できるので、本考案の工業的利用価値は
大きい。
As a result, the drawback of the conventional coin-type non-aqueous electrolyte secondary battery, the poor heavy load discharge characteristics, particularly the deterioration of the heavy load discharge characteristics when the charge / discharge cycle is repeated, can be performed by a simple and inexpensive method. Since it can be solved, the industrial utility value of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案のコイン型非水電解液二次電池の実施例
を示す断面図、第2図は従来のコイン型非水電解液二次
電池の断面図、第3図は銅箔の厚さと放電容量の関係を
示す図である。 1……銅箔 2……負極ペレット 3……正極ペレット 4……セパレータ 5……負極缶 6……正極外装缶 7……封口ガスケット
FIG. 1 is a sectional view showing an embodiment of a coin type non-aqueous electrolyte secondary battery of the present invention, FIG. 2 is a sectional view of a conventional coin type non-aqueous electrolyte secondary battery, and FIG. 3 is a copper foil. It is a figure which shows the relationship between thickness and discharge capacity. 1 ... Copper foil 2 ... Negative electrode pellet 3 ... Positive electrode pellet 4 ... Separator 5 ... Negative electrode can 6 ... Positive electrode outer can 7 ... Sealing gasket

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】負極ペレット用の負極活物質としてリチウ
ムイオンをドープ及び脱ドープできる炭素材料を用いる
コイン型非水電解液二次電池であって、負極ペレットと
負極缶との間に、銅層を配設することを特徴とするコイ
ン型非水電解液二次電池。
1. A coin type non-aqueous electrolyte secondary battery using a carbon material capable of doping and dedoping lithium ions as a negative electrode active material for a negative electrode pellet, wherein a copper layer is provided between the negative electrode pellet and the negative electrode can. A coin-type non-aqueous electrolyte secondary battery comprising:
JP1989000894U 1989-01-10 1989-01-10 Coin type non-aqueous electrolyte secondary battery Expired - Lifetime JPH0648755Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989000894U JPH0648755Y2 (en) 1989-01-10 1989-01-10 Coin type non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989000894U JPH0648755Y2 (en) 1989-01-10 1989-01-10 Coin type non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0292663U JPH0292663U (en) 1990-07-23
JPH0648755Y2 true JPH0648755Y2 (en) 1994-12-12

Family

ID=31200307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989000894U Expired - Lifetime JPH0648755Y2 (en) 1989-01-10 1989-01-10 Coin type non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0648755Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517589A (en) * 2020-08-11 2023-04-26 エルジー エナジー ソリューション リミテッド Button type secondary battery and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738831B1 (en) * 2012-11-29 2017-10-25 The Swatch Group Research and Development Ltd. Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517589A (en) * 2020-08-11 2023-04-26 エルジー エナジー ソリューション リミテッド Button type secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0292663U (en) 1990-07-23

Similar Documents

Publication Publication Date Title
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
US7422826B2 (en) In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells
KR100367751B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3436600B2 (en) Rechargeable battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP5376800B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20130110004A (en) Nonaqueous electrolyte battery and battery pack
KR100834053B1 (en) A positive electrode, a lithium secondary battery comprising the same, and a hybrid capacitor comprising the same
JPH04249073A (en) Non-aqueous electrolyte secondary battery
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JPH07153495A (en) Secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
JPH0648755Y2 (en) Coin type non-aqueous electrolyte secondary battery
JP2000294229A (en) Nonaqueous electrolytic secondary battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JPH04332483A (en) Nonaqueous electrolyte secondary battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JP2004193139A (en) Non-aqueous electrolyte secondary battery
JPH0434855A (en) Spiral type non-aqueous electrolyte battery
JP3281223B2 (en) Non-aqueous electrolyte secondary battery
JP2001126760A (en) Nonaqueous electrolyte secondary battery
US7615310B2 (en) Organic electrolyte battery including at least one of phthalazone and a phthalazone derivative

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term