JPH0643645Y2 - Cryogenic refrigerator - Google Patents
Cryogenic refrigeratorInfo
- Publication number
- JPH0643645Y2 JPH0643645Y2 JP1986126648U JP12664886U JPH0643645Y2 JP H0643645 Y2 JPH0643645 Y2 JP H0643645Y2 JP 1986126648 U JP1986126648 U JP 1986126648U JP 12664886 U JP12664886 U JP 12664886U JP H0643645 Y2 JPH0643645 Y2 JP H0643645Y2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- compressor
- expander
- working gas
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
- Pipeline Systems (AREA)
Description
【考案の詳細な説明】 (イ)産業上の利用分野 この考案はクライオポンプやヘリウム液化装置などに利
用され、圧縮機と膨張機とを環状に配管接続し、圧縮機
で圧縮した作動ガスを膨張機で断熱膨張させることによ
り極低温の寒冷を得るようにした極低温冷凍装置に関す
る。[Detailed Description of the Invention] (a) Industrial field of application The present invention is used in a cryopump, a helium liquefaction device, etc., and connects a compressor and an expander in an annular pipe, and the working gas compressed by the compressor is used. The present invention relates to a cryogenic refrigerating apparatus that obtains cryogenic cold by performing adiabatic expansion with an expander.
(ロ)従来の技術 この種の極低温冷凍装置は、例えば「真空技術マニュア
ル」(昭和58年7月30日 産業図書株式会社発行 P22
0)に開示されているように、クライオポンプに利用さ
れている。このような極低温冷凍装置では運転開始直後
のように膨張機側が高温のとき、膨張機内の作動ガスの
比体積が大きく、流通抵抗が大きくなるため、圧縮機の
吐出側圧力が上昇する。そこで、圧縮機の吐出側配管と
吸入側配管とを圧力調整弁を有するバイパス配管で連結
し、圧縮機の吐出側の作動ガスを吸入側に逃がすことに
より、稼動初期における吐出側圧力の異常上昇を防止し
ていた。(B) Conventional technology This type of cryogenic refrigeration system is described in, for example, “Vacuum Technology Manual”
It is used in cryopumps as disclosed in (0). In such a cryogenic refrigeration system, when the expander side is at a high temperature immediately after the start of operation, the specific volume of the working gas in the expander is large and the flow resistance becomes large, so the discharge side pressure of the compressor rises. Therefore, the discharge side pipe of the compressor and the suction side pipe are connected by a bypass pipe having a pressure control valve, and the working gas on the discharge side of the compressor is released to the suction side, so that the discharge side pressure rises abnormally in the initial stage of operation. Was prevented.
(ハ)考案が解決しようとする問題点 しかしながら、上述した極低温冷凍装置では一次側圧力
と二次側圧力との差圧により弁開度が変わる圧力調整弁
を使用していたため、装置の稼動初期におけるバイパス
量が非常に多くなり、装置の冷凍能力が小さくなる問題
があった。また、何らかの異常で二次側圧力が上昇した
まま稼動されると、一次側圧力(吐出側圧力)の異常上
昇を防止できなくなる欠点があった。(C) Problems to be solved by the device However, in the above-mentioned cryogenic refrigeration system, since the pressure control valve whose valve opening changes depending on the differential pressure between the primary side pressure and the secondary side pressure is used There was a problem that the amount of bypass in the initial stage was so large that the refrigerating capacity of the device was reduced. Further, if the secondary side pressure is raised and the operation is continued due to some abnormality, the primary side pressure (discharge side pressure) cannot be prevented from abnormally increasing.
この考案は上述した従来技術の問題点を解消し、装置の
稼動初期における冷凍能力の改善を図るとともに、信頼
性の向上を図ることを目的とする。It is an object of the present invention to solve the above-mentioned problems of the prior art, to improve the refrigerating capacity in the initial operation of the device, and to improve the reliability.
(ニ)問題点を解決するための手段 この考案では圧縮機、冷却器、吸着器、膨張器、この膨
張器から圧縮機への方向を順方向とする逆止弁及びバッ
ファータンクを環状に配管接続してなる極低温冷凍装置
において、圧縮機の吐出口から吸着器に至る配管と逆止
弁からバッファータンクに至る配管とを大気差圧式の圧
力調節弁を備えたバイパス配管で連結した構成である。(D) Means for Solving the Problems In the present invention, a compressor, a cooler, an adsorber, an expander, a check valve having a forward direction from the expander to the compressor, and a buffer tank are annularly piped. In the connected cryogenic refrigeration system, the piping from the compressor outlet to the adsorber and the piping from the check valve to the buffer tank are connected by a bypass piping equipped with an atmospheric pressure differential pressure control valve. is there.
(ホ)作用 このように構成すると、圧縮機の吐出側圧力と大気圧と
の差圧によってバイパス配管のバイパス量が決まるた
め、吐出側圧力が常にほぼ一定に保たれ、稼動初期にお
ける冷凍能力の低下が少なくなる。また、圧力調整弁の
一次側圧力が二次側圧力と無関係に調整されるので、二
次側圧力(吸入側圧力)に異常がある場合でも一次側圧
力(吐出側圧力)が異常に高くなる心配がない。さらに
作動ガスがバイパス配管を介して圧縮機の吸入側に流れ
たとき、吸入側圧力の急激な上昇がバッファータンクに
よって吸収され、圧縮機に吸入される圧力の大幅な上昇
が回避される。また、バイパス配管を流れてきた作動ガ
スが膨張器に流れることは逆止弁によって阻止されるた
め、膨張器に作動ガスとともに不純物が流れることが回
避される。(E) Operation With this configuration, the bypass amount of the bypass pipe is determined by the pressure difference between the discharge side pressure of the compressor and the atmospheric pressure, so that the discharge side pressure is always kept almost constant and the refrigeration capacity of the initial operation is reduced. Less decrease. Further, since the primary pressure of the pressure control valve is adjusted independently of the secondary pressure, the primary pressure (discharge pressure) becomes abnormally high even if the secondary pressure (suction pressure) is abnormal. Don't worry. Further, when the working gas flows to the suction side of the compressor through the bypass pipe, the sudden increase in the suction side pressure is absorbed by the buffer tank, and a large increase in the pressure sucked into the compressor is avoided. Further, since the check valve prevents the working gas flowing through the bypass pipe from flowing to the expander, it is possible to prevent impurities from flowing into the expander together with the working gas.
(ヘ)実施例 以下、この考案を図面に示す実施例について詳細に説明
する。(F) Embodiments Hereinafter, embodiments of the present invention shown in the drawings will be described in detail.
第1図において、圧縮機1の第2吐出口2,第1冷却器3,
吸着器4,膨張機5,膨張器5から圧縮機1への方向を順方
向とする逆止弁6,バッファータンク7及び圧縮機1の第
1吸入口8が順次環状に配管接続されている。また、圧
縮機1の第1吐出口9と第2吸入口10との間に第2冷却
器11が配管接続されている。また、圧縮機1の吐出側配
管12と、逆止弁6とバッファータンク7の間の吸入側配
管13とが圧力調整弁14を有するバイパス配管15にて連結
されている。In FIG. 1, the second discharge port 2 of the compressor 1, the first cooler 3,
The adsorber 4, the expander 5, the check valve 6 having the direction from the expander 5 to the compressor 1 as the forward direction, the buffer tank 7, and the first suction port 8 of the compressor 1 are sequentially connected in an annular pipe. . Further, a second cooler 11 is connected between the first discharge port 9 and the second suction port 10 of the compressor 1 by piping. Further, the discharge side pipe 12 of the compressor 1 and the suction side pipe 13 between the check valve 6 and the buffer tank 7 are connected by a bypass pipe 15 having a pressure adjusting valve 14.
圧力調整弁14は第2図に示すように大気差圧式のものが
使用されている。圧力調整弁14は大気に開放したダイア
フラム室16にコイルバネ17が収容され、コイルバネ17の
スプリング圧及び大気圧の和と、一次側ポート18を介し
て流入してくる作動ガスの圧力との差圧に応じてダイア
フラム19が変形し、ダイアフラム19に連結した弁体20に
よって二次側ポート21に流出する作動ガスの流量を調整
するものであり、一次側ポート18が吐出側配管12に接続
され、二次側ポート21が吸入側配管13に接続される。The pressure regulating valve 14 is of the atmospheric pressure difference type as shown in FIG. The pressure adjusting valve 14 has a coil spring 17 housed in a diaphragm chamber 16 open to the atmosphere, and a differential pressure between the sum of the spring pressure of the coil spring 17 and the atmospheric pressure and the pressure of the working gas flowing in through the primary side port 18. The diaphragm 19 is deformed according to, and the flow rate of the working gas flowing out to the secondary side port 21 is adjusted by the valve body 20 connected to the diaphragm 19, and the primary side port 18 is connected to the discharge side pipe 12. The secondary port 21 is connected to the suction pipe 13.
圧縮機1が運転を開始すると、作動ガス(ヘリウムガ
ス)が高温高圧に圧縮される。高温高圧の作動ガスはオ
イルと一緒に第1吐出口9から吐出され、第2冷却器11
に送られる。そして、ここで冷却された後、第2吸入口
10から圧縮機1に戻り、オイルが分離される。オイルが
分離された作動ガスは第2吐出口2から吐出され、第1
冷却器3及び吸着器4を順次流れる際に、常温まで冷却
されるとともに、作動ガスに含まれる不純物が除去され
る。その後、作動ガスは膨張機5に供給され、ここで断
熱膨張が行なわれ、寒冷を発生させる。そして、膨張機
5から排気された作動ガスは逆止弁6及びバッファータ
ンク7を順次通って第1吸入口8から圧縮機1に吸入さ
れる。以上の動作を繰返すことにより、膨張機5では寒
冷が蓄積され、極低温の寒冷が得られる。When the compressor 1 starts operating, the working gas (helium gas) is compressed into high temperature and high pressure. The high-temperature and high-pressure working gas is discharged from the first discharge port 9 together with the oil, and the second cooler 11
Sent to. And after being cooled here, the second inlet
Returning from 10 to the compressor 1, the oil is separated. The working gas from which the oil has been separated is discharged from the second discharge port 2,
When sequentially flowing through the cooler 3 and the adsorber 4, it is cooled to room temperature and impurities contained in the working gas are removed. After that, the working gas is supplied to the expander 5, where adiabatic expansion is performed and cold is generated. Then, the working gas exhausted from the expander 5 sequentially passes through the check valve 6 and the buffer tank 7 and is sucked into the compressor 1 from the first suction port 8. By repeating the above operation, cold is accumulated in the expander 5, and extremely low temperature cold is obtained.
圧縮機1の運転開始当初は膨張機5側の温度が高く、膨
張機5内の作動ガスの比体積と流通抵抗とが大きくなっ
ている。このため、圧縮機1の吐出側圧力が高くなる。
このとき、圧力調整弁14は弁体20が矢印方向に移動して
弁開度が大きくなり、作動ガスのバイパス量を多くす
る。このとき、バイパスされた作動ガスによる圧縮機1
の2次側圧力の急激な上昇はバッファータンクに吸収さ
れる。また、吸着器4を通過しないでバイパスされた作
動ガスが膨張器5に流れることは逆止弁6によって阻止
され、作動ガス中の不純物が膨張器5に流れることはな
い。その後、膨張機5側の温度の低下に伴い、吐出側圧
力が低くなると、圧力調整弁14は弁体20が図示矢印と反
対方向に移動して弁開度を小さくし、作動ガスのバイパ
ス量を少くする。At the beginning of operation of the compressor 1, the temperature on the expander 5 side is high, and the specific volume and flow resistance of the working gas in the expander 5 are large. Therefore, the discharge side pressure of the compressor 1 becomes high.
At this time, the valve body 20 of the pressure regulating valve 14 moves in the direction of the arrow to increase the valve opening degree, thereby increasing the bypass amount of the working gas. At this time, the compressor 1 using the bypassed working gas
The sudden increase of the secondary side pressure is absorbed by the buffer tank. Further, the check valve 6 prevents the working gas bypassed without passing through the adsorber 4 from flowing into the expander 5, and the impurities in the working gas do not flow into the expander 5. After that, when the discharge side pressure becomes lower as the temperature on the expander 5 side decreases, the valve body 20 of the pressure regulating valve 14 moves in the direction opposite to the arrow shown in the drawing to reduce the valve opening degree, and the working gas bypass amount. To reduce.
本実施例によれば、圧縮機1の吐出側配管12と吸入側配
管13とを連結するバイパス配管15に大気差圧式の圧力調
整弁14を備えたので、圧縮機1の吐出側圧力と大気圧
(本実施例では大気圧及びスプリング圧の和)とに差圧
によってバイパス配管15のバイパス量が決まり、吐出側
圧力を常にほぼ一定に保つことができる。このため、装
置の稼動初期における冷凍能力の低下を極力防止でき、
運転開始から膨張機5側で定常温度が得られるまでのク
ールダウン時間を短くすることができる。また、圧力調
整弁14の一次側圧力が二次側圧力と無関係に調整される
ので、何らかの異常で二次側圧力(吸入側圧力)が上昇
したまま稼動された場合でも一次側圧力(吐出側圧力)
の異常上昇を防止できる。さらにまた、圧縮された作動
ガスを外部の冷却器11に供給し、ここで冷却してから圧
縮機1に戻し、再度吐出させるようにしたので、二次側
圧力が低いときでも吐出ガス温度が高温にならないよう
にできる。According to the present embodiment, since the atmospheric pressure differential type pressure adjusting valve 14 is provided in the bypass pipe 15 that connects the discharge side pipe 12 and the suction side pipe 13 of the compressor 1, the discharge side pressure of the compressor 1 and the large The bypass amount of the bypass pipe 15 is determined by the pressure difference between the atmospheric pressure (in this embodiment, the sum of the atmospheric pressure and the spring pressure), and the discharge side pressure can always be kept substantially constant. Therefore, it is possible to prevent the deterioration of the refrigerating capacity in the initial operation of the device as much as possible,
It is possible to shorten the cooldown time from the start of operation until the steady temperature is obtained on the expander 5 side. Further, since the primary side pressure of the pressure adjusting valve 14 is adjusted independently of the secondary side pressure, even if the secondary side pressure (suction side pressure) is operated with an increase due to some abnormality, the primary side pressure (discharge side pressure pressure)
It is possible to prevent an abnormal rise in temperature. Furthermore, the compressed working gas is supplied to the external cooler 11, cooled here, and then returned to the compressor 1 to be discharged again. Therefore, even when the secondary side pressure is low, the discharge gas temperature is You can prevent it from getting hot.
さらに、圧力調整弁14が開いて作動ガスがバイパス配管
15を介して流れたとき、圧力上昇がバッファータンク7
によって吸収され、圧縮機1の2次側圧力が大幅に上昇
することが回避され、また、圧力調整弁14が開いたとき
には圧縮機1からの作動ガスが吸着器4を流れないでバ
イパス配管15を流れるため、吸着器14に不純物が吸着す
ることがなく、吸着器14を一層長く使用することができ
る。また、吸着器4を通過しないでバイパスされた作動
ガスが膨張器5に流れることは逆止弁6によって阻止さ
れ、作動ガス中の不純物が膨張器5に流れることが回避
され、不純物による膨張機5の動作不良を防止して運転
を安定することができる。Further, the pressure adjusting valve 14 is opened and the working gas is bypassed.
When flowing through 15, the buffer tank 7
It is avoided that the secondary side pressure of the compressor 1 rises significantly and is absorbed by the bypass pipe 15 because the working gas from the compressor 1 does not flow through the adsorber 4 when the pressure regulating valve 14 is opened. As a result, the impurities are not adsorbed on the adsorber 14, and the adsorber 14 can be used for a longer time. Further, the check valve 6 prevents the working gas bypassed without passing through the adsorber 4 from flowing into the expander 5, and prevents the impurities in the working gas from flowing into the expander 5. It is possible to prevent the malfunction of No. 5 and stabilize the operation.
(ト)考案の効果 この考案は以上のように構成されているので、装置の稼
動初期における冷凍能力の低下を極力少なくしてクール
ダウン時間を短くすることができ、圧縮機の吐出側圧力
を吸入側圧力と無関係に安定させ、吐出側圧力の異常上
昇を防止できるのはもちろん、圧力調整弁が開いたとき
に圧縮機の吸入側圧力が大幅に上昇することをバッファ
ータンクにより回避することができ、さらに、吸着器に
不純物が吸着することがなく、吸着器を一層長く使用す
ることができ、吸着器の交換などの管理を簡略化するこ
とができる。また、吸着器を通過しないでバイパスされ
た作動ガスが膨張器に流れることは逆止弁6によって阻
止され、作動ガス中の不純物が膨張器に流れることが回
避され、不純物による膨張器の動作不良を防止して運転
を安定することができ、冷凍能力の改善と信頼性の向上
を図ることができる。(G) Effect of the device Since the device of the present invention is configured as described above, it is possible to shorten the cool down time by minimizing the decrease in the refrigerating capacity in the initial operation of the device, and to reduce the pressure on the discharge side of the compressor. Not only can it stabilize regardless of the suction side pressure and prevent an abnormal rise in the discharge side pressure, but it is also possible to avoid a significant rise in the suction side pressure of the compressor by the buffer tank when the pressure control valve opens. Furthermore, impurities are not adsorbed on the adsorber, the adsorber can be used for a longer period of time, and management such as replacement of the adsorber can be simplified. Further, the check valve 6 prevents the working gas bypassed without passing through the adsorber from flowing into the expander, and the impurities in the working gas are prevented from flowing into the expander, so that the expander malfunctions due to the impurities. Can be prevented and the operation can be stabilized, and the refrigerating capacity and the reliability can be improved.
第1図はこの考案の一実施例を示す極低温冷凍装置の配
管系統図、第2図はこの考案で使用する大気差圧式の圧
力調整弁の1例を示す概略断面図である。 1……圧縮機、2……冷却器、4……吸着器、5……膨
張器、6……逆止弁、7……バッファータンク、12……
吐出側配管、13……吸入側配管、14……圧力調整弁、15
……バイパス配管。FIG. 1 is a piping system diagram of a cryogenic refrigeration system showing an embodiment of the present invention, and FIG. 2 is a schematic sectional view showing an example of an atmospheric pressure difference type pressure regulating valve used in the present invention. 1 ... Compressor, 2 ... Cooler, 4 ... Adsorber, 5 ... Expander, 6 ... Check valve, 7 ... Buffer tank, 12 ...
Discharge side piping, 13 …… Suction side piping, 14 …… Pressure adjusting valve, 15
...... Bypass piping.
Claims (1)
張器から圧縮機への方向を順方向とする逆止弁及びバッ
ファータンクを環状に配管接続してなる極低温冷凍装置
において、圧縮機の吐出口から吸着器に至る配管と逆止
弁からバッファータンクに至る配管とを大気差圧式の圧
力調節弁を備えたバイパス配管で連結したことをことを
特徴とする極低温冷凍装置。1. A cryogenic refrigeration system in which a compressor, a cooler, an adsorber, an expander, a check valve having a forward direction from the expander to the compressor, and a buffer tank are connected in an annular pipe. A cryogenic refrigeration system characterized in that the pipe from the discharge port of the compressor to the adsorber and the pipe from the check valve to the buffer tank are connected by a bypass pipe equipped with an atmospheric pressure difference type pressure control valve. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986126648U JPH0643645Y2 (en) | 1986-08-20 | 1986-08-20 | Cryogenic refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986126648U JPH0643645Y2 (en) | 1986-08-20 | 1986-08-20 | Cryogenic refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6332267U JPS6332267U (en) | 1988-03-02 |
JPH0643645Y2 true JPH0643645Y2 (en) | 1994-11-14 |
Family
ID=31020653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986126648U Expired - Lifetime JPH0643645Y2 (en) | 1986-08-20 | 1986-08-20 | Cryogenic refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0643645Y2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5197047A (en) * | 1975-02-21 | 1976-08-26 | ||
JPS5932191U (en) * | 1982-08-25 | 1984-02-28 | サンデン株式会社 | Automotive cooling system |
JPS59208353A (en) * | 1983-05-10 | 1984-11-26 | 三洋電機株式会社 | Refrigerator |
-
1986
- 1986-08-20 JP JP1986126648U patent/JPH0643645Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6332267U (en) | 1988-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9546647B2 (en) | Gas balanced brayton cycle cold water vapor cryopump | |
JPH04227438A (en) | Unloading system for refrigeration system | |
US12007152B2 (en) | Starting method for cryocooler and cryocooler | |
JPH1163686A (en) | Refrigeration cycle | |
JPH0643645Y2 (en) | Cryogenic refrigerator | |
JP3856538B2 (en) | Refrigeration equipment | |
JPH0420749A (en) | Air conditioner | |
JPH079000Y2 (en) | Cryogenic refrigerator | |
JPH02622Y2 (en) | ||
JPH0648287Y2 (en) | Gas compression unit | |
JP2910499B2 (en) | Refrigeration equipment | |
JP3244007B2 (en) | Cryogenic refrigeration equipment | |
JPH04236069A (en) | Refrigerating device | |
JP2000266416A (en) | Very low temperature refrigerating device | |
JPH0784955B2 (en) | Screw refrigerator | |
JPH04136663A (en) | screw refrigeration equipment | |
JPH03217763A (en) | Cryogenic refrigerator | |
JPS6342288Y2 (en) | ||
US6550256B1 (en) | Alternative backing up pump for turbomolecular pumps | |
JPS6144124Y2 (en) | ||
JPS62160273U (en) | ||
JPH02254271A (en) | Air bleeder for turbo refrigerator | |
JPH09236339A (en) | Cryogenic refrigeration equipment | |
JPS6029555A (en) | Refrigeration cycle of 2 cylinder rotary compressor | |
JPH01193090A (en) | Refrigerator |