[go: up one dir, main page]

JP2910499B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP2910499B2
JP2910499B2 JP11560493A JP11560493A JP2910499B2 JP 2910499 B2 JP2910499 B2 JP 2910499B2 JP 11560493 A JP11560493 A JP 11560493A JP 11560493 A JP11560493 A JP 11560493A JP 2910499 B2 JP2910499 B2 JP 2910499B2
Authority
JP
Japan
Prior art keywords
low
pressure
compression means
pressure pipe
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11560493A
Other languages
Japanese (ja)
Other versions
JPH06323666A (en
Inventor
典英 佐保
尚志 磯上
武夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11560493A priority Critical patent/JP2910499B2/en
Publication of JPH06323666A publication Critical patent/JPH06323666A/en
Application granted granted Critical
Publication of JP2910499B2 publication Critical patent/JP2910499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置に関し、特に、
冷却温度を任意の温度に低下し、かつ、操作性が簡便な
高効率な極低温冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system,
The present invention relates to a high-efficiency cryogenic refrigeration apparatus that reduces a cooling temperature to an arbitrary temperature and that is easy to operate.

【0002】[0002]

【従来の技術】超伝導マグネットを使用した核磁気共鳴
診断装置、熱物性測定装置、ジョセフソン素子や各種セ
ンサー等の各種電子機器や、高真空、高排気速度のクラ
イオポンプ、超伝導マグネットを使用した電子加速器や
放射光発生装置の冷媒には、極低温の液体ヘリウムを使
用する。
2. Description of the Related Art Various electronic devices such as a nuclear magnetic resonance diagnostic device, a thermophysical property measuring device, a Josephson element and various sensors using a superconducting magnet, a cryopump having a high vacuum and a high pumping speed, and a superconducting magnet are used. Cryogenic liquid helium is used as the refrigerant for the electron accelerators and synchrotron radiation generators.

【0003】これらの被冷却装置の冷媒温度を、特に1
atmの液体ヘリウム蒸発温度の4.2K以下にすれ
ば、超伝導マグネットの臨界電流値が向上するために、
マグネットの安定化や高磁場化、各種センサーのNS比
の向上に非常に有効である。
[0003] The refrigerant temperature of these devices to be cooled, especially 1
If the liquid helium evaporation temperature of atm is set to 4.2K or less, the critical current value of the superconducting magnet is improved.
It is very effective for stabilizing the magnet, increasing the magnetic field, and improving the NS ratio of various sensors.

【0004】しかし、冷媒の液体ヘリウムは、わずかな
熱で蒸発し、かつ、高価であるため、一般にこれらの装
置には、蒸発したヘリウムガスを凝縮する冷凍装置を装
着する。また、熱物性測定装置では、4.2K以下の広
範囲な冷却温度で被冷却体を冷却する必要があり、冷却
温度を容易変えられる装置が有益である。
However, since liquid helium as a refrigerant evaporates with a small amount of heat and is expensive, these devices are generally equipped with a refrigerating device that condenses the evaporated helium gas. Further, in the thermophysical property measuring device, the object to be cooled needs to be cooled at a wide range of cooling temperature of 4.2 K or less, and a device capable of easily changing the cooling temperature is useful.

【0005】従来の冷凍装置の構造では、特に4.5K
未満の冷却温度を発生できる装置として、例えば1台ロ
ータリィ型の真空ポンプと2台の圧縮機を3段に配置す
る圧縮機ユニットで負圧ヘリウムガスを10atm 以上に
加圧したヘリウムガスを、予冷用の寒冷発生機にギフォ
ード・マクマホン(G・M)式往復動形膨張機を使用し
た寒冷発生回路と、ジュール・トムソン弁(以下J・T
弁)を極低温部に有するジュール・トムソン回路(J・
T回路)の高圧流路に同じ配管で供給し、前記予冷用の
寒冷発生機の排気ヘリウムガスを前記2段に配置した圧
縮機ユニットの中圧ラインに戻し、J・T回路の排気ヘ
リウムガスを前記2段に配置した圧縮機ユニットの低圧
ラインに戻する方法がAdvances in Cryogenic Engineer
ing Volume 35,Part B(1990年)の第1277頁か
ら1288頁に記載されている。本装置では(J・T回
路)のJ・T弁を熱交換器を介して直列に2段配置し
て、2段階で膨張し4.2K以下の極低温度領域での冷
凍量発生効率の向上を図っている。
[0005] In the structure of the conventional refrigeration system, especially 4.5K
As a device capable of generating a cooling temperature of less than, for example, a helium gas in which a negative pressure helium gas is pressurized to 10 atm or more by a compressor unit having one rotary vacuum pump and two compressors arranged in three stages, is pre-cooled. Generation circuit using a Gifford McMahon (GM) reciprocating expander as a cold generator for air conditioner and a Joule-Thomson valve (J / T)
Joule-Thomson circuit (J.
T), the exhaust gas of the pre-cooling cold generator is returned to the intermediate pressure line of the compressor unit disposed in the two stages, and the exhaust helium gas of the JT circuit Advances in Cryogenic Engineer is a method of returning to the low pressure line of the compressor unit arranged in the two stages.
ing Volume 35, Part B (1990), pp. 1277-1288. In this device, the J / T valve of the (J / T circuit) is arranged in two stages in series via a heat exchanger, and expands in two stages to reduce the refrigeration generation efficiency in an extremely low temperature region of 4.2K or less. We are improving.

【0006】この場合、J・T回路の2段目のJ・T弁
からの排気ヘリウムガスを真空ポンプの吸気口入口で約
0.2atm以下の負圧状態で回収する。したがって、
J・T回路のJ・T弁出口圧力は回路中の低圧流路の圧
力損失分高くなり真空ポンプの吸気口入口圧力よりも高
くなる。
In this case, the exhaust helium gas from the second stage J · T valve of the J · T circuit is recovered at the inlet of the vacuum pump under a negative pressure of about 0.2 atm or less. Therefore,
The pressure at the outlet of the J / T valve of the J / T circuit is increased by the pressure loss of the low pressure flow path in the circuit and becomes higher than the pressure at the inlet of the vacuum pump.

【0007】また、圧縮機ユニットで加圧したヘリウム
ガスを、寒冷発生回路と、J・T回路の高圧流路に同じ
配管で供給するため、熱負荷の変動等によって生じる寒
冷発生回路の流量、圧力の変動がJ・T回路の高圧、低
圧流路内に影響し、安定な冷却温度及び安定な冷凍量が
得られない。また、真空ポンプ1台と2台の圧縮機を2
段に配置する圧縮機ユニットを使用し、加圧したヘリウ
ムガスを、寒冷発生機回路とJ・T回路の高圧流路に同
じ配管で同時に供給し、かつ、寒冷発生機回路とJ・T
回路の排気ガスをそれぞれ前記圧縮機ユニットの中圧、
低圧ラインに同時に戻すため真空ポンプ1台と2台の圧
縮機を別々に細かく制御する必要があり、冷凍装置の小
型軽量化や操作の簡便さに欠ける。また、真空ポンプと
圧縮機を連結する管内が負圧状態になりうる配管が必要
となるので、配管の接続箇所から大気中の空気を吸い込
みヘリウムガスを汚染する可能性が大きくなり、冷凍装
置が所定の冷凍性能を低減させる問題がある。
Further, since the helium gas pressurized by the compressor unit is supplied to the cold generation circuit and the high pressure flow path of the J / T circuit through the same pipe, the flow rate of the cold generation circuit caused by fluctuations in heat load and the like is reduced. Fluctuations in pressure affect the high and low pressure flow paths of the J · T circuit, and a stable cooling temperature and stable refrigeration cannot be obtained. Also, one vacuum pump and two compressors
Using a compressor unit arranged in a stage, pressurized helium gas is simultaneously supplied to the high pressure flow path of the cold generator circuit and the JT circuit through the same pipe, and the cold generator circuit and the JT
The exhaust gas of the circuit is respectively the medium pressure of the compressor unit,
In order to return to the low pressure line at the same time, it is necessary to separately and precisely control one and two compressors of the vacuum pump. In addition, since piping that connects the vacuum pump and the compressor must be in a negative pressure state, the possibility of inhaling atmospheric air from the connection point of the piping and contaminating the helium gas increases, and the refrigeration system must be installed. There is a problem of reducing the predetermined refrigeration performance.

【0008】また、真空ポンプ及び圧縮機が油潤滑式
で、かつ、それぞれの潤滑油の油質が異なる場合、真空
ポンプ出口にはガス中の油分を完全に取り去る油分離器
及び油戻し回路が必要となり、冷凍装置が大型化すると
言う問題があった。
When the vacuum pump and the compressor are of an oil lubrication type and the lubricating oils have different oil qualities, an oil separator and an oil return circuit for completely removing oil in the gas are provided at the vacuum pump outlet. However, there is a problem that the size of the refrigerating device is increased.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
たごとく従来の技術は、4.5K未満の任意の温度に、
効率よく安定に、かつ、簡便に制御しながら冷却する方
法に関しては述べられていない。
However, as described above, the prior art has been developed to an arbitrary temperature of less than 4.5K.
There is no description on a method for cooling efficiently, stably, and easily while controlling.

【0010】本発明の目的は、蒸発したヘリウムガスを
4.5K未満で凝縮する、または、被冷却体を4.5K
未満特に大気圧下の飽和液体ヘリウム温度4.2K以下
に、効率よく安定に冷却する小型軽量で操作が簡便な、
かつ、大ききな冷凍量を安定に発生する冷凍装置を提供
することにある。
[0010] It is an object of the present invention to condense the evaporated helium gas at less than 4.5K or to reduce the temperature of the cooled object to 4.5K.
Small, lightweight and easy to operate, with efficient and stable cooling to a saturated liquid helium temperature of 4.2K or less, especially under atmospheric pressure.
Another object of the present invention is to provide a refrigeration apparatus that stably generates a large amount of refrigeration.

【0011】[0011]

【課題を解決するための手段】上記目的は、予冷用の寒
冷発生手段と隔離された一連の高圧配管及び低圧配管を
内蔵した熱交換器、前記高圧配管の極低温部に複数段の
膨張弁を設け前記最終段の膨張弁の出口と前記低圧配管
の低温部が連通し、前記膨張弁の出口と前記低圧配管の
低温部との間に被冷却体との冷却部とを設け、前記高圧
配管と前記低圧配管が常温部で圧縮手段を介して連通し
た冷凍装置の該圧縮手段が圧縮手段内の圧縮室内に多段
の、かつ、それぞれが隔離され連続の小圧縮室を有し
た、圧縮手段とすることにより達成される。また、上記
目的は、高圧配管及び低圧配管を内蔵した熱交換器、前
記高圧配管の極低温部に複数段の膨張弁を設け該最終段
の膨張弁の出口を負圧にし、該出口と前記低圧配管の低
温部が連通し、前記膨張弁の出口と前記低圧配管の低温
部の間に被冷却体との冷却部を設け、前記高圧配管と前
記低圧配管が常温部で圧縮手段を介して連通した冷凍装
置の該圧縮手段が圧縮手段内の圧縮室内に多段の、か
つ、それぞれが隔離され連続の小圧縮室を有した、圧縮
手段とすることにより達成される。また、上記目的は、
予冷用の寒冷発生手段と隔離された一連の高圧配管及び
低圧配管を内蔵した熱交換器、前記高圧配管の極低温部
に複数段の膨張弁を設け前記最終段の膨張弁の出口を負
圧にし、該出口と前記低圧配管の低温部が連通し、前記
膨張弁の出口と前記低圧配管の低温部の間に被冷却体と
の冷却部を設け、前記高圧配管と前記低圧配管が常温部
で圧縮手段を介して連通した冷凍装置の該圧縮手段が圧
縮手段内の圧縮室内に多段の、かつ、それぞれが隔離さ
れ連続の小圧縮室を有した、圧縮手段とすることにより
達成される。また、上記目的は、予冷用の寒冷発生手段
と隔離された一連の高圧配管及び低圧配管を内蔵した熱
交換器、前記高圧配管の極低温部に複数段の膨張弁を設
け前記最終段の膨張弁の出口を負圧にし、該出口と前記
低圧配管の低温部が連通し、前記膨張弁の出口と前記低
圧配管の低温部の間に被冷却体との冷却部を設け、前記
高圧配管と前記低圧配管が常温部で圧縮手段を介して連
通した冷凍装置の該圧縮手段が圧縮手段内の圧縮室内に
多段の、かつ、それぞれが隔離され連続の小圧 縮室を有
した圧縮手段の吸入口の圧力を正圧から負圧の範囲で調
整することにより達成される。
The object of the present invention is to provide a cold pre-cooling device.
A series of high-pressure pipes and low-pressure pipes isolated from the cold generation means
Built-in heat exchanger, multiple stages in the cryogenic part of the high pressure pipe
An outlet of the final stage expansion valve and the low pressure pipe provided with an expansion valve;
Low-temperature section communicates with the outlet of the expansion valve and the low-pressure pipe.
Providing a cooling part with the object to be cooled between the low-temperature part and the high-pressure part;
The pipe and the low-pressure pipe communicate with each other via compression means at room temperature.
The compression means of the refrigerating device has multiple stages in a compression chamber in the compression means.
And each of them has a continuous isolated small compression chamber
It is also achieved by using a compression means. Also,
The purpose is a heat exchanger with a built-in high pressure pipe and low pressure pipe.
A multistage expansion valve is provided at a cryogenic portion of the high pressure
The outlet of the expansion valve is set to a negative pressure, and the outlet and the low-pressure pipe
A warm section communicates with the outlet of the expansion valve and the low-pressure pipe at a low temperature.
A cooling part for cooling with the object to be cooled is provided between the
The refrigeration system in which the low-pressure pipe communicates via compression means at room temperature
The compression means in the compression chamber in the compression means has a multi-stage structure.
Compression, each having an isolated and continuous small compression chamber
It is achieved by means. In addition, the purpose is
A series of high-pressure pipes isolated from the cold-generation means for pre-cooling;
Heat exchanger with built-in low pressure pipe, cryogenic part of high pressure pipe
And the exit of the final stage expansion valve is negative.
Pressure, the outlet communicates with the low-temperature portion of the low-pressure pipe,
A body to be cooled between the outlet of the expansion valve and the low-temperature portion of the low-pressure pipe;
Cooling section, and the high-pressure pipe and the low-pressure pipe are
And the compression means of the refrigeration system communicated through the compression means
The compression chambers in the compression means
By having compression means with a continuous small compression chamber
Achieved. In addition, the above-mentioned object is a means for generating cold for pre-cooling.
Heat containing a series of high and low pressure piping isolated from the
Exchanger, multi-stage expansion valve installed in the cryogenic part of the high pressure pipe
The outlet of the last-stage expansion valve is set to a negative pressure, and the outlet and the
The low temperature part of the low pressure pipe communicates with the outlet of the expansion valve and the low pressure part.
Providing a cooling part with the object to be cooled between the low temperature parts of the pressure piping,
The high-pressure pipe and the low-pressure pipe are connected at normal temperature through compression means.
The compression means of the refrigeration system passed through the compression chamber in the compression means
Multistage, and each is isolated have a small compression chamber of the continuous
The pressure at the suction port of the compressed means in the range from positive pressure to negative pressure.
To achieve this.

【0012】[0012]

【作用】予冷用の寒冷発生機に例えばギフォード・マク
マホン(G・M)式往復動形膨張機を使用し、予冷用の
寒冷発生回路と隔離したJ・T回路の複数段のJ・T弁
出口の圧力を正圧から負圧の適切な値に安定に制御す
る。それによって、J・T弁出口で4.5K未満以下の
任意のヘリウム温度を安定に発生できる。また、複数段
のJ・T弁を有するJ・T回路のヘリウムガス流量を増
加することにより、容易に4.5K未満の冷凍量を安定
に増加することが出来る。また、吸気口入口で正圧から
負圧の範囲で回収し、正圧に圧縮したヘリウムガスをJ
・T回路の高圧流路に供給する操作を同一圧縮機で行う
ことにより、小型軽量で簡便な冷凍装置となる。
[Function] A multistage J / T valve of a J / T circuit separated from a cold generation circuit for precooling by using, for example, a Gifford McMahon (GM) type reciprocating expander as a cold generator for precooling. The pressure at the outlet is controlled stably from a positive pressure to an appropriate value of a negative pressure. Thereby, an arbitrary helium temperature of less than 4.5K or less can be stably generated at the outlet of the J · T valve. Also, by increasing the helium gas flow rate of the J / T circuit having a plurality of stages of J / T valves, the amount of refrigeration less than 4.5K can be easily increased stably. Also, helium gas collected at a range from positive pressure to negative pressure at the inlet of the intake port and compressed to
・ By performing the operation of supplying to the high-pressure flow path of the T circuit with the same compressor, a compact, lightweight, and simple refrigeration apparatus can be obtained.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1により説明す
る。予冷用の寒冷発生回路に配置した寒冷発生機1は、
例えば、ギフォード・マクマホン膨張機で構成される。
ヘリウム圧縮機ユニット2の高圧ガスは寒冷発生機1中
に流入して内部で断熱膨張し、第1ステージ3、第2ス
テージ4でそれぞれ温度約40K、15Kの寒冷を発生
する。膨張後のガスは、再び、圧縮機ユニット2に戻
る。
An embodiment of the present invention will be described below with reference to FIG. The cold generator 1 arranged in the cold generating circuit for pre-cooling is:
For example, it comprises a Gifford McMahon expander.
The high-pressure gas of the helium compressor unit 2 flows into the cold generator 1 and adiabatically expands therein, thereby generating cold at a temperature of about 40K and 15K in the first stage 3 and the second stage 4, respectively. The expanded gas returns to the compressor unit 2 again.

【0014】一方、予冷用の寒冷発生回路と隔離したJ
・T回路の圧縮機ユニット5で約16atmに加圧された
高圧のヘリウムガスは、高圧配管16aを通り第1熱交
換器6、第2熱交換器7、第1吸着器8、第3熱交換器
9、第4熱交換器10、第2吸着器11、第5熱交換器
12aを通り温度約7K程度以下に冷却され、第1J・
T弁13aで断熱膨張して約8atmになる。次に第6熱交換
器12bを通り温度約5K以下に冷却され、第2J・T
弁13bで断熱膨張してその一部のガスが液化し、液体ヘ
リウム槽14に溜まり超電導マグネット15等の被冷却
体を冷却する。
On the other hand, J isolated from a cold generation circuit for pre-cooling
High-pressure helium gas pressurized to about 16 atm by the compressor unit 5 of the T circuit passes through the high-pressure pipe 16a, the first heat exchanger 6, the second heat exchanger 7, the first adsorber 8, and the third heat exchanger. After passing through the heat exchanger 9, the fourth heat exchanger 10, the second adsorber 11, and the fifth heat exchanger 12a, the temperature is reduced to about 7K or less, and the first J.
The adiabatic expansion is performed by the T valve 13a to about 8 atm. Next, it passes through the sixth heat exchanger 12b and is cooled to a temperature of about 5K or less.
A part of the gas is liquefied by adiabatic expansion by the valve 13b and accumulated in the liquid helium tank 14 to cool the object to be cooled such as the superconducting magnet 15.

【0015】未液化のヘリウムガスや液体ヘリウム14
aの蒸発ガスは、低圧配管16b内に流入し、第6熱交
換器12b,第5熱交換器12a、第3吸着器17、第3
熱交換器9、第4吸着器18、第1熱交換器6及び第5
吸着器18aを通り、ほぼ常温となって低圧配管16b
より圧縮機ユニット5に戻る。クライオスッタト19内
は真空断熱され、極低温部は液体窒素槽21、及び底板
22、上板23で熱シールドされている。液体窒素20
の蒸発ガスは、排気管24で大気に放出され、液体窒素
は液体窒素タンク25で定期的に補充される。各吸着器
ではヘリウムガス中の不純物を除去する。
Unliquefied helium gas or liquid helium 14
e flows into the low-pressure pipe 16b, and the sixth heat exchanger 12b, the fifth heat exchanger 12a, the third adsorber 17, and the third heat exchanger 12b.
Heat exchanger 9, fourth adsorber 18, first heat exchanger 6, and fifth heat exchanger
After passing through the adsorber 18a, it becomes almost normal temperature and the low pressure pipe 16b
Return to the compressor unit 5. The inside of the cryostat 19 is vacuum-insulated, and the cryogenic portion is heat shielded by a liquid nitrogen tank 21, a bottom plate 22, and an upper plate 23. Liquid nitrogen 20
Is released to the atmosphere through an exhaust pipe 24, and liquid nitrogen is periodically replenished in a liquid nitrogen tank 25. Each adsorber removes impurities in the helium gas.

【0016】図2は、前述の圧縮機ユニット5の構成を
示し、図3にスクロール型圧縮機26の圧縮室の断面図
を示す。圧縮機ユニット5は、スクロール型圧縮機26
と油、ガス混合高圧流体冷却器27、油分離器28、油
吸着器29、油冷却器30で構成される。低圧配管16
bの低圧ヘリウムガスは、スクロール型圧縮機26内の
スクロール型圧縮室31に低圧入口32から流入し、固
定スクロール26Aと旋回スクロール26Bとの間に移
動しながら形成される小圧縮室31a、31b,31
c,31d,31eで徐々に加圧される。ヘリウムガス
は圧縮熱により高温になるため、スクロール型圧縮機2
6内の底部に溜めている高温の潤滑油の一部を、配管3
3より油冷却器30に導き、ほぼ常温にして配管34よ
り中圧入口35を経てスクロール型圧縮室31の中圧圧
縮室31b内に供給する。これにより、ヘリウムガスの
温度は約350Kに冷却され、さらに圧縮されてスクロ
ール型圧縮室31の高圧出口36からスクロール型圧縮
機26内吐出される。このようにスクロール型圧縮室3
1内では、スクロールの中心部に向かって移動しなが
ら、かつ、隔離されて形成される小圧縮室31a、31
b,31c,31d,31eで、ヘリウムガスが徐々に
加圧されるため、各小圧縮室間のガスリーク量がほとん
ど無い。したがって、1.0atm以下の圧力で小圧縮
室31aに流入するヘリウムガスを加圧し高い圧力まで
圧縮して吐出することができる。いっぽう、中圧圧縮室
31b内に供給され高圧出口36から出た潤滑油の大部
分はスクロール型圧縮機26内の底部に戻り、その他の
潤滑油は高圧のヘリウムガスに同伴して、油、ガス混合
高圧流体冷却器27に流入する。ここで、混合流体は冷
却されると共に約99.99%の油が分離されその大半
は油戻し配管37により、配管34を介してスクロール
型圧縮室31の中圧室内に再供給される。残り0.01
%の油を含む高圧のヘリウムガスは、例えば活性炭を充
填した油吸着器29を通り油濃度約0.01ppmまで
精製され、高圧配管16aを通り第1熱交換器6に供給
される。
FIG. 2 shows the structure of the compressor unit 5 described above, and FIG. 3 is a sectional view of a compression chamber of the scroll compressor 26. The compressor unit 5 includes a scroll compressor 26.
And an oil / gas mixed high-pressure fluid cooler 27, an oil separator 28, an oil adsorber 29, and an oil cooler 30. Low pressure piping 16
The low-pressure helium gas b flows into the scroll-type compression chamber 31 in the scroll-type compressor 26 from the low-pressure inlet 32, and is formed while moving between the fixed scroll 26A and the orbiting scroll 26B. , 31
The pressure is gradually increased at c, 31d and 31e. Helium gas becomes high temperature due to the heat of compression.
Part of the high-temperature lubricating oil stored at the bottom of
3, the oil is supplied to the oil cooler 30. The temperature of the oil is cooled to almost normal temperature, and the oil is supplied from the pipe 34 to the medium-pressure compression chamber 31b of the scroll-type compression chamber 31 through the medium-pressure inlet 35. Accordingly, the temperature of the helium gas is cooled to about 350K, further compressed, and discharged from the high-pressure outlet 36 of the scroll-type compression chamber 31 into the scroll-type compressor 26. Thus, the scroll type compression chamber 3
1, the small compression chambers 31 a and 31 are formed while being moved toward the center of the scroll while being isolated.
Since the helium gas is gradually pressurized at b, 31c, 31d, and 31e, there is almost no gas leak between the small compression chambers. Therefore, the helium gas flowing into the small compression chamber 31a at a pressure of 1.0 atm or less can be pressurized, compressed to a high pressure, and discharged. On the other hand, most of the lubricating oil supplied into the medium-pressure compression chamber 31b and exiting from the high-pressure outlet 36 returns to the bottom in the scroll compressor 26, and the other lubricating oil accompanies the high-pressure helium gas, The gas mixture flows into the high-pressure fluid cooler 27. Here, the mixed fluid is cooled and about 99.99% of the oil is separated, and most of the oil is re-supplied to the medium pressure chamber of the scroll type compression chamber 31 via the pipe 34 by the oil return pipe 37. 0.01 remaining
% High-pressure helium gas containing, for example, oil is refined to an oil concentration of about 0.01 ppm through an oil adsorber 29 filled with activated carbon, and supplied to the first heat exchanger 6 through a high-pressure pipe 16a.

【0017】第2J・T弁13bの出口温度は、J・T
弁で膨張した後のヘリウムガスの圧力、即ち、ヘリウム
槽内の液化飽和圧力で決まる。一方、ヘリウム槽内の圧
力は、(1)第2J・T弁通過ヘリウムガス流量、
(2)低圧配管、第1〜第6熱交換器内の低圧流路、第
3吸着器、第4吸着器内のヘリウムガス流動抵抗による
圧力損失、(3)スクロール型圧縮機の吸入風量、
(4)高、低圧配管の間に設けた圧力調整弁16cを通
過するバイパスガス風量、で定まる。したがって、これ
ら4条件を適切に制御することにより、ヘリウム槽内の
圧力を任意の値、即ち、第2J・T弁後のヘリウム温度
を任意の値に設定できる。
The outlet temperature of the second J · T valve 13b is J · T
It is determined by the pressure of the helium gas after expansion by the valve, that is, the liquefaction saturation pressure in the helium tank. On the other hand, the pressure in the helium tank is (1) the helium gas flow rate passing through the second J · T valve,
(2) low pressure piping, low pressure flow passages in the first to sixth heat exchangers, pressure loss due to helium gas flow resistance in the third adsorber, and the fourth adsorber, (3) suction air volume of the scroll compressor,
(4) It is determined by the amount of bypass gas flowing through the pressure regulating valve 16c provided between the high and low pressure pipes. Therefore, by appropriately controlling these four conditions, the pressure in the helium tank can be set to an arbitrary value, that is, the helium temperature after the second J · T valve can be set to an arbitrary value.

【0018】また、J・T回路、特に低圧配管は、予冷
用の寒冷発生回路と隔離されているため、寒冷発生機内
の圧力変動がJ・T弁出口の圧力に影響を与えることが
ない。よって、J・T弁出口の圧力は1.2atm以下
においても安定に維持でき、4.5K未満の冷却温度を
安定に確保できる。
Further, since the J / T circuit, particularly the low-pressure pipe, is isolated from the cold generation circuit for pre-cooling, the pressure fluctuation in the cold generator does not affect the pressure at the outlet of the J / T valve. Therefore, the pressure at the outlet of the J · T valve can be stably maintained even at 1.2 atm or less, and a cooling temperature of less than 4.5 K can be stably secured.

【0019】また、本実施例では真空ポンプを必要とし
ないので、ヘリウムガスの圧縮効率が高まり、これにと
もなって冷凍効率が向上する。また、真空ポンプを必要
としないので、真空ポンプと圧縮機を連結する管内が負
圧状態になりうる配管が必要なくなるので、配管の接続
箇所から大気中の空気を吸い込みヘリウムガスを汚染す
る可能性がなくなり、冷凍性能を長期間安定に供給でき
る。また、真空ポンプを必要としないので、真空ポンプ
出口に設けていた油分離器が無く冷凍装置を小型化する
ことができる。
Further, in this embodiment, since a vacuum pump is not required, the compression efficiency of helium gas is increased, and the refrigeration efficiency is improved accordingly. In addition, since a vacuum pump is not required, there is no need for piping that can create a negative pressure in the pipe connecting the vacuum pump and the compressor. And the refrigeration performance can be stably supplied for a long period of time. Further, since no vacuum pump is required, there is no oil separator provided at the outlet of the vacuum pump, and the size of the refrigeration system can be reduced.

【0020】ヘリウム槽内の圧力は、圧力検知器38、
温度は温度センサー39、温度検知器40で計測され、
そのデータを圧縮機ユニット5内の制御器41に送り所
定の圧力、温度になるようにスクロール型圧縮機26の
電動機42の回転数やJ・T弁13a,13bの開度を調
整する。この制御により、J・T弁13bの入口、出口
の圧力を所定の圧力に調整でき、これにより、冷却温度
を4.5K未満の範囲で、高効率な冷凍性能を安定に提
供できる。これは、J・T回路のヘリウム圧縮機に圧縮
室内に多段の、かつ、それぞれが隔離された連続の小圧
縮室を有し、かつ、圧縮比10以上のスクロール型圧縮
機を適用することによって、J・T回路の一台の圧縮機
で可能となった。超電導マグネット15を4.5K未満
特に4.2K以下に冷却することにより超電導マグネッ
トの蓄熱量が増加して、局部発熱等によるクエンチの発
生が抑制され、安定性が向上すると共に超電導マグネッ
トの印加電流を増して発生磁場強度を増加できる。
The pressure in the helium tank is determined by a pressure detector 38,
The temperature is measured by a temperature sensor 39 and a temperature detector 40,
The data is sent to a controller 41 in the compressor unit 5 to adjust the rotation speed of the electric motor 42 of the scroll compressor 26 and the opening degree of the J / T valves 13a and 13b so that a predetermined pressure and temperature are obtained. By this control, the pressure at the inlet and the outlet of the J · T valve 13b can be adjusted to a predetermined pressure, and thus, a high-efficiency refrigeration performance can be stably provided at a cooling temperature of less than 4.5K. This is achieved by applying a scroll type compressor having a multistage, continuous small compression chamber in each of the compression chambers and a compression ratio of 10 or more to the helium compressor of the J · T circuit. , J / T circuit with a single compressor. By cooling the superconducting magnet 15 to less than 4.5K, especially to 4.2K or less, the amount of heat stored in the superconducting magnet increases, thereby suppressing the occurrence of quenching due to local heat generation and the like, and improving the stability and applying current to the superconducting magnet. Can be increased to increase the generated magnetic field strength.

【0021】また、上記冷却温度における冷凍量は、
(1)寒冷発生機の蓄冷材に低温蓄熱特性が大きな物質
を使用、(2)寒冷発生機の運転周波数を調整、(3)
J・T弁通過ヘリウムガス流量を増加、(4)スクロー
ル型圧縮機の運転周波数を増加して吸入・吐出風量を増
加、することによって容易に増加できる。
The amount of refrigeration at the above cooling temperature is
(1) A substance having a large low-temperature heat storage characteristic is used as the cold storage material of the cold generator, (2) the operating frequency of the cold generator is adjusted, (3)
It can be easily increased by increasing the flow rate of the helium gas passing through the J / T valve, and (4) increasing the operating frequency of the scroll compressor to increase the intake / discharge air volume.

【0022】以上、本実施例によれば、予冷用の寒冷発
生回路と隔離したJ・T回路の低圧流路のヘリウムガス
を圧縮機の吸気口入口で正圧から負圧の範囲で回収し、
同圧縮機で高い正圧に加圧したヘリウムガスをJT回路
の高圧流路に供給できるので、J・T弁出口の圧力を正
圧から負圧の任意の値に制御できる。これによって、J
・T弁出口で4.5K以下の任意のヘリウム温度を安定
に発生できるという効果がある。
As described above, according to the present embodiment, the helium gas in the low pressure flow passage of the JT circuit isolated from the cold generation circuit for precooling is recovered at the inlet of the compressor in the range of positive pressure to negative pressure. ,
Since the helium gas pressurized to a high positive pressure by the compressor can be supplied to the high-pressure flow path of the JT circuit, the pressure at the outlet of the J / T valve can be controlled to any value from positive pressure to negative pressure. By this, J
-There is an effect that any helium temperature of 4.5K or less can be stably generated at the T valve outlet.

【0023】また,本実施例によれば、予冷用の寒冷発
生回路と隔離したJ・T回路の低圧流路のヘリウムガス
を圧縮機の吸気口入口で正圧から負圧の範囲で回収して
も、予冷用の寒冷発生回路の運転圧力条件は変わらず所
定の寒冷量を安定に供給できる。したがって、J・T回
路の予冷部を安定に冷却できるので、常に、J・T弁出
口で4.5K以下の任意のヘリウム温度を安定に発生で
きるという効果がある。
According to this embodiment, the helium gas in the low pressure passage of the J / T circuit isolated from the pre-cooling cold generation circuit is recovered at the inlet of the compressor in the range of positive pressure to negative pressure. However, the operating pressure condition of the pre-cooling cold generation circuit does not change and a predetermined amount of cold can be stably supplied. Therefore, the pre-cooling section of the J · T circuit can be stably cooled, so that there is an effect that any helium temperature of 4.5 K or less can be stably generated at the J · T valve outlet.

【0024】また、J・T回路のヘリウムガス流量を増
加する等のことにより、J・T弁により等エンタルピー
膨張で発生する4.5K未満の冷凍量を容易に増加する
ことができ、また、単位冷凍量当りの圧縮機入力電力量
も小さくて済む効果がある。
Also, by increasing the helium gas flow rate in the J · T circuit, the amount of refrigeration less than 4.5K generated by isenthalpy expansion by the J · T valve can be easily increased. This has the effect of reducing the compressor input power per unit refrigeration amount.

【0025】さらに、ヘリウムガスをJ・T回路の高圧
流路に供給する操作を同一圧縮機で行うことにより、小
型軽量で簡便な信頼性の高い冷凍装置となる効果があ
る。
Further, by performing the operation of supplying helium gas to the high-pressure flow path of the J / T circuit by the same compressor, there is an effect that a compact, lightweight, simple and highly reliable refrigerating apparatus can be obtained.

【0026】なお、本実施例では、寒冷発生機にG・M
サイクルの膨張機を適用した例で説明したが、ソルベイ
サイクル、スターリングサイクル、ビルマイヤサイク
ル、タービン式、クロード式膨張機を適用した冷凍サイ
クルやブレイトンサイクルでも同等な効果がある。
In this embodiment, GM is used for the cold generator.
Although an example in which a cycle expander is applied has been described, the same effect can be obtained in a refrigeration cycle or a Brayton cycle in which a Solvay cycle, a Stirling cycle, a Billmeyer cycle, a turbine type, or a Claude type expander is applied.

【0027】また、本実施例では、圧縮機にスクロール
型圧縮機を適用した例で説明したが、スクリュウ圧縮機
を適用しても同等な効果がある。
Further, in this embodiment, an example in which a scroll compressor is applied to the compressor has been described. However, the same effect can be obtained by applying a screw compressor.

【0028】また、本実施例では、超電導マグネットを
被冷却体にした場合について説明したが、ジョセフソン
素子や各種センサー等の各種電子機器や、高真空、高排
気速度のクライオパネルを被冷却体にしても、被冷却体
の温度が低下することによりSN比の向上や排気速度の
高速化が増加する効果がある。
In this embodiment, the case where the superconducting magnet is used as the object to be cooled has been described. However, various electronic devices such as a Josephson element and various sensors, and a cryopanel having a high vacuum and a high pumping speed can be used as the object to be cooled. Even so, there is an effect that the reduction in the temperature of the object to be cooled increases the SN ratio and increases the exhaust speed.

【0029】本発明の他の実施例を図4に示す。図4に
示した実施例は、2個の圧縮室31を同一圧力容器内に
並列に配置したスクロール型圧縮機を使用した圧縮機ユ
ニットの構成を示している。本実施例によれば、複数単
段のスクロール型圧縮機で吸入・吐出風量を増加できる
ので、より多量のJ・T回路の低圧流路の排気ヘリウム
ガスを圧縮機の吸気口入口で正圧から負圧の状態で回収
し、同圧縮機で正圧に加圧したヘリウムガスをJT回路
の高圧流路に供給できるので、J・T弁出口の圧力を正
圧から負圧の任意の値に制御できる範囲が広がり、これ
によって、J・T弁出口で4.5K以下の広範囲の任意
のヘリウム温度を発生できるという効果がある。また、
J・T回路のヘリウムガス流量を2倍に増加できるの
で、容易に4.5K以下の冷凍量を増加することが出来
る。また、油分離系を1つにまとめることができるので
軽量化でき、かつ、ガス冷却用の潤滑油取り出し及び注
入系を1つにまとめることができるので軽量化と2台の
圧縮機に同時に冷却油を注入する操作が簡便になる。こ
れは、2台の圧縮機の油面が常に一定となるためであ
る。また、吸気口入口で負圧の状態で回収し、正圧に圧
縮したヘリウムガスをJ・T回路の高圧流路に供給する
操作を同一圧縮機内で行うことにより、小型軽量で簡便
な冷凍装置となる効果がある。
FIG. 4 shows another embodiment of the present invention. The embodiment shown in FIG. 4 shows a configuration of a compressor unit using a scroll compressor in which two compression chambers 31 are arranged in parallel in the same pressure vessel. According to the present embodiment, the amount of intake / discharge air can be increased by a plurality of single-stage scroll compressors, so that a larger amount of exhaust helium gas in the low-pressure flow path of the J · T circuit is positively pressured at the inlet of the compressor. Helium gas can be supplied to the high-pressure flow path of the JT circuit, and the pressure at the outlet of the JT valve can be any value from positive pressure to negative pressure. Thus, there is an effect that a wide range of arbitrary helium temperatures of 4.5 K or less can be generated at the outlet of the JT valve. Also,
Since the helium gas flow rate of the J · T circuit can be doubled, the amount of refrigeration of 4.5K or less can be easily increased. In addition, the oil separation system can be integrated into one, so that the weight can be reduced. In addition, the lubricating oil removal and injection system for gas cooling can be integrated into one, so that the weight is reduced and two compressors are simultaneously cooled. The operation of injecting oil is simplified. This is because the oil levels of the two compressors are always constant. In addition, the operation of recovering the helium gas compressed at a negative pressure at the inlet of the intake port and supplying the helium gas compressed to the positive pressure to the high-pressure flow path of the J / T circuit is performed in the same compressor, so that a compact, lightweight, and simple refrigeration system is provided. The effect is as follows.

【0030】本発明の更に他の実施例を図5に示す。図
5に示す実施例は、J・T回路においてJ・T弁出口と
低圧配管とを凝縮器38を介して連通した構成を示して
いる。本実施例によれば、J・T回路と液体ヘリウム槽
内とを隔離できるので、液体ヘリウム槽内の熱負荷の変
動によって液体ヘリウム槽内の圧力が変動してもJ・T
回路の流量及び低圧配管の圧力は変動せず、したがっ
て、凝縮器38の冷却温度が安定するという効果があ
る。
FIG. 5 shows still another embodiment of the present invention. The embodiment shown in FIG. 5 shows a configuration in which the outlet of the J / T valve and the low-pressure pipe are connected via the condenser 38 in the J / T circuit. According to this embodiment, the J · T circuit and the inside of the liquid helium tank can be isolated. Therefore, even if the pressure in the liquid helium tank fluctuates due to the fluctuation of the heat load in the liquid helium tank, the J · T circuit can be isolated.
The flow rate of the circuit and the pressure of the low-pressure pipe do not fluctuate, so that the cooling temperature of the condenser 38 is stabilized.

【0031】本発明の更に他の実施例を図6に示す。図
6に示す実施例は、J・T回路において第5吸着器18
aを通る低圧配管16bと圧縮機ユニット5の吸入口配
管16cを継手39を介して低圧配管16dで接続した
場合を示している。継手39の周りには、大気隔離冶具
の容器40を設け大気と隔離するとともに容器40と高
圧配管16aを配管16eで連通する。本実施例によれ
ば負圧下の低圧配管内に継手39から不純物となる空気
がJ・T回路に流入することを防止できJ・T弁の閉塞
等による冷凍装置のトラブルを防止できる効果がある
FIG. 6 shows still another embodiment of the present invention. The embodiment shown in FIG.
A case is shown in which a low-pressure pipe 16b passing through a is connected to a suction pipe 16c of the compressor unit 5 by a low-pressure pipe 16d via a joint 39. A container 40 of an atmosphere isolating jig is provided around the joint 39 to isolate the container from the atmosphere, and the container 40 and the high-pressure pipe 16a are connected by a pipe 16e. According to the present embodiment, it is possible to prevent air as an impurity from flowing into the J / T circuit from the joint 39 into the low-pressure pipe under negative pressure, and to prevent troubles in the refrigeration system due to blockage of the J / T valve.

【0032】[0032]

【発明の効果】本発明によれば、予冷用の寒冷発生回路
と隔離されたJ・T弁を複数段配置し、かつ、最終段の
J・T弁出口の圧力を正圧から負圧の任意の値に制御で
きるので、J・T弁出口で4.5K以下の任意のヘリウ
ム温度を発生でき、被冷却体の冷却温度を4.5K以下
の任意の温度に、かつ効率よく冷却できる効果がある。
また、J・T回路のJ・T弁の作動圧力を最適値に制御
し、かつヘリウムガス流量を増加することにより、容易
に4.5K以下の冷凍量を増加することが出来る。ま
た、吸気口入口で負圧の状態で回収し、正圧に圧縮した
ヘリウムガスをJ・T回路の高圧流路に供給する操作を
同一圧縮機で行うことにより、本装置が小型軽量で簡便
な、信頼性が高い冷凍装置にできる効果がある。
According to the present invention, a plurality of stages of J / T valves separated from a cold generation circuit for pre-cooling are provided, and the pressure at the outlet of the last stage J / T valve is changed from positive pressure to negative pressure. Since it can be controlled to an arbitrary value, an arbitrary helium temperature of 4.5 K or less can be generated at the outlet of the J / T valve, and the cooling temperature of the object to be cooled can be efficiently cooled to an arbitrary temperature of 4.5 K or less. There is.
Further, by controlling the operating pressure of the J / T valve of the J / T circuit to an optimum value and increasing the helium gas flow rate, the refrigerating amount of 4.5K or less can be easily increased. In addition, by recovering the helium gas compressed to a positive pressure at the inlet of the inlet and supplying it to the high-pressure flow path of the J / T circuit using the same compressor, this device is compact and lightweight and simple. In addition, there is an effect that a highly reliable refrigeration apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷凍装置の一実施例の構成を説明する
図。
FIG. 1 is a diagram illustrating a configuration of an embodiment of a refrigeration apparatus of the present invention.

【図2】図1におけるJ・T回路用の圧縮機ユニットの
構成の一例を説明する図。
FIG. 2 is a diagram illustrating an example of a configuration of a compressor unit for a J / T circuit in FIG.

【図3】図1におけるJ・T回路用の圧縮機ユニットの
一例の圧縮室の断面を説明する図。
3 is a diagram illustrating a cross section of a compression chamber of an example of a compressor unit for a J / T circuit in FIG.

【図4】図1におけるJ・T回路用の圧縮機ユニットの
構成の他の例を説明する図。
FIG. 4 is a view for explaining another example of the configuration of the compressor unit for the J / T circuit in FIG. 1;

【図5】本発明の冷凍装置の他の実施例におけるJ・T
弁周りの構成を説明する図。
FIG. 5 shows J · T in another embodiment of the refrigerating apparatus of the present invention.
The figure explaining the structure around a valve.

【図6】本発明の冷凍装置の更にの実施例における圧縮
機ユニットの配管継手構成を説明する図。
FIG. 6 is a view for explaining a piping joint configuration of a compressor unit in a further embodiment of the refrigeration apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1・・膨張機、5・・圧縮機ユニット、6、7、9、1
0、12・・熱交換器、13a,13b・・J・T弁、1
4a・・液体ヘリウム、15・・超電導マグネット
1. Expander, 5. Compressor unit, 6, 7, 9, 1
0, 12 heat exchanger, 13a, 13b JT valve, 1
4a ... liquid helium, 15 ... superconducting magnet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−278146(JP,A) 特開 平2−183788(JP,A) 特開 平5−180558(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25B 9/00 F25B 9/00 395 F25B 9/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-278146 (JP, A) JP-A-2-183788 (JP, A) JP-A-5-180558 (JP, A) (58) Field (Int.Cl. 6 , DB name) F25B 9/00 F25B 9/00 395 F25B 9/02

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予冷用の寒冷発生手段と隔離された一連の
高圧配管及び低圧配管を内蔵した熱交換器、前記高圧配
管の極低温部に複数段の膨張弁を設け前記最終段の膨張
弁の出口と前記低圧配管の低温部が連通し、前記膨張弁
の出口と前記低圧配管の低温部との間に被冷却体との冷
却部とを設け、前記高圧配管と前記低圧配管が常温部で
圧縮手段を介して連通した冷凍装置の該圧縮手段が圧縮
手段内の圧縮室内に多段の、かつ、それぞれが隔離され
連続の小圧縮室を有した、圧縮手段であることを特徴
する冷凍装置。
1. A heat exchanger including a series of high-pressure pipes and low-pressure pipes separated from a cold generating means for pre-cooling, a multi-stage expansion valve provided at a cryogenic portion of the high-pressure pipe, and a final-stage expansion valve. And the low-temperature section of the low-pressure pipe communicate with each other, and a cooling section for cooling the object is provided between the outlet of the expansion valve and the low-temperature section of the low-pressure pipe, and the high-pressure pipe and the low-pressure pipe are connected to a normal-temperature section. in said compression means for communicating via the compression means refrigeration system is multistage compression chamber in the compression means, and each had a small compression chamber of the continuous isolated on a feature that the compression means <br Refrigeration equipment.
【請求項2】高圧配管及び低圧配管を内蔵した熱交換
器、前記高圧配管の極低温部に複数段の膨張弁を設け該
最終段の膨張弁の出口を負圧にし、該出口と前記低圧配
管の低温部が連通し、前記膨張弁の出口と前記低圧配管
の低温部の間に被冷却体との冷却部を設け、前記高圧配
管と前記低圧配管が常温部で圧縮手段を介して連通した
冷凍装置の該圧縮手段が圧縮手段内の圧縮室内に多段
の、かつ、それぞれが隔離され連続の小圧縮室を有し
た、圧縮手段であることを特徴する冷凍装置。
2. A heat exchanger containing a high pressure pipe and a low pressure pipe, a multistage expansion valve provided in a cryogenic part of the high pressure pipe, and an outlet of the last stage expansion valve is set to a negative pressure. A low-temperature portion of the pipe communicates, and a cooling unit for cooling the object to be cooled is provided between the outlet of the expansion valve and the low-temperature portion of the low-pressure pipe, and the high-pressure pipe and the low-pressure pipe communicate with each other at normal temperature via compression means. the compression means of the refrigeration system is multistage compression chamber in the compression means, and that, refrigerating apparatus, characterized in that each had a small compression chamber of the continuous isolated on a compression means.
【請求項3】予冷用の寒冷発生手段と隔離された一連の
高圧配管及び低圧配管を内蔵した熱交換器、前記高圧配
管の極低温部に複数段の膨張弁を設け前記最終段の膨張
弁の出口を負圧にし、該出口と前記低圧配管の低温部が
連通し、前記膨張弁の出口と前記低圧配管の低温部の間
に被冷却体との冷却部を設け、前記高圧配管と前記低圧
配管が常温部で圧縮手段を介して連通した冷凍装置の該
圧縮手段が圧縮手段内の圧縮室内に多段の、かつ、それ
ぞれが隔離され連続の小圧縮室を有した、圧縮手段であ
ることを特徴する冷凍装置。
3. A heat exchanger including a series of high-pressure pipes and low-pressure pipes separated from a cold-generation means for pre-cooling, and a multi-stage expansion valve provided at a cryogenic portion of the high-pressure pipe, and a final-stage expansion valve. The outlet of the low pressure piping of the low pressure pipe communicates with the outlet of the low pressure pipe, and a cooling unit for cooling the body between the outlet of the expansion valve and the low temperature section of the low pressure pipe is provided. The compression means of the refrigeration system in which the low-pressure pipe communicates with the normal-temperature part via the compression means, wherein the compression means is a compression means having multiple stages in the compression chamber within the compression means, and having separate and continuous small compression chambers. refrigeration apparatus according to claim.
【請求項4】予冷用の寒冷発生手段と隔離された一連の
高圧配管及び低圧配管を内蔵した熱交換器、前記高圧配
管の極低温部に複数段の膨張弁を設け前記最終段の膨張
弁の出口を負圧にし、該出口と前記低圧配管の低温部が
連通し、前記膨張弁の出口と前記低圧配管の低温部の間
に被冷却体との冷却部を設け、前記高圧配管と前記低圧
配管が常温部で圧縮手段を介して連通した冷凍装置の該
圧縮手段が圧縮手段内の圧縮室内に多段の、かつ、それ
ぞれが隔離され連続の小圧縮室を有した圧縮手段の吸入
口の圧力を正圧から負圧の範囲で調整することを特徴
する冷凍装置
4. A heat exchanger incorporating a series of high-pressure pipes and low-pressure pipes separated from a cold-generation means for pre-cooling, and a multi-stage expansion valve provided at a cryogenic portion of the high-pressure pipe, wherein the final-stage expansion valve is provided. The outlet of the low pressure piping of the low pressure pipe communicates with the outlet of the low pressure pipe, and a cooling unit for cooling the body between the outlet of the expansion valve and the low temperature section of the low pressure pipe is provided. The compression means of the refrigerating apparatus in which the low-pressure pipe communicates via the compression means at room temperature is a multistage, and each of the compression means in the compression means has an isolated and continuous small compression chamber. refrigeration apparatus <br/> and adjusts a range of negative pressure of pressure from the positive pressure.
【請求項5】請求項1乃至4のいずれか1項において、
圧縮手段を複数個直列に配置したことを特徴する冷凍
装置。
5. The method according to claim 1, wherein
Refrigeration system, characterized in that a compressing means into a plurality number series.
【請求項6】請求項1乃至4のいずれか1項において、
圧縮手段がスクロ−ル型圧縮機であることを特徴する
冷凍装置。
6. The method according to claim 1, wherein:
Refrigeration system which is a Le compressor - compression means is sucrose.
【請求項7】請求項1乃至4のいずれか1項において、
圧縮手段がスクリュウ型圧縮機であることを特徴する
冷凍装置。
7. The method according to claim 1, wherein
Refrigeration system, wherein the compression means is a screw-type compressor.
【請求項8】請求項1乃至4のいずれか1項において、
圧縮手段が油潤滑式の圧縮手段であることを特徴する
冷凍装置。
8. The method according to claim 1, wherein
Refrigeration system, wherein the compression means is a compression means of oil-lubricated.
【請求項9】請求項1乃至4のいずれか1項において、
圧縮手段が圧縮手段内の圧縮室内に多段の、かつ、それ
ぞれが隔離され連続の小圧縮室を有した、1機の圧縮手
段であることを特徴する冷凍装置。
9. The method according to claim 1, wherein
Compression means multistage compression chamber in the compression means, and each had a small compression chamber of the continuous isolated on refrigeration system which is a compression means 1 aircraft.
【請求項10】請求項1乃至4のいずれか1項におい
て、圧縮手段が圧縮手段内の圧縮室内に多段の、かつ、
それぞれが隔離され連続の小圧縮室を有した、1段で複
数機の圧縮手段であることを特徴する冷凍装置。
10. The compression means according to claim 1, wherein the compression means has a multi-stage structure in a compression chamber of the compression means.
Each had a small compression chamber is isolated continuous refrigeration system which is a compression means of a plurality machine in one step.
【請求項11】請求項1乃至4のいずれか1項におい
て、圧縮手段が圧縮手段内の圧縮室内に多段の、かつ、
それぞれが隔離され連続の小圧縮室を有した、複数機を
1つの圧力容器に内蔵した圧縮手段であることを特徴
する冷凍装置。
11. The compression means according to claim 1, wherein the compression means has a multistage structure in a compression chamber of the compression means.
Each had a small compression chamber of the continuous isolated on refrigeration apparatus <br/> characterized in that the compression means having a built more machines into a single pressure vessel.
【請求項12】請求項1乃至4のいずれか1項におい
て、少なくとも圧縮手段の処理風量、または該膨張弁の
通過風量、高、低圧流路間のバイパス風量を調整し、該
冷媒容器内の温度または圧力を制御することを特徴
る冷凍装置。
12. The refrigerant container according to any one of claims 1 to 4, wherein at least the processing air volume of the compression means or the air volume passing through the expansion valve and the bypass air volume between the high and low pressure flow paths are adjusted. It features and to <br/> Ru refrigeration system to control the temperature or pressure.
【請求項13】請求項1乃至4のいずれか1項におい
て、常温部の低圧配管の接続部を大気に接触させないた
めの隔離手段具備したことを特徴する冷凍冷凍装
置。
13. The any one of claims 1 to 4, refrigeration refrigeration apparatus the connection of the low-pressure pipe cold section and characterized by including isolation means for preventing contact with the atmosphere.
【請求項14】請求項1乃至4のいずれか1項におい
て、常温部の低圧配管を高圧配管内に配置したことを特
する冷凍装置。
14. The any one of claims 1 to 4, the refrigeration apparatus characterized in that a low-pressure pipe of the room temperature portion in the high-pressure pipe.
JP11560493A 1993-05-18 1993-05-18 Refrigeration equipment Expired - Lifetime JP2910499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11560493A JP2910499B2 (en) 1993-05-18 1993-05-18 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11560493A JP2910499B2 (en) 1993-05-18 1993-05-18 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH06323666A JPH06323666A (en) 1994-11-25
JP2910499B2 true JP2910499B2 (en) 1999-06-23

Family

ID=14666750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11560493A Expired - Lifetime JP2910499B2 (en) 1993-05-18 1993-05-18 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2910499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159232B2 (en) 2009-03-24 2012-04-17 Denso Corporation Fuel property sensor
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920924B2 (en) * 2012-09-28 2016-05-18 株式会社日立メディコ Superconducting magnet device and magnetic resonance imaging device
JP5946749B2 (en) * 2012-11-01 2016-07-06 住友重機械工業株式会社 Refrigeration equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159232B2 (en) 2009-03-24 2012-04-17 Denso Corporation Fuel property sensor
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling

Also Published As

Publication number Publication date
JPH06323666A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
US11215384B2 (en) System and method for cryogenic cooling
JPH05248729A (en) Refrigerating system with low-temperature adsorption force-feeding circuit and automatic refrigeration cascade system connected and refrigerating method using the same
JP2910499B2 (en) Refrigeration equipment
JPH10246524A (en) Freezing device
CN114739032B (en) A superfluid helium refrigerator
JP2600506B2 (en) Refrigeration equipment
US6484516B1 (en) Method and system for cryogenic refrigeration
JPH09229503A (en) Cryogenic freezer device
CN114704973A (en) Super-flow helium refrigerator
CN114923291A (en) Overflow helium refrigerator with negative pressure protection module
JPH1073333A (en) Cryogenic cooling apparatus
JPH06323663A (en) Refrigerator
JPH05322343A (en) Freezer device with reservoir tank
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP3596825B2 (en) Low pressure control device for cryogenic refrigerator
JP2000266416A (en) Very low temperature refrigerating device
Wu et al. A new type mixture refrigeration auto-cascade cycle with partial condensation and separation reflux exchanger and its preliminary experimental test
JPH11108476A (en) Cryostatic cooling device
Lashmet et al. A closed-cycle cascade helium refrigerator
Kerney et al. A 50-Liters/hr helium liquefier for a superconducting magnetic energy storage system
JP3589434B2 (en) Cryogenic refrigeration equipment
JPH06323664A (en) Refrigerator
JPH06323661A (en) Refrigerator
JPS61235648A (en) Helium refrigerator
JPH0668419B2 (en) Cryogenic refrigerator