[go: up one dir, main page]

JPH063745B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH063745B2
JPH063745B2 JP61156966A JP15696686A JPH063745B2 JP H063745 B2 JPH063745 B2 JP H063745B2 JP 61156966 A JP61156966 A JP 61156966A JP 15696686 A JP15696686 A JP 15696686A JP H063745 B2 JPH063745 B2 JP H063745B2
Authority
JP
Japan
Prior art keywords
carbon body
negative electrode
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61156966A
Other languages
Japanese (ja)
Other versions
JPS6313282A (en
Inventor
善光 田島
元男 毛利
英明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61156966A priority Critical patent/JPH063745B2/en
Priority to US07/030,886 priority patent/US4863814A/en
Priority to DE3750754T priority patent/DE3750754T2/en
Priority to EP87302651A priority patent/EP0239410B1/en
Publication of JPS6313282A publication Critical patent/JPS6313282A/en
Publication of JPH063745B2 publication Critical patent/JPH063745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は、リチウム,ナトリウムなどの軽金属を可逆的
に吸収・放出可能な炭素体を負極に用いる非水電解液型
二次電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery in which a carbon body capable of reversibly absorbing and releasing a light metal such as lithium and sodium is used as a negative electrode.

<従来技術> 非水電解液型二次電池の負極には、リチウム、ナトリウ
ムなどの軽金属の単体あるいはリチウム・アルミニウム
合金やウッド合金に代表される低融点合金などの軽金属
合金が、また他方の正極には五酸化バナジウム、三酸化
クロムなどの金属酸化物、二硫化チタンなどのカルコゲ
ン化合物あるいは有機ポリマー等が主として使用されて
いる。
<Prior Art> For the negative electrode of a non-aqueous electrolyte secondary battery, a light metal such as lithium or sodium is used alone or a light metal alloy such as a low melting point alloy represented by lithium-aluminum alloy or wood alloy, and the other positive electrode. For this purpose, metal oxides such as vanadium pentoxide and chromium trioxide, chalcogen compounds such as titanium disulfide, organic polymers and the like are mainly used.

こういった従来の非水電解液型二次電池系においては、
信頼性あるいはサイクル特性の向上のために、正極の充
放電容量を負極のそれより大きく設定した、いわゆる負
極支配型(負極制限型)の物が知られている。
In such a conventional non-aqueous electrolyte secondary battery system,
There is known a so-called negative electrode dominant type (negative electrode limited type) in which the charge and discharge capacity of the positive electrode is set larger than that of the negative electrode in order to improve reliability or cycle characteristics.

これは、負極の充放電容量を正極のそれより大きくした
正極支配型(正極制限型)の二次電池では深放電した際
正極の破壊が起こり以後の充放電が不可能になるという
不具合が発生する。そこで、この問題を解決するために
正極の充放電容量を負極のそれより大きくすることで、
負極の容量一杯まで充放電した場合でも正極が限界に達
しないようにして正極の破壊を防止し、信頼性あるいは
サイクル特性を向上しようとしているのである。また、
負極支配型とすることによって、正極材料の選択範囲を
広く取れるという利点も生ずる。
This is because a positive electrode-dominated (positive electrode limited) secondary battery in which the charge and discharge capacity of the negative electrode is larger than that of the positive electrode causes the breakdown of the positive electrode when deeply discharged, making it impossible to perform subsequent charge and discharge. To do. Therefore, in order to solve this problem, by making the charge and discharge capacity of the positive electrode larger than that of the negative electrode,
Even when the capacity of the negative electrode is fully charged / discharged, the positive electrode is prevented from reaching its limit so as to prevent the positive electrode from being broken and improve reliability or cycle characteristics. Also,
By adopting the negative electrode dominant type, there is an advantage that the selection range of the positive electrode material can be widened.

ところが、負極支配型の二次電池においても負極の放電
深度に限界があることに起因する不具合があることが明
らかとなった。
However, it has been revealed that the negative electrode-dominant secondary battery also has a defect due to the limited depth of discharge of the negative electrode.

すなわち、負極としてリチウム、ナトリウムなどの軽金
属単体を用いると、頻繁な金属の溶解、析出過程の繰り
返しにより電池の内部短絡の原因となる金属デンドライ
トが生成する。また、負極としてリチウム・アルミニウ
ム合金を用いるとリチウム濃度が低下してしまい、容量
減少の原因となる電極の脆化を起こす。さらに、ウッド
合金に代表される低融点合金では電位を著しく卑にする
ことによって特性劣化の原因となる合金成分の溶解が起
こる。このようなことが原因となって負極を完全放電等
のように深い放電深度のところまで放電すると、負極に
何等かの変化が起こり、信頼性、サイクル特性等の電池
性能に悪影響が生ずる。
That is, when a light metal simple substance such as lithium or sodium is used as the negative electrode, a metal dendrite that causes an internal short circuit of the battery is generated due to frequent repeated dissolution and precipitation processes of the metal. In addition, when a lithium-aluminum alloy is used as the negative electrode, the lithium concentration decreases, and the electrode becomes brittle, which causes a decrease in capacity. Further, in a low melting point alloy typified by wood alloy, when the electric potential is made extremely base, melting of alloy components causing deterioration of characteristics occurs. When the negative electrode is discharged to a deep discharge depth such as complete discharge due to such a cause, some change occurs in the negative electrode, which adversely affects battery performance such as reliability and cycle characteristics.

要するに、負極支配型の二次電池においても正極支配型
の物と同様に深放電すると、今度は負極側の問題からや
はり類似の不具合が発生することが明らかとなったので
ある。
In short, it has been clarified that, even in a negative electrode-dominated secondary battery, when a deep discharge is carried out similarly to the positive electrode-dominated battery, a similar problem still occurs due to a problem on the negative electrode side.

<発明の目的> そこで本発明は、正極の充放電容量を負極のそれより大
きく設定した、いわゆる負極支配型の二次電池におい
て、負極に深い放電深度まで放電しても信頼性、サイク
ル特性等の電池性能に何等悪影響の現れることのない非
水電解液型二次電池を提供することを目的とする。
<Object of the Invention> Therefore, the present invention is a so-called negative electrode-dominant secondary battery in which the charge and discharge capacity of the positive electrode is set to be larger than that of the negative electrode. It is an object of the present invention to provide a non-aqueous electrolyte type secondary battery that does not have any adverse effect on the battery performance.

<発明の構成> 本発明は、上述の目的を達成するため、例えば電解液に
非水系有機溶液を用いた二次電池の負極として、炭化水
素化合物から1500℃以下の低温熱分解による気相堆
積法(熱分解CVD)で形成される高度に配向された黒
鉛構造からなる炭素よりわずかに乱層構造を有しかつ選
択的配向構造を有した炭素を主成分とする炭素体を用い
ることで、負極の容量を正極の容量に比べ少なくした負
極支配の電池を特徴とする。
<Structure of Invention> In order to achieve the above-mentioned object, the present invention, for example, as a negative electrode of a secondary battery using a non-aqueous organic solution as an electrolytic solution, vapor phase deposition from a hydrocarbon compound by low temperature pyrolysis at 1500 ° C. or lower. By using a carbon body containing carbon as a main component, which has a slightly disordered structure and has a selectively oriented structure as compared with the carbon having a highly oriented graphite structure formed by the method (pyrolysis CVD), It is characterized by a negative electrode-dominated battery in which the capacity of the negative electrode is smaller than that of the positive electrode.

ここで、炭化水素化合物とは、ベンゼン,ナフタレン,
アントラセン,ヘキサメチルベンゼン,1,2−ジブロ
モエチレン,2−ブチン,アセチレン,ビフェニル,ジ
フェニルアセチレン等がある。低温熱分解する濃度と温
度は、出発原料とする炭化水素化合物材料により異なる
が、通常数ミルモルパーセントの濃度及び1000℃程
度の温度で制御される。また気化する方法には水素及び
/又はアルゴンをキャリアガスとするバブラ法,蒸発
法,昇華法等がある。
Here, the hydrocarbon compound means benzene, naphthalene,
Examples include anthracene, hexamethylbenzene, 1,2-dibromoethylene, 2-butyne, acetylene, biphenyl and diphenylacetylene. The concentration and temperature for low-temperature pyrolysis vary depending on the hydrocarbon compound material used as the starting material, but are usually controlled at a concentration of several milmol percent and a temperature of about 1000 ° C. Further, as the vaporizing method, there are a bubbler method using hydrogen and / or argon as a carrier gas, an evaporation method, a sublimation method and the like.

また、本発明において使用に供される炭素体を種々の手
段により解析した結果、高度に配向された黒鉛構造から
なる炭素よりわずかに乱層構造を有しかつ選択的配向構
造を有した炭素を主成分とする炭素体は例えば次のよう
なものとして定義される。即ち、炭素体の平面網状六隕
環面の面間隔は、X線回析法により求められる値として
0.337nmから0.355nmである。又、回析ピークは半値
幅として例えば2θ=1.62°といったように黒鉛に見ら
れるものに比べかなり幅広い。炭素体の黒鉛化度につい
ては、ラマン散乱法により得られる結果として1580
cm-1のラマン強度に対する1360cm-1のラマン強度の
比が0.4から1.0の範囲にあるような炭素体である。
In addition, as a result of analyzing the carbon bodies used in the present invention by various means, carbon having a slightly disordered structure and a carbon having a selectively oriented structure than carbon having a highly oriented graphite structure was found. The carbon body as the main component is defined as follows, for example. That is, the plane spacing of the plane mesh hexagonal ring surface of the carbon body is a value determined by the X-ray diffraction method.
It is from 0.337 nm to 0.355 nm. Also, the diffraction peak has a full width at half maximum, for example, 2θ = 1.62 °, which is considerably wider than that found in graphite. Regarding the graphitization degree of the carbon body, the result obtained by the Raman scattering method is 1580.
The carbon body has a ratio of Raman intensity of 1360 cm -1 to Raman intensity of cm -1 in the range of 0.4 to 1.0.

X線回析ピークの半値幅から求められる平面六隕環面の
C軸方向の結晶子の大きさが2.00nmから100.00nmの
範囲であるような炭素体である。
It is a carbon body in which the size of the crystallite in the C-axis direction of the plane hexagonal ring surface determined from the half width of the X-ray diffraction peak is in the range of 2.00 nm to 100.00 nm.

平面網状六隕環面のC軸方向の配向性が、反射高速電子
線回析法により求められる値として、各結晶子間のC軸
方向の相対的な傾きが±75度の範囲内であり好ましく
は±60度以内である。又反射高速電子線回析パターン
が均一でなく、弧状乃至ブロードなスポットとなってい
るようなブロードなリング状であるような炭素体であ
る。
The orientation of the plane net-like hexagonal ring surface in the C-axis direction is a value determined by the reflection high-energy electron diffraction method, and the relative inclination in the C-axis direction between crystallites is within ± 75 degrees. It is preferably within ± 60 degrees. Further, it is a carbon body in which the reflection high-speed electron beam diffraction pattern is not uniform and has a broad ring shape such as an arc shape or a broad spot.

非水電解液には、ジメチルスルフォキシド,ガンマーブ
チルラクトン,プロピレンカーボネートスルフォラン,
テトラヒドロフラン,2メチルテトラヒドロフラン,
1,2−ジメトキシエタン,1,3−ジオキソラン等の
有機溶媒に、電解質として過塩素酸リチウム,六フッ化
ヒ酸リチウム,ホウフッ化リチウム,トリフルオロメタ
ンスルホン酸リチウム等のアルカリ金属イオンをカチオ
ンとする塩を溶解して得られる単一溶液乃至は混合溶液
が用いられる。
Non-aqueous electrolytes include dimethyl sulfoxide, gamma-butyl lactone, propylene carbonate sulfolane,
Tetrahydrofuran, 2-methyltetrahydrofuran,
Using an alkali metal ion such as lithium perchlorate, lithium hexafluoroarsenate, lithium borofluoride, or lithium trifluoromethanesulfonate as an electrolyte in an organic solvent such as 1,2-dimethoxyethane or 1,3-dioxolane as an electrolyte A single solution or a mixed solution obtained by dissolving a salt is used.

正極には、五酸化バナジウム,五酸化ニオブ,三二酸化
ビスマス,三二酸化アンチモン,三二酸化クロム,三酸
化クロム,三酸化モリブデン,三酸化タングステン,二
酸化セレン,二酸化テルル,二酸化マンガン,三二酸化
鉄,四三酸化ニッケル,酸化ニッケル,三酸化コバル
ト,酸化コバルト等の酸化物,硫化チタン,硫化ジルコ
ニウム,硫化ハフニウム,硫化タンタル,硫化モリブデ
ン,硫化タングステン,セレン化チタン,セレン化ジル
コニウム,セレン化ハフニウム,セレン化バナジウム,
セレン化ニオブ,セレン化タンタル,セレン化モリブデ
ン,セレン化タングステン等のカルコゲン化合物の単一
乃至複合物,混合物が用いられる。
For the positive electrode, vanadium pentoxide, niobium pentoxide, bismuth trioxide, antimony trioxide, chromium trioxide, chromium trioxide, molybdenum trioxide, tungsten trioxide, selenium dioxide, tellurium dioxide, manganese dioxide, iron sesquioxide, tetraoxide Oxides of nickel trioxide, nickel oxide, cobalt trioxide, cobalt oxide, etc., titanium sulfide, zirconium sulfide, hafnium sulfide, tantalum sulfide, molybdenum sulfide, tungsten sulfide, titanium selenide, zirconium selenide, hafnium selenide, selenide vanadium,
A single or complex compound or mixture of chalcogen compounds such as niobium selenide, tantalum selenide, molybdenum selenide, and tungsten selenide is used.

<実施例> 以下、負極活物質にベンゼンを出発原料とし低温熱分解
法で形成される炭素体を用い、正極活物質に各種酸化物
やカルコゲン化合物を、また電解液として1Mの過塩素
酸リチウムを溶解したプロピレンカーボネートを用いた
非水電解液型二次電池を実施例とし本発明をさらに詳細
に説明する。
<Examples> In the following, a carbon body formed by a low temperature pyrolysis method using benzene as a starting material is used as a negative electrode active material, various oxides and chalcogen compounds are used as a positive electrode active material, and 1M lithium perchlorate is used as an electrolytic solution. The present invention will be described in more detail with reference to a non-aqueous electrolyte type secondary battery using propylene carbonate in which is dissolved as an example.

負極活物質である炭素体は、第1図に示した反応装置を
用いて作製した。即ち、一旦脱水処理を施しさらに真空
移送による蒸留精製操作を行なったベンゼンを収納した
容器1内にアルゴンガス供給器2よりアルゴンガスを供
給し、ベンゼンのバブルを行ない、パイレックス製ガラ
ス管3を介して石英製反応管4へベンゼンを給送する。
この際、容器1をベンゼンの蒸発による吸熱量の分だけ
加熱することにより温度を一定に保持し、またニードル
弁5,6によりベンゼン量を最適化した。反応管4に
は、発泡状ニッケルから成る直径15φ厚さ1.5mmの三
次元構造体の載置されたホルダー7が設置されており、
反応管4の外周囲には加熱炉8が設けられている。この
加熱炉8によりホルダー7及び三次元構造体を約100
0℃に維持し、パイレックス製ガラス管3より供給され
るベンゼンを熱分解し、三次元構造体に炭素体として堆
積させる。熱分解反応後の反応管4内に残留するガスは
排気設備9,10を通して除去する。この様にして炭素
体を堆積させた三次元構造体をプレス機で成形し本実施
例の電池の負極とする。
The carbon body as the negative electrode active material was produced using the reaction apparatus shown in FIG. That is, argon gas was supplied from an argon gas supplier 2 into a container 1 containing benzene which had been dehydrated and then subjected to a distillation and purification operation by vacuum transfer, and benzene was bubbled through a glass tube 3 made by Pyrex. Benzene is fed to the quartz reaction tube 4.
At this time, the temperature was kept constant by heating the container 1 by the amount of heat absorbed by the evaporation of benzene, and the amount of benzene was optimized by the needle valves 5 and 6. The reaction tube 4 is provided with a holder 7 on which a three-dimensional structure made of foamed nickel and having a diameter of 15φ and a thickness of 1.5 mm is placed.
A heating furnace 8 is provided around the outside of the reaction tube 4. With this heating furnace 8, the holder 7 and the three-dimensional structure are
Maintaining the temperature at 0 ° C., benzene supplied from the Pyrex glass tube 3 is thermally decomposed and deposited as a carbon body on the three-dimensional structure. The gas remaining in the reaction tube 4 after the thermal decomposition reaction is removed through the exhaust equipment 9 and 10. The three-dimensional structure in which the carbon body is deposited in this manner is molded by a press machine to form the negative electrode of the battery of this example.

また、ここで得られた炭素体のCuKα線によるX線回
折図を第2図、ラマンスペクトル図を第3図に示す。こ
の図から、本実施例の炭素体の平均面間隔は0.342nmで
あり、ラマンスペクトルによる1580cm-1のラマン強
度に対する1360cm-1のラマン強度の比は0.75である
ことがわかる。
The X-ray diffraction diagram of the carbon body obtained here by CuKα ray is shown in FIG. 2, and the Raman spectrum diagram is shown in FIG. From this figure, the average spacing of the carbon material of the present embodiment is 0.342Nm, the ratio of the Raman intensity of 1360 cm -1 for the Raman intensity of 1580 cm -1 by Raman spectrum is found to be 0.75.

また回折ピークの半値幅より求めた結晶子のC軸方向の
大きさは4.86nmであった。また、ホルダー7の上に上記
三次元構造体と同じように置かれたニッケル板上へ堆積
された炭素体の配向性を調べた。反射高速電子線回折よ
り得られる回折パターンは弧状のブロードなリングをな
していた。この回折パターンより求められる結晶子の配
向性は各結晶子のC軸方向の相対的な傾きが±35度以
内であり、高い配向性を有していることが確かめられ
た。
The size of the crystallite in the C-axis direction determined from the half width of the diffraction peak was 4.86 nm. Further, the orientation of the carbon body deposited on the nickel plate placed on the holder 7 in the same manner as the three-dimensional structure was examined. The diffraction pattern obtained by reflection high-energy electron diffraction was an arc-shaped broad ring. Regarding the crystallite orientation determined from this diffraction pattern, the relative inclination of each crystallite in the C-axis direction was within ± 35 degrees, and it was confirmed that the crystallite had a high orientation.

天然黒鉛(マダガスカル産)についてX線回折法,ラマ
ン散乱法により調査したところ、平均面間隔が0.336nm
であり、ラマンスペクトルによる1580cm-1のラマン
強度に対する1360cm-1のラマン強度の比が0.1であ
った。
When natural graphite (made in Madagascar) was investigated by X-ray diffraction and Raman scattering, the average spacing was 0.336 nm.
, And the ratio of the Raman intensity of 1360 cm -1 for the Raman intensity of 1580 cm -1 by Raman spectrum was 0.1.

このように平均面間隔に大差がなくてもレーザーラマン
法により得られる1360cm-1の結晶構造の乱れに反映
するラマンバンドに大きな相異があるため本実施例の炭
素体は天然黒鉛等の黒鉛に比べわずかに乱層構造を有し
ていることがわかる。
As described above, even if there is no great difference in the average interplanar spacing, there is a large difference in the Raman band reflected in the disorder of the crystal structure of 1360 cm −1 obtained by the laser Raman method. It can be seen that it has a slightly disordered structure compared to.

三酸化クロムを耐圧容器内で230℃の温度で熱処理
し、Cr3O8なる組成の酸化物を得る。この酸化物100
重量部に対し、粉末状ポリエチレン20重量部及びアセ
チレンブラック10重量部の混合物を作製し、120℃
の温度でかつ300kgcm-2の加圧力で成型し正極とす
る。
Chromium trioxide is heat-treated in a pressure vessel at a temperature of 230 ° C. to obtain an oxide having a composition of Cr 3 O 8 . This oxide 100
A mixture of 20 parts by weight of powdered polyethylene and 10 parts by weight of acetylene black is prepared with respect to parts by weight, and the mixture is heated to 120 ° C
And a pressure of 300 kgcm -2 to form a positive electrode.

これら正極,負極及びポリエチレン不織布よりなるセパ
レータを120℃で8時間真空乾燥し脱水処理した。グ
ローブボックス内で1M過塩素酸リチウム入りプロピレ
ンカーボネートを電解液として容量を調べたところ、正
極が18mAhであり、負極が7.0mAhであった。第4図
は、上述の正極,負極及びセパレータにより構成された
電池の断面図である。11,12はステンレス製の正,
負極罐であり、双方はポリプロピレンよりなる絶縁パッ
キン13により隔離されている。14はCr3O8を活物質
とする正極であって、正極罐11の内底面に固着した正
極集電体15に圧接されている。16は炭素体を活物質
とする負極であって負極罐12にスポット溶接されてい
る。17はセパレータであり、1Mの過塩素酸リチウム
を溶質としたプロピレンカーボネート溶液を電解液とし
て含浸させた。以上のようにして組み立てた電池を電池
Aとする。
The separator composed of the positive electrode, the negative electrode and the polyethylene nonwoven fabric was vacuum dried at 120 ° C. for 8 hours and dehydrated. When the capacity was examined in a glove box using 1 M propylene carbonate containing lithium perchlorate as an electrolytic solution, the capacity was 18 mAh for the positive electrode and 7.0 mAh for the negative electrode. FIG. 4 is a sectional view of a battery composed of the positive electrode, the negative electrode and the separator described above. 11 and 12 are stainless steel positive,
It is a negative electrode canister, and both are separated by an insulating packing 13 made of polypropylene. Reference numeral 14 is a positive electrode using Cr 3 O 8 as an active material, and is pressed against a positive electrode current collector 15 fixed to the inner bottom surface of the positive electrode can 11. Reference numeral 16 denotes a negative electrode having a carbon body as an active material, which is spot-welded to the negative electrode can 12. Reference numeral 17 is a separator, and a propylene carbonate solution containing 1 M lithium perchlorate as a solute was impregnated as an electrolytic solution. The battery assembled as described above is referred to as battery A.

又、下表1に示したように各種酸化物、カルコゲン化合
物を正極に、本実施例の炭素体を負極にして得られる電
池をB〜Eとした。
Further, as shown in Table 1 below, batteries obtained by using various oxides and chalcogen compounds as the positive electrode and the carbon body of this example as the negative electrode were designated as B to E.

第5図には、これら電池の充放電サイクル特性図を示
す。尚、充放電条件は、充電電流密度1mAcm-2で4時間
であり、放電電流密度1mAcm-2で放電終了電圧2.0Vと
した。
FIG. 5 shows a charge / discharge cycle characteristic diagram of these batteries. The charging and discharging conditions were a charging current density of 1 mAcm -2 for 4 hours, and a discharge current density of 1 mAcm -2 and a discharge end voltage of 2.0 V.

<比較例> 第4図の負極16に15φで打ち抜いたリチウム圧延板
を用い負極罐12の内定面に固着させた負極集電体に圧
接し、他は実施例A〜Eと同様の電池A′〜E′を比較
例とし、表2に示した。
<Comparative Example> A battery A similar to Examples A to E was used, in which a negative electrode 16 in FIG. 4 was pressed with a negative electrode current collector fixed to the inner surface of the negative electrode can 12 using a rolled lithium plate punched with 15φ. Tables 2 and 3 show comparative examples "-E".

第6図には、これら比較例の電池の充放電サイクル特性
図を示した。尚、充放電条件は充電電流密度1mAcm-2
4時間であり、また放電電流密度1mAcm-2で放電終了電
圧2.0Vとした。
FIG. 6 shows a charge / discharge cycle characteristic diagram of the batteries of these comparative examples. The charging and discharging conditions were a charging current density of 1 mAcm -2 for 4 hours, and a discharge current density of 1 mAcm -2 and a discharge termination voltage of 2.0V.

<発明の効果> 以上説明したように、本発明は正極の充放電可能容量が
負極に対して大となるように設定された非水電解液型二
次電池において、前記負極が、軽金属元素と電気化学的
に可逆的な層間化合物を形成し得る平面網状六隕環構造
を有する炭素体であって、平均面間隔が0.337nm
から0.355nm範囲であり、かつ、ラマンスペクト
ルにおける1580cm-1のラマン強度に対する136
0cm-1のラマン強度の比が0.4から1.0の範囲に
ある炭素体を活物質とすることを特徴とするので、負極
支配型の二次電池において負極に完全放電等のように深
い放電深度のころまで深放電した場合でも負極に何等の
悪影響が発生することがない。この結果、信頼性、サイ
クル特性といった特性の優れた非水電解液型二次電池を
提供することができる。
<Effects of the Invention> As described above, in the present invention, in the non-aqueous electrolyte secondary battery in which the chargeable / dischargeable capacity of the positive electrode is set to be larger than that of the negative electrode, the negative electrode contains a light metal element. A carbon body having a planar network hexagonal ring structure capable of forming an electrochemically reversible intercalation compound, having an average spacing of 0.337 nm.
To 0.355 nm range and 136 for a Raman intensity of 1580 cm -1 in the Raman spectrum.
Since a carbon body having a Raman intensity ratio of 0 cm −1 in the range of 0.4 to 1.0 is used as an active material, it is possible to completely discharge the negative electrode in a negative electrode-dominated secondary battery. Even if deep discharge is performed up to the deep discharge depth, no adverse effect occurs on the negative electrode. As a result, it is possible to provide a non-aqueous electrolyte secondary battery having excellent characteristics such as reliability and cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例の説明に供する炭素体生成装
置のブロック構成図である。 第2図は、本発明の1実施例に係る炭素体のCuKα線
によるX線回折図である。 第3図は、本発明の1実施例に係る炭素体のラマンスペ
クトル図である。 第4図は、本発明の1実施例を示す二次電池の断面図で
ある。 第5図は、本実施例の電池A〜Eの充放電可能な容量と
サイクル数の関係を示す図である。 第6図は、比較例電池A′〜E′の充放電可能な容量と
サイクル数の関係を示す図である。 1…バブル容器、2…アルゴンガス供給器、3…パイレ
ックスガラス管、4…反応管、5,6…ニードル弁、7
…試料ホルダー、8…加熱炉、11…正極罐、13…絶
縁パッキング、14…正極、15…正極集電体、16…
負極、17…セパレータ。
FIG. 1 is a block configuration diagram of a carbon body producing apparatus used for explaining one example of the present invention. FIG. 2 is an X-ray diffraction diagram by a CuKα ray of a carbon body according to one example of the present invention. FIG. 3 is a Raman spectrum diagram of a carbon body according to one example of the present invention. FIG. 4 is a sectional view of a secondary battery showing one embodiment of the present invention. FIG. 5 is a diagram showing the relationship between the chargeable / dischargeable capacity and the number of cycles of the batteries A to E of this example. FIG. 6 is a diagram showing the relationship between the chargeable / dischargeable capacity and the number of cycles of the comparative batteries A ′ to E ′. 1 ... Bubble container, 2 ... Argon gas supply device, 3 ... Pyrex glass tube, 4 ... Reaction tube, 5, 6 ... Needle valve, 7
... sample holder, 8 ... heating furnace, 11 ... positive electrode canister, 13 ... insulating packing, 14 ... positive electrode, 15 ... positive electrode current collector, 16 ...
Negative electrode, 17 ... Separator.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−182670(JP,A) 特開 昭55−62671(JP,A) 特開 昭57−103274(JP,A) 特開 昭58−93176(JP,A) 特開 昭61−111907(JP,A) 特開 昭60−36315(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-60-182670 (JP, A) JP-A-55-62671 (JP, A) JP-A-57-103274 (JP, A) JP-A-58- 93176 (JP, A) JP 61-111907 (JP, A) JP 60-36315 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極の充放電可能容量が負極に対して大と
なるように設定された非水電解液型二次電池において、 前記負極が、軽金属元素と電気化学的に可逆的な層間化
合物を形成し得る平面網状六隕環構造を有する炭素体で
あって、平均面間隔が0.337nmから0.355n
mの範囲であり、かつ、ラマンスペクトルにおける15
80cm-1のラマン強度に対する1360cm-1のラマ
ン強度の比が0.4から〜1.0の範囲にある炭素体を
活物質とすることを特徴とする非水電解液型二次電池。
1. A non-aqueous electrolyte secondary battery in which the chargeable / dischargeable capacity of the positive electrode is set to be larger than that of the negative electrode, wherein the negative electrode is an electrochemically reversible intercalation compound with a light metal element. A carbon body having a planar net-like hexagonal ring structure capable of forming a sphere having an average interplanar spacing of 0.337 nm to 0.355 n.
m range and 15 in the Raman spectrum
Nonaqueous electrolyte secondary batteries, characterized in that the ratio of the Raman intensity of 1360 cm -1 for the Raman intensity of 80 cm -1 to the active material carbon body in the range of 0.4 to 1.0.
【請求項2】平面網状六隕環構造を有する炭素体が、わ
ずかに乱層構造を有しかつ選択的配向構造を有する黒鉛
構造を主として成る炭素体である特許請求の範囲第1項
記載の非水電解液型二次電池。
2. A carbon body having a planar net-like hexagonal ring structure, which is a carbon body mainly having a graphite structure having a slightly disordered structure and a selectively oriented structure. Non-aqueous electrolyte secondary battery.
【請求項3】平面網状六隕環構造を有する炭素体が、炭
化水素又は炭化水素の一部に他の特性基を付加もしくは
置換した炭化水素化合物を出発原料とし熱分解により気
相堆積された炭素体である特許請求の範囲第1項記載の
非水電解液型二次電池。
3. A carbon body having a plane network hexagonal ring structure is vapor-deposited by thermal decomposition from a hydrocarbon or a hydrocarbon compound obtained by adding or substituting another characteristic group to a part of the hydrocarbon as a starting material. The non-aqueous electrolyte secondary battery according to claim 1, which is a carbon body.
JP61156966A 1986-03-27 1986-07-02 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH063745B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61156966A JPH063745B2 (en) 1986-07-02 1986-07-02 Non-aqueous electrolyte secondary battery
US07/030,886 US4863814A (en) 1986-03-27 1987-03-26 Electrode and a battery with the same
DE3750754T DE3750754T2 (en) 1986-03-27 1987-03-27 Electrode and battery provided with it.
EP87302651A EP0239410B1 (en) 1986-03-27 1987-03-27 An electrode and a battery with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156966A JPH063745B2 (en) 1986-07-02 1986-07-02 Non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27068997A Division JP3229847B2 (en) 1997-10-03 1997-10-03 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6313282A JPS6313282A (en) 1988-01-20
JPH063745B2 true JPH063745B2 (en) 1994-01-12

Family

ID=15639213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156966A Expired - Fee Related JPH063745B2 (en) 1986-03-27 1986-07-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH063745B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756795B2 (en) * 1986-05-30 1995-06-14 シャープ株式会社 Electrode for non-aqueous secondary battery
JPH0834108B2 (en) * 1986-10-31 1996-03-29 東芝電池株式会社 Non-aqueous solvent secondary battery
JPS6414881A (en) * 1987-07-08 1989-01-19 Mitsubishi Gas Chemical Co Secondary battery
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
US6706447B2 (en) 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
US8980477B2 (en) 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US7276314B2 (en) 2000-12-22 2007-10-02 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US7771874B2 (en) 2005-06-29 2010-08-10 Fmc Corporation Lithium manganese compounds and methods of making the same
US7588623B2 (en) 2005-07-05 2009-09-15 Fmc Corporation Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US20090035663A1 (en) 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US8021496B2 (en) 2007-05-16 2011-09-20 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
JPWO2021010085A1 (en) * 2019-07-12 2021-01-21

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562671A (en) * 1978-10-31 1980-05-12 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary cell
JPS57103274A (en) * 1980-12-17 1982-06-26 Yuasa Battery Co Ltd Secondary battery with nonaqueous electrolyte
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery

Also Published As

Publication number Publication date
JPS6313282A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
US4863814A (en) Electrode and a battery with the same
US5130211A (en) Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes
EP0763865B1 (en) Lithium secondary battery and carbonaceous material useful therein
KR100326975B1 (en) Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
US5344726A (en) Carbon anode for secondary battery
US6383686B1 (en) Anode material for lithium secondary battery, lithium secondary battery using said anode material, and method for charging of said secondary battery
CA1275437C (en) Secondary battery using non-aqueous solvent
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US4835075A (en) Secondary battery using nonaqueous electrolytes
US20090202911A1 (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
JPH06243867A (en) Nonaqueous secondary battery
JPH063745B2 (en) Non-aqueous electrolyte secondary battery
US6274272B1 (en) Active cathode material for a lithium rechargeable cell
EP0434402B1 (en) Process for preparing a carbon electrode
JP2703350B2 (en) Rechargeable battery
JP3141003B2 (en) Non-aqueous electrolyte secondary battery
JPH0589879A (en) Lithium secondary battery
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
RU2133527C1 (en) Pyrolized carbon containing material for anode of lithium storage cell and method of its manufacture
JP3229847B2 (en) Non-aqueous electrolyte secondary battery
JP2656003B2 (en) Non-aqueous secondary battery
JPH03285273A (en) Nonaqueous electrolyte secondary battery
JPH0828238B2 (en) Non-aqueous secondary battery
JP2733402B2 (en) Rechargeable battery
JPH03245473A (en) Non-aqueous solvent secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees