JPH03285273A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH03285273A JPH03285273A JP2086526A JP8652690A JPH03285273A JP H03285273 A JPH03285273 A JP H03285273A JP 2086526 A JP2086526 A JP 2086526A JP 8652690 A JP8652690 A JP 8652690A JP H03285273 A JPH03285273 A JP H03285273A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- carbon
- secondary battery
- electrolyte secondary
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 8
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 33
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 5
- 239000011149 active material Substances 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 3
- 239000010941 cobalt Substances 0.000 claims abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000001294 propane Substances 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 14
- 239000003792 electrolyte Substances 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 7
- 238000000354 decomposition reaction Methods 0.000 abstract description 4
- 238000002050 diffraction method Methods 0.000 abstract 1
- 229910052744 lithium Inorganic materials 0.000 description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 8
- 230000002687 intercalation Effects 0.000 description 8
- 238000009830 intercalation Methods 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- -1 Mari Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000007770 graphite material Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002641 lithium Chemical group 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、非水電解液二次電池、詳しくは、小形、軽量
の新規な二次電池に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a novel compact and lightweight secondary battery.
従来の技術
近年、電子機器のポータプル化、コードレス化が急速に
進んでおり、これらの駆動用電源として小形・軽量で、
高エネルギー密度を有する二次電池への要望が高い。こ
のような点で、非水系二次電池、特にリチウム二次電池
は、とりわけ高電圧、高エネルギー密度を有する電池と
して期待が大きい。Conventional technology In recent years, electronic devices have rapidly become portable and cordless, and as a power source for driving these devices, small and lightweight
There is a high demand for secondary batteries with high energy density. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, have high expectations as batteries with particularly high voltage and high energy density.
従来、リチウム二次電池の正極活物質には、二酸化マン
ガンや五酸化バナジウムなどが用いられており、これら
の正極と1金属リチウム負極および有機電解液とで電池
を構成し、充放電を行なっている。しかし、一般に負極
にリチウム金属を用いる二次電池では充電時に生成する
デンドライト状リチウムによる内部短絡や活物質と電解
液の副反応といった課題が実用化への障害となっている
。Conventionally, manganese dioxide, vanadium pentoxide, etc. have been used as positive electrode active materials for lithium secondary batteries, and these positive electrodes, monometallic lithium negative electrodes, and organic electrolytes constitute a battery and are charged and discharged. There is. However, in general, secondary batteries that use lithium metal for the negative electrode have problems such as internal short circuits due to dendrite-like lithium produced during charging and side reactions between the active material and the electrolyte, which are obstacles to practical application.
このほか、高率充電特性や過放電特性面においても十分
に満足出来るとはいえない。In addition, it cannot be said that the high-rate charging characteristics and over-discharging characteristics are fully satisfactory.
最近、層状化合物のインターカレーション(挿入反応)
を利用した新しいタイプの電極活物質が注目さ出した。Recently, intercalation (insertion reaction) of layered compounds
A new type of electrode active material that utilizes has attracted attention.
黒鉛層間化合物は古くから二次電池の電極材料として考
えられている。特に、ClO4−1PFs−1BF4−
イオンなどのアニオンを取りこんだ黒鉛層間化合物は正
極として用いられ、まり、L 1 、、N a ”な
どのカチオンを取りこんだ黒鉛層間化合物は負極として
考えられる。しかしながら、このようなカチオンを取り
こんだ黒鉛層間化合物は極めて不安定であり、黒鉛材料
を負極として用いた場合、電池としての安定性に欠ける
。また大きな電解液の分解も伴うためにリチウム負極の
代替となり得るものではなかった。Graphite intercalation compounds have long been considered as electrode materials for secondary batteries. In particular, ClO4-1PFs-1BF4-
A graphite intercalation compound incorporating anions such as ions is used as a positive electrode, and a graphite intercalation compound incorporating cations such as Mari, L 1 , Na, etc. can be considered as a negative electrode. However, graphite incorporating such cations is used as a negative electrode. Intercalation compounds are extremely unstable, and when a graphite material is used as a negative electrode, it lacks stability as a battery.Also, large amounts of electrolyte decomposition are involved, so it cannot be used as a substitute for lithium negative electrodes.
ここにいたり、ある種の液状の炭化水素あるし)は高分
子材料を炭素化して得られた疑黒鉛材料のカチオン挿入
体が負極として有効であり、利用率が比較的高く電池と
しての安定性に優れ、小形、軽量の二次電池を提供し得
ると報告されている。For example, a cationic insert of a pseudographite material obtained by carbonizing a polymer material (such as some liquid hydrocarbons) is effective as a negative electrode, and has a relatively high utilization rate and stability as a battery. It is reported that a compact, lightweight secondary battery with excellent performance can be provided.
発明が解決しようとする課題
一般に、黒鉛層間にインターカレートされ得るリチウム
の量は、炭素6原子に対しリチウム1原子が挿入された
第1ステージの黒鉛層間化合物C6L iが上限である
と報告されている。その場合活物質は372 m A
h / gの容量となる。上記の疑黒鉛材料を電極材に
用い、リチウムの吸蔵および放出量を求めたところ、1
00〜150mAh/gカーボンの容量しか得られず、
また充放電に伴う炭素極の分極が大きいために、例えば
LiC。Problems to be Solved by the Invention Generally, it is reported that the upper limit of the amount of lithium that can be intercalated between graphite layers is the first stage graphite intercalation compound C6L i in which one lithium atom is inserted for every six carbon atoms. ing. In that case, the active material is 372 mA
The capacity is h/g. Using the above pseudographite material as an electrode material, the amount of lithium absorbed and released was determined to be 1
Only a capacity of 00 to 150mAh/g carbon can be obtained,
Also, since the polarization of the carbon electrode is large during charging and discharging, for example, LiC.
O2などの正極と組み合わせた場合、満足のゆく容量、
電圧を有する電池を得ることは困難である。When combined with a positive electrode such as O2, it has a satisfactory capacity,
It is difficult to obtain batteries with high voltage.
本発明は、上記のような従来の課題を解消し、高電圧、
高容量を有した二次電池を提供することを目的としてい
る。The present invention solves the conventional problems as described above, and
The purpose is to provide a secondary battery with high capacity.
課題を解決するだめの手段
これらの課題を解決するため本発明は、負極の炭素材料
に、X線広角回折法による002面の面間隔(d O0
2)が3.37Å以上350人以f−C軸方向の結晶子
の厚み(L c)が50Å以上200Å以下、a軸方向
の結晶子の厚み(La)が100Å以上400Å以下の
、炭化水素を気相で熱分解させて金属基材上に堆積成長
させた炭素材で、しかも予めその表面を酸化処理したも
のを用いる。Means for Solving the Problems In order to solve these problems, the present invention provides a negative electrode carbon material with a lattice spacing of 002 planes (d O0
2) is a hydrocarbon whose crystallite thickness in the f-C axis direction (L c) is 50 Å or more and 200 Å or less, and the crystallite thickness in the a-axis direction (La) is 100 Å or more and 400 Å or less A carbon material that is deposited and grown on a metal base material by thermally decomposing it in the gas phase, and whose surface has been oxidized in advance is used.
作用
負極材として用いる炭素質材料は、一般にある程度の乱
層構造を有した疑黒鉛材料か好まれる。The carbonaceous material used as the working negative electrode material is generally a pseudographite material having a certain degree of turbostratic structure.
天然黒鉛や人造黒鉛などに見られる黒鉛結晶化がかなり
発達した黒鉛材を用いた場合、充放電に伴うリチウムの
インターカレーション反応は見られず、電解液の分解反
応が主体的に進行すると考えられる。このことは黒鉛材
のC軸方向の結晶子の厚み(Lc)の値と密接な関係が
あると思われ、おおむねLcが200Å以上の炭素材で
は充放電に伴うリチウムの吸蔵・放出は不可能である。When graphite materials with highly developed graphite crystallization, such as those found in natural graphite and artificial graphite, are used, no intercalation reaction of lithium is observed during charging and discharging, and it is thought that the decomposition reaction of the electrolyte proceeds primarily. It will be done. This seems to be closely related to the value of the crystallite thickness (Lc) in the C-axis direction of the graphite material, and it is generally impossible to absorb and release lithium during charging and discharging in carbon materials with Lc of 200 Å or more. It is.
方、Lc値が50Å以下の炭素材では、リチウムのイン
タカレーションは可能であるが、結晶化か不充分である
ために層間にインクカレートされたリチウムは非常に不
安定であり、充放電に伴う炭素極の分極が大きくなる。On the other hand, in carbon materials with an Lc value of 50 Å or less, intercalation of lithium is possible, but due to insufficient crystallization, the lithium ink-calated between the layers is extremely unstable and cannot be easily charged and discharged. The accompanying polarization of the carbon electrode increases.
従って高容量を得ることは困難であり、高率充放電も不
可能となる。このような観点から負極炭素材としては、
X線回折ピークで面間隔(d O02)が337Å以上
3゜50Å以下で、かつシェラ−の式で形状因子Kが0
.9のときLcの値が50Å以上200Å以下、好まし
くは100Å以上200Å以下の炭素材が最適となるが
、高分子を焼成したものやビ・ソチ系から合成したもの
は、上記条件を満足したものでも十分ではなく、唯一気
相から合成した炭素材料の中に良好な特性を示すものが
ある。この条件を満たす炭素材では、比較的結晶化が進
んでおり層状構造はある程度発達した状態にある。従っ
て、電気化学的にインタカレートされたリチウムは層間
で安定に存在することができ、炭素極の分極は小さくな
る。また自己放電が小さく、高率充放電も可能とみられ
る。このことは炭素材のa軸方向の結晶子の厚みLaの
値とも密接な関係があり、同じくンエラーの式で形状因
子Kが1.84のときLa値としては100λ以上40
0Å以下、好ましくは200Å以上400Å以下の炭素
材が適している。Therefore, it is difficult to obtain high capacity, and high rate charging and discharging is also impossible. From this point of view, as negative electrode carbon materials,
The interplanar spacing (dO02) at the X-ray diffraction peak is 337 Å or more and 3°50 Å or less, and the shape factor K according to Scherrer's equation is 0.
.. 9, a carbon material with an Lc value of 50 Å or more and 200 Å or less, preferably 100 Å or more and 200 Å or less is optimal, but those made by baking a polymer or synthesized from a Bi-Sochi system satisfy the above conditions. However, this is not enough, and there is only one carbon material synthesized from the gas phase that shows good properties. In a carbon material that satisfies this condition, crystallization is relatively advanced and the layered structure is developed to some extent. Therefore, the electrochemically intercalated lithium can stably exist between the layers, and the polarization of the carbon electrode becomes small. In addition, self-discharge is small, and high-rate charging and discharging is also expected to be possible. This is closely related to the value of the thickness La of the crystallites in the a-axis direction of the carbon material. Similarly, when the shape factor K is 1.84 in the N error formula, the La value is 100λ or more and 40
A carbon material with a thickness of 0 Å or less, preferably 200 Å or more and 400 Å or less is suitable.
しかし、このままではまだ不十分で、このまま用いると
充電時に電解液を分解してガスを発生させる。この原因
として、炭素材の表面近傍には反応性の高い、非晶質の
微小構造が存在し、この部分が電解液を分解させている
と考えられる。However, this is still insufficient, and if used as is, the electrolyte will decompose during charging and generate gas. The reason for this is thought to be that a highly reactive amorphous microstructure exists near the surface of the carbon material, and this portion decomposes the electrolyte.
そこで炭素材を酸化雰囲気で加熱することにより、上記
反応性の高い、非晶質の微小構造は選択的に反応して電
解液に不活性の物質に変化して失活するものとみられ、
この材料を充電しても電解液の分解はおこらないことが
確認された。Therefore, by heating the carbon material in an oxidizing atmosphere, the highly reactive amorphous microstructure is thought to selectively react and turn into a substance that is inert to the electrolyte and is deactivated.
It was confirmed that the electrolyte did not decompose even when this material was charged.
実 施 例
実施例1
本実施例では、負極用の炭素材料が吸蔵、放出し得るリ
チウムの量および炭素極の分極特性を検討する1方法と
して、通常の二次電池とは逆の構成として炭素極を正極
、金属リチウムを負極としたコイン形電池を構成し評価
を行った。Examples Example 1 In this example, as a method for examining the amount of lithium that can be occluded and released by the carbon material for the negative electrode and the polarization characteristics of the carbon electrode, carbon A coin-shaped battery with a positive electrode and metal lithium as a negative electrode was constructed and evaluated.
第1図にそのコイン形電池の縦断面図を示す。FIG. 1 shows a longitudinal cross-sectional view of the coin-shaped battery.
図において1は耐有機電解液性ステンレス鋼板を加工し
た電池ケース、2は同材料の封口板、3はステンレス製
の正極集電体で、ケース1の内面にスポット溶接されて
いる。4は金属リチウム負極で封口板2に圧着されてい
る。5は正極合剤で、下記に示す炭素繊維粉末85重量
部に、フッ素樹脂結着剤15重量部を混合したもの50
mgを集電体3の上に充填、成型したものである。6は
微孔性のポリプロピレン製セパレータ、7はポリプロピ
レン製絶縁バッキングである。電解液には炭酸プロピレ
ンと1,2−ジメトキシエタンの等容積混合溶媒に、過
塩素酸リチウムを1モル/iの割合で溶解したものを用
いた。評価試験は、充放電電流密度0. 3mA/ca
r、充電終止電圧(炭素材からみると放電となる)2.
5V、放電終止電圧(同じく、炭素材からみて充電とな
る)OVの条件下で定電流充放電試験を行った。In the figure, 1 is a battery case made of an organic electrolyte-resistant stainless steel plate, 2 is a sealing plate made of the same material, and 3 is a positive electrode current collector made of stainless steel, which is spot welded to the inner surface of the case 1. 4 is a metallic lithium negative electrode which is pressed onto the sealing plate 2. 5 is a positive electrode mixture, which is a mixture of 85 parts by weight of carbon fiber powder shown below and 15 parts by weight of a fluororesin binder.
mg was filled onto a current collector 3 and molded. 6 is a microporous polypropylene separator, and 7 is a polypropylene insulating backing. The electrolytic solution used was one in which lithium perchlorate was dissolved at a ratio of 1 mol/i in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane. The evaluation test was conducted at a charge/discharge current density of 0. 3mA/ca
r, end-of-charge voltage (discharge when viewed from the carbon material)2.
A constant current charge/discharge test was conducted under the conditions of 5 V and a discharge end voltage (also considered as charging from the carbon material's perspective) of OV.
なお、この電池の寸法は直径20mm、総高1.6mm
である。The dimensions of this battery are 20mm in diameter and 1.6mm in total height.
It is.
第1表に本実施例で用いた、ベンゼンと水素の混合体を
気相で熱分解させて鉄触媒粒子上に堆積成長させてえた
繊維状の炭素材の諸物性値および10サイクル目の放電
比容量を示した。比較のため、同一の炭素材を所定の酸
素濃度のもとて300℃にて加熱処理してなる電池を構
成した。Table 1 shows the physical properties of the fibrous carbon material used in this example, obtained by thermally decomposing a mixture of benzene and hydrogen in the gas phase and depositing it on iron catalyst particles, and the discharge at the 10th cycle. The specific capacity is shown. For comparison, a battery was constructed by heat-treating the same carbon material at 300° C. under a predetermined oxygen concentration.
第2図には第1表で示した各炭素材を用いた電池の1サ
イクル目の充電曲線を示す。FIG. 2 shows charging curves of the first cycle of batteries using each of the carbon materials shown in Table 1.
第 1 表
第1表および第2図から負極用の材料には、電池B−D
およびB°〜D°っまりd002が3.37〜3.46
.Lcは91〜195.Laは132〜404の範囲の
物性値をもつ炭素材が好ましく、なかでも予め表面を酸
化処理したものが、特に適している。Table 1 From Table 1 and Figure 2, the materials for the negative electrode include batteries B-D.
and B°~D° exactly d002 is 3.37~3.46
.. Lc is 91-195. La is preferably a carbon material having a physical property value in the range of 132 to 404, and among them, one whose surface has been previously oxidized is particularly suitable.
実施例2
実施例1で使用したコイン形電池を用い、ベンゼンをア
ルゴン雰囲気で熱分解させてニッケル基板上に堆積成長
させてえた炭素材を用いたほかは実施例1と全く同じよ
うに構成した。同じく、比較のため、同一の炭素材を所
定の酸素濃度のもとて300℃にて加熱処理したものを
用いて電池を構成した。Example 2 The coin-shaped battery used in Example 1 was used, and the structure was exactly the same as Example 1, except that a carbon material obtained by thermally decomposing benzene in an argon atmosphere and depositing it on a nickel substrate was used. . Similarly, for comparison, a battery was constructed using the same carbon material heat-treated at 300° C. under a predetermined oxygen concentration.
充放電試験も実施例1と全く同じように行なった。A charge/discharge test was also conducted in exactly the same manner as in Example 1.
第2表に本実施例で用いた炭素材の諸物性値およびlO
サイクル目の放電比容量を示した。第3図には第2表で
示した各炭素材を用いた電池の1サイクル目の充電曲線
を示す。Table 2 shows the physical property values and lO of the carbon material used in this example.
The discharge specific capacity of the cycle is shown. FIG. 3 shows charging curves of the first cycle of batteries using each carbon material shown in Table 2.
第2表および第3図から負極用の材料には、電池F−H
およびF゛〜H′つまりd002が3.38〜3.51
.Lcは52〜173.Laは103〜370 の範囲
の物性値をもつ炭素材が好ましく、なかでも予め表面を
酸化処理したものが、適している。From Table 2 and Figure 3, the negative electrode materials include battery F-H.
and F゛~H' or d002 is 3.38~3.51
.. Lc is 52-173. La is preferably a carbon material having a physical property value in the range of 103 to 370, and among them, one whose surface has been oxidized in advance is suitable.
発明の効果
以上の説明から明らかなように、実施例1および2より
、非水電解液二次電池の負極材料に、X線広角回折法に
よる002面の面間隔(d002)が3.37λ以上3
.50λ以下、C軸方向の結晶子の厚みLcが50Å以
上200Å以下、a軸方向の結晶子の厚みLaが100
Å以上400λ以下の、炭化水素を気相で熱分解させて
金属基村上に堆積成長させた炭素材で、しかも予め該表
面を酸化処理したものに軽金属の活物質を吸蔵させたも
のを用いることにより、充電時に電解液が分解してガス
発生する不都合が解消できたものである。Effects of the Invention As is clear from the above explanation, Examples 1 and 2 show that the negative electrode material of the non-aqueous electrolyte secondary battery has a 002 plane spacing (d002) of 3.37λ or more as measured by X-ray wide-angle diffraction. 3
.. 50λ or less, the crystallite thickness Lc in the C-axis direction is 50 Å or more and 200 Å or less, and the crystallite thickness La in the a-axis direction is 100
A carbon material with a diameter of Å or more and 400λ or less, which is made by thermally decomposing a hydrocarbon in the gas phase and depositing it on a metal substrate, and whose surface has been oxidized in advance and which has a light metal active material occluded therein, is used. This eliminates the problem of electrolyte decomposition and gas generation during charging.
また、負極の電位を立ち上げる構成をとることで、たと
えばOv過放電が可能となり、しかも、充電によるリチ
ウム金属のデンドライト形成も基本的になくなった。こ
のため従来の金属リチウムを使用した電池が有していた
過放電ができない、デンドライトの形成による内部ショ
ートなどの課題を解決することもできる。Furthermore, by adopting a configuration in which the potential of the negative electrode is raised, for example, Ov overdischarge is possible, and dendrite formation of lithium metal due to charging is basically eliminated. Therefore, it is possible to solve problems that conventional batteries using metallic lithium have, such as inability to over-discharge and internal short circuits due to dendrite formation.
なお、実施例では炭化水素としてベンゼンを用いたが、
メタンガスやプロパンガスでもよい。また、実施例では
炭素材を合成する際に水素ガスを混合させたが、単にア
ルゴンなどの不活性ガス雰囲気で行ってもよい。In addition, although benzene was used as the hydrocarbon in the examples,
Methane gas or propane gas may also be used. Further, in the examples, hydrogen gas was mixed when synthesizing the carbon material, but the synthesis may also be carried out simply in an inert gas atmosphere such as argon.
さらに、実施例では金属触媒粒子あるいは基板に鉄およ
びニッケルを用いたが、コバルトあるいはこれらの混合
体でもよい。また、当然のことながら炭素材は繊維状で
もあるいは粉状であってもよい。Furthermore, although iron and nickel were used for the metal catalyst particles or the substrate in the examples, cobalt or a mixture thereof may be used. Furthermore, it goes without saying that the carbon material may be in the form of fibers or powder.
第1図は本発明の実施例に用いたコイン形電池の縦断面
図、第2図は1サイクル目の充電特性の比較を示す図、
第3図は別な例の電池の1サイクル目の充電特性の比較
を示す図である。
1・・・ケース、2・・・封口板、3・・・正極集電体
、4・・・負極、5・・・正極、6・・・セパレータ、
7・・・絶縁バッキング。FIG. 1 is a longitudinal cross-sectional view of a coin-shaped battery used in an example of the present invention, and FIG. 2 is a diagram showing a comparison of charging characteristics in the first cycle.
FIG. 3 is a diagram showing a comparison of charging characteristics in the first cycle of another example of batteries. DESCRIPTION OF SYMBOLS 1... Case, 2... Sealing plate, 3... Positive electrode current collector, 4... Negative electrode, 5... Positive electrode, 6... Separator,
7...Insulating backing.
Claims (3)
な負極とを備えた非水電解液二次電池において; 上記負極は、炭化水素を気相で熱分解させて金属基材上
に堆積成長させた、X線広角回折法による002面の面
間隔(d002)が3.37Å以上3.50Å以下、c
軸方向の結晶子の厚み(Lc)が50Å以上200Å以
下、a軸方向の結晶子の厚み(La)が100Å以上4
00Å以下の炭素材でしかも予めその表面を酸化処理し
たものであり、該炭素材に軽金属の活物質を吸蔵させた
ものであることを特徴とする非水電解液二次電池。(1) In a non-aqueous electrolyte secondary battery comprising a chargeable/dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable/dischargeable negative electrode; The interplanar spacing (d002) of the 002 plane is 3.37 Å or more and 3.50 Å or less, c
The crystallite thickness in the axial direction (Lc) is 50 Å or more and 200 Å or less, and the crystallite thickness in the a-axis direction (La) is 100 Å or more4
1. A non-aqueous electrolyte secondary battery comprising a carbon material having a thickness of 00 Å or less, the surface of which has been previously oxidized, and a light metal active material occluded in the carbon material.
ンからなる群から選ばれた少なくとも1つである特許請
求の範囲第1項記載の非水電解液二次電池。(2) The nonaqueous electrolyte secondary battery according to claim 1, wherein the hydrocarbon is at least one selected from the group consisting of benzene, methane, and propane.
らなる群から選ばれた少なくとも1つである粒子もしく
は基板である特許請求の範囲第1項記載の非水電解液二
次電池(3) The nonaqueous electrolyte secondary battery according to claim 1, wherein the metal base material is a particle or a substrate that is at least one selected from the group consisting of iron, nickel, and cobalt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2086526A JPH03285273A (en) | 1990-03-30 | 1990-03-30 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2086526A JPH03285273A (en) | 1990-03-30 | 1990-03-30 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03285273A true JPH03285273A (en) | 1991-12-16 |
Family
ID=13889437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2086526A Pending JPH03285273A (en) | 1990-03-30 | 1990-03-30 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03285273A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299122A (en) * | 1992-04-24 | 1993-11-12 | Sharp Corp | Charging method |
US5432029A (en) * | 1993-05-14 | 1995-07-11 | Sharp Kabushiki Kaisha | Lithium secondary battery |
US5482797A (en) * | 1993-02-16 | 1996-01-09 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery |
EP0698934A2 (en) | 1994-07-29 | 1996-02-28 | SHARP Corporation | A method of manufacturing a negative electrode for lithium secondary battery |
EP0713256A1 (en) | 1994-10-27 | 1996-05-22 | Sharp Kabushiki Kaisha | Lithium secondary battery and process for preparing negative-electrode active material for use in the same |
-
1990
- 1990-03-30 JP JP2086526A patent/JPH03285273A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299122A (en) * | 1992-04-24 | 1993-11-12 | Sharp Corp | Charging method |
US5482797A (en) * | 1993-02-16 | 1996-01-09 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery |
US5432029A (en) * | 1993-05-14 | 1995-07-11 | Sharp Kabushiki Kaisha | Lithium secondary battery |
EP0698934A2 (en) | 1994-07-29 | 1996-02-28 | SHARP Corporation | A method of manufacturing a negative electrode for lithium secondary battery |
EP0713256A1 (en) | 1994-10-27 | 1996-05-22 | Sharp Kabushiki Kaisha | Lithium secondary battery and process for preparing negative-electrode active material for use in the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6294291B1 (en) | Secondary battery or cell with a non-aqueous electrolyte | |
US5130211A (en) | Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes | |
EP0713256B1 (en) | Lithium secondary battery and process for preparing negative-electrode active material for use in the same | |
JP4346565B2 (en) | Nonaqueous electrolyte secondary battery | |
CA2032137C (en) | Carbonaceous electrodes for lithium cells | |
US5643695A (en) | Carbonaceous electrode and compatible electrolyte | |
EP0688057B1 (en) | Lithium ion secondary battery | |
JP5060010B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102211835B1 (en) | Negative active material for recahrgeable lithium battery and recahrgeable lithium battery including the same | |
US11784314B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery including the same | |
EP1521317A2 (en) | Rechargeable lithium battery | |
EP2624340B1 (en) | Negative active material, method of preparing the same, negative electrode for lithium secondary battery including negative active material, and lithium secondary battery including negative electrode | |
JP5601536B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2009076468A (en) | Nonaqueous electrolyte secondary battery | |
EP0690518B1 (en) | Non-aqueous secondary battery and negative electrode | |
CN111668462B (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JPH04155776A (en) | Nonaqueous electrolyte secondary battery | |
US7452636B2 (en) | Lithium secondary battery | |
JPH03285273A (en) | Nonaqueous electrolyte secondary battery | |
JPH0589879A (en) | Lithium secondary battery | |
JPH07296799A (en) | Carbon negative electrode and li secondary battery | |
JPH03245473A (en) | Non-aqueous solvent secondary cell | |
JPH03289068A (en) | Nonaqueous electrolyte secondary battery | |
JPH0428174A (en) | Nonaqueous electrolytic liquid secondary battery | |
JP3350114B2 (en) | Non-aqueous electrolyte secondary battery |