JPH06344503A - Production of laminated sheet and composite film for laminated sheet - Google Patents
Production of laminated sheet and composite film for laminated sheetInfo
- Publication number
- JPH06344503A JPH06344503A JP16025693A JP16025693A JPH06344503A JP H06344503 A JPH06344503 A JP H06344503A JP 16025693 A JP16025693 A JP 16025693A JP 16025693 A JP16025693 A JP 16025693A JP H06344503 A JPH06344503 A JP H06344503A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- fluororesin
- prepreg
- melting point
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 74
- 229920005989 resin Polymers 0.000 claims abstract description 126
- 239000011347 resin Substances 0.000 claims abstract description 126
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 86
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 86
- 238000002844 melting Methods 0.000 claims abstract description 72
- 230000008018 melting Effects 0.000 claims abstract description 72
- 239000011888 foil Substances 0.000 claims abstract description 32
- 239000006185 dispersion Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 238000001035 drying Methods 0.000 claims abstract description 14
- 238000005470 impregnation Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 32
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 claims description 32
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 22
- 229920001187 thermosetting polymer Polymers 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 9
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 claims description 8
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 claims description 8
- 229920001780 ECTFE Polymers 0.000 claims description 7
- 230000014759 maintenance of location Effects 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims 1
- 229910000679 solder Inorganic materials 0.000 abstract description 11
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 117
- 230000000694 effects Effects 0.000 description 26
- 239000004744 fabric Substances 0.000 description 16
- 239000011521 glass Substances 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 238000000465 moulding Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 230000009182 swimming Effects 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 230000035939 shock Effects 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- -1 polytetrafluoroethylene, tetrafluoride Polymers 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- XIUFWXXRTPHHDQ-UHFFFAOYSA-N prop-1-ene;1,1,2,2-tetrafluoroethene Chemical group CC=C.FC(F)=C(F)F XIUFWXXRTPHHDQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、例えば、高周波プリ
ント配線基板として用いられる低誘電率積層板のような
積層板の製造方法および積層板用複合フィルムに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a laminate such as a low dielectric constant laminate used as a high frequency printed wiring board, and a composite film for a laminate.
【0002】[0002]
【従来の技術】従来、積層板の製造方法としては次に述
べるような各種の製造方法がある。第一の製造方法は、
基材にPTFE樹脂(ポリ・テトラ・フルオロ・エチレ
ン、4フッ化樹脂)を含浸し、これを乾燥および焼成し
てプリプレグ(pre-preg)を形成し、複数層のプリプレ
グ間にPFA樹脂(4フッ化エチレン・パーフルオロア
ルキルビニルエーテル共重合樹脂)フィルムまたはFE
P樹脂(パーフルオロエチレンプロピレン樹脂)フィル
ムを介設し、最外層に配置する金属箔とプリプレグとの
間にも上記フィルムを介設して、積層成形することによ
り積層板を製造する方法である。2. Description of the Related Art Conventionally, as a method for manufacturing a laminated plate, there are various manufacturing methods as described below. The first manufacturing method is
A base material is impregnated with a PTFE resin (polytetrafluoroethylene, tetrafluoride resin), and this is dried and fired to form a prepreg (pre-preg), and a PFA resin (4 Fluorinated ethylene / perfluoroalkyl vinyl ether copolymer resin film or FE
This is a method for producing a laminated plate by interposing a P resin (perfluoroethylene propylene resin) film, and interposing the film also between the metal foil and the prepreg arranged in the outermost layer, and carrying out lamination molding. .
【0003】この第一の製造方法によれば、上記フィル
ムを介設することで、金属箔とプリプレグとの接着強さ
が保持され、またプリプレグ層間の接着力が保持され、
さらに積層板中の樹脂含有比率が調節できる利点がある
反面、一般に上述のフィルムはスクリュ押出機で樹脂を
溶融混練し、T型ダイスを通して射出成形されるため、
このフィルムの製造工程中に相当量の金属小片や金属粉
がフィルム中に混入し、金属小片および金属粉は導電性
を有するため、プリント配線基板においては回路の短
絡、断線などの要因となり、実質的に使用困難な問題点
があった。According to this first manufacturing method, by interposing the film, the adhesive strength between the metal foil and the prepreg is maintained, and the adhesive force between the prepreg layers is maintained,
On the other hand, there is an advantage that the resin content ratio in the laminated plate can be adjusted. On the other hand, the above-mentioned film is generally melt-kneaded with a screw extruder and injection-molded through a T-type die.
During the manufacturing process of this film, a considerable amount of metal particles and metal powder are mixed in the film, and since the metal particles and metal powder have conductivity, they cause a short circuit of the printed circuit board, a disconnection, etc. There was a problem that it was difficult to use.
【0004】第二の製造方法は、基材に第1のフッ素樹
脂を含浸し、これを乾燥および焼成した後に、第2のフ
ッ素樹脂としてPFAまたはFEPを含浸し、これを乾
燥および焼成して形成したプリプレグの最外層に金属箔
を配置した後、積層成形することにより積層板を製造す
る方法である。In the second manufacturing method, the base material is impregnated with the first fluororesin, dried and fired, then impregnated with PFA or FEP as the second fluororesin, dried and fired. In this method, a metal foil is placed on the outermost layer of the formed prepreg and then laminated forming is performed to produce a laminated plate.
【0005】この第二の製造方法によれば、基材に含浸
した第1のフッ素樹脂は乾燥後、該樹脂の融点以上で焼
成され、このようにフッ素樹脂が融点以上で焼成される
と、その表面エネルギが低く、濡れ性が極度に悪化する
ため、該フッ素樹脂の上にPFAまたはFEPを保持さ
せようとしても、乾燥、焼成工程中に脱落が生じて、均
一な高精度の膜の形成が困難で、プリプレグと金属箔と
の接着力、プリプレグ相互の接着力、樹脂含有量に部分
的な差異が発生し、特性値がばらつく関係上、安定した
性能の積層板が得られない問題点があった。According to this second manufacturing method, the first fluororesin impregnated in the base material is dried and then baked at a temperature above the melting point of the resin. Thus, when the fluororesin is baked above the melting point, Since the surface energy is low and the wettability is extremely deteriorated, even if an attempt is made to hold PFA or FEP on the fluororesin, the PFA or FEP is removed during the drying and baking steps, and a uniform and highly accurate film is formed. It is difficult to obtain a laminated board with stable performance because the adhesive strength between the prepreg and the metal foil, the mutual adhesive strength between the prepregs, and the resin content are partially different and the characteristic values vary. was there.
【0006】第三の製造方法は、布状基材の表面にフッ
素樹脂層を形成し、このフッ素樹脂層における表面近傍
が未焼結であるプリプレグを形成し、このプリプレグの
表面に金属箔を配置した後に、加熱加圧して上述の金属
箔をプリプレグに接着させて、積層板を製造する方法で
ある。The third manufacturing method is to form a fluororesin layer on the surface of a cloth-like substrate, form a prepreg in the vicinity of the surface of the fluororesin layer which is unsintered, and apply a metal foil to the surface of the prepreg. After arranging, it is a method of manufacturing a laminated board by heating and pressurizing and adhering the above metal foil to the prepreg.
【0007】この第三の製造方法によれば、布状基材に
含浸させたフッ素樹脂層はその表面近傍のみが未焼結と
なり、基材の芯部および基材近傍は焼結される。この第
三の製造方法によればプリプレグと金属箔との接着強さ
をある程度確保することができる利点がある反面、大型
の積層板においてはその全面にわたって均一な接着力を
得ることが困難で、ばらつきが大きいうえ、樹脂含有率
が低い積層板においては、回路形成時のエッチングによ
り金属箔を除去した後の樹脂表面から薬液の浸込みが生
じ、かつハンダ耐熱性が劣り、金属箔に膨れなどの欠陥
が発生する問題点があった。加えて、プリプレグ中に焼
結層と未焼結層とが混在する関係上、積層板の厚さが薄
い場合には、反り、捩れなどの欠陥が発生しやすい問題
点があった。According to the third manufacturing method, the fluororesin layer impregnated in the cloth-like base material is unsintered only in the vicinity of the surface thereof, and the core portion of the base material and the vicinity of the base material are sintered. According to this third manufacturing method, there is an advantage that the adhesive strength between the prepreg and the metal foil can be secured to some extent, but on the other hand, in a large-sized laminated plate, it is difficult to obtain a uniform adhesive force over the entire surface, In the case of a laminate with a large variation and a low resin content, the chemical solution penetrates from the resin surface after the metal foil is removed by etching during circuit formation, and the solder heat resistance is poor and the metal foil swells. There is a problem that the defect of occurs. In addition, since a sintered layer and a non-sintered layer are mixed in the prepreg, there is a problem that defects such as warp and twist are likely to occur when the laminated plate is thin.
【0008】第四の製造方法は、布基材にPFAまたは
FEPを含浸し、これを乾燥および焼成してプリプレグ
を形成し、このプリプレグに金属箔を配置した後に、積
層成形することにより積層板を製造する方法である。A fourth manufacturing method is to impregnate a cloth base material with PFA or FEP, dry and fire the prepreg to form a prepreg, place a metal foil on the prepreg, and form a laminate to laminate the laminate. Is a method of manufacturing.
【0009】この第四の製造方法によれば、プリプレグ
と金属箔との接着力、プリプレグ相互の接着力、布基材
とPFAまたはFEPのフッ素樹脂との接着力が何れも
安定する利点がある反面、PFAまたはFEPはその融
点以上の高温において粘度が低く、流動性が大きくなる
ため、積層成形時の加熱加圧工程中にPFAまたはFE
Pが流動しやすく、この結果、積層板の厚み精度が悪化
するうえ、上述のPFAまたFEPはPTFEに対して
コスト高となる問題点があった。According to the fourth manufacturing method, the adhesive strength between the prepreg and the metal foil, the mutual adhesive strength between the prepregs, and the adhesive strength between the cloth base material and the fluororesin of PFA or FEP are all stable. On the other hand, since PFA or FEP has a low viscosity and a large fluidity at a temperature higher than its melting point, PFA or FEP has a high flowability during the heating and pressurizing step during lamination molding.
There is a problem that P easily flows, and as a result, the thickness accuracy of the laminated plate deteriorates, and the cost of PFA or FEP is higher than that of PTFE.
【0010】第五の製造方法は、基材に第1のフッ素樹
脂を含浸した後に、これを乾燥および焼結し、この上層
に対して第1のフッ素樹脂より低融点の第2のフッ素樹
脂を保持させてプリプレグを形成し、このプリプレグに
金属箔を配置した後に、第1のフッ素樹脂の融点より低
温で、しかも第2のフッ素樹脂の融点より高温となる温
度条件下で、積層成形することにより積層板を製造する
方法である。In the fifth method, the base material is impregnated with the first fluororesin, dried and sintered, and the second fluororesin having a lower melting point than the first fluororesin for the upper layer. To form a prepreg, and after placing a metal foil on the prepreg, laminate molding is performed under a temperature condition that is lower than the melting point of the first fluororesin and higher than the melting point of the second fluororesin. This is a method for producing a laminated board.
【0011】この第五の製造方法によれば、積層加圧時
に上述の第1のフッ素樹脂は当該樹脂特有の形状記憶性
に起因してクッション性を発揮するため、積層板特性が
ばらついて不安定となり、加えて第1のフッ素樹脂の焼
成時にこの第1のフッ素樹脂の融点以上で焼成されるた
め、表面エネルギが低く、濡れ性が悪化するため、この
第1のフッ素樹脂の上に第2のフッ素樹脂を保持させよ
うとしても、乾燥、焼成工程中に脱落して均一な高精度
の膜の形成が困難となる問題点があった。According to the fifth manufacturing method, since the above-mentioned first fluororesin exhibits cushioning property due to the shape memory property peculiar to the resin at the time of laminating and pressurizing the laminated plate, the characteristics of the laminating plate may vary. In addition to being stable, since the first fluororesin is fired at a temperature equal to or higher than the melting point of the first fluororesin during firing, the surface energy is low and the wettability is deteriorated. Even if the second fluororesin is held, there is a problem that it becomes difficult to form a uniform film with high accuracy because it falls off during the drying and baking steps.
【0012】一方、例えば比誘電率がεr=2.4以下
の低誘電率基板を得るためには、樹脂含有率が多い例え
ば80vol %以上のプリプレグを形成する必要がある
が、従来技術においては樹脂含有率が多いプリプレグを
形成することが困難であった。すなわち、ガラス布基材
に樹脂を含浸した後に、乾燥、焼結を繰返す場合、上述
の樹脂焼結工程で樹脂が収縮するので、仮りにガラス布
基材に対する樹脂の厚塗りが可能になっても、上記操作
の繰返しにより、基材が上記収縮力に耐えられず、波打
ち状に変形するため、形成されたプリプレグに凹凸状の
厚みむらが生じ、厚さ精度が悪化する。On the other hand, for example, in order to obtain a low dielectric constant substrate having a relative dielectric constant of εr = 2.4 or less, it is necessary to form a prepreg having a high resin content, for example, 80 vol% or more. It was difficult to form a prepreg with a high resin content. That is, when the glass cloth base material is impregnated with the resin, and then dried and sintered repeatedly, the resin shrinks in the resin sintering step described above, so that it becomes possible to thickly coat the resin on the glass cloth base material. However, by repeating the above operation, the base material cannot withstand the shrinkage force and is deformed into a wavy shape, so that unevenness in thickness is generated in the formed prepreg, and the thickness accuracy is deteriorated.
【0013】したがって従来においては既述した第一の
製造方法に見られるように、各層間およびプリプレグと
金属箔との間にPFAフィルムやFEPフィルムを介設
して樹脂含有率を多くする方法がとられていたが、この
ような従来方法によれば、既述したようにPFAフィル
ム、FEPフィルム中への金属小片、金属粉の混入によ
り回路の短絡、断線等のトラブル発生の要因となる。ま
たPFAフィルム、FEPフィルムを多用すると積層板
の低誘電率化が容易な反面、曲げ弾性率が低下すると共
に、熱膨張率が大となり、積層板それ自体が軟弱化する
問題点があった。Therefore, conventionally, as seen in the above-described first manufacturing method, there is a method of increasing the resin content by interposing a PFA film or FEP film between each layer and between the prepreg and the metal foil. However, according to such a conventional method, as described above, a metal short piece or a metal powder is mixed into the PFA film or the FEP film, which causes a trouble such as a short circuit or a disconnection of a circuit. Further, when the PFA film and the FEP film are frequently used, it is easy to reduce the dielectric constant of the laminated plate, but on the other hand, the bending elastic modulus is lowered and the thermal expansion coefficient is increased, so that the laminated plate itself is weakened.
【0014】[0014]
【発明が解決しようとする課題】この発明の請求項1記
載の発明は、基材に対するPTFE樹脂ディスパージョ
ンの含浸後、PTFE樹脂の融点を越えない低温条件下
で乾燥処理し、この未焼結の状態において含浸および乾
燥を繰返して必要樹脂保持量の未焼結プリプレグを形成
し、樹脂量の調整は該未焼結プリプレグで行なうと共
に、極薄2層構造の複合フィルムを用いて、積層板を製
造することで、厚さ精度が高く、厚さ方向の線膨張係数
が小さく、かつハンダ耐熱性に優れると共に、異物混入
が少なく、さらには接着力の向上を図ることができる低
誘電率の積層板の製造方法の提供を目的とする。The invention according to claim 1 of the present invention is such that after impregnation of the PTFE resin dispersion into the substrate, it is dried under a low temperature condition not exceeding the melting point of the PTFE resin, and this unsintered In this state, impregnation and drying are repeated to form an unsintered prepreg having a required resin retention amount, and the resin amount is adjusted with the unsintered prepreg, and a composite film having an ultrathin two-layer structure is used to form a laminated plate. By manufacturing, the thickness accuracy is high, the linear expansion coefficient in the thickness direction is small, and the solder heat resistance is excellent, the inclusion of foreign matter is small, and further, the adhesion strength can be improved. It is intended to provide a method for manufacturing a laminated board.
【0015】この発明の請求項2記載の発明は、キャス
ティング法により形成されたPTFE樹脂と該PTFE
樹脂に対して低融点のフッ素樹脂との2層構造の複合フ
ィルムとすることで、金属粉や炭化微粉の混入がなく、
10μm以下の極薄構造とすることができる積層板用複
合フィルムの提供を目的とする。According to a second aspect of the present invention, there is provided a PTFE resin formed by a casting method and the PTFE resin.
By using a two-layer composite film with a low melting point fluororesin relative to the resin, there is no mixing of metal powder or carbonized fine powder,
It is an object of the present invention to provide a composite film for a laminate, which can have an ultrathin structure of 10 μm or less.
【0016】この発明の請求項3記載の発明は、上記請
求項2記載の発明の目的と併せて、諸種の2層構造の複
合フィルムを選定することで、プリプレグの製造工程を
標準化することができる積層板用複合フィルムの提供を
目的とする。In addition to the object of the invention described in claim 2, the invention described in claim 3 of the present invention can standardize the manufacturing process of the prepreg by selecting various kinds of composite films having a two-layer structure. It is an object of the present invention to provide a composite film that can be laminated.
【0017】この発明の請求項4記載の発明は、積層板
を多層化するに際して二次成形を行なっても、層間のず
れや回路部の流動いわゆるスイミング現象がなく、また
回路部と複合フィルムとの間に空隙が形成されることも
なく、ハンダ耐熱性、熱衝撃性、寸法安定性に優れた多
層化が可能な積層板の製造方法の提供を目的とする。In the invention according to claim 4 of the present invention, even when the secondary molding is carried out when the laminated board is made into multiple layers, there is no gap between the layers or flow of the circuit part, that is, so-called swimming phenomenon, and the circuit part and the composite film are formed. It is an object of the present invention to provide a method for producing a laminated plate, which is excellent in solder heat resistance, thermal shock resistance, and dimensional stability and can be formed into multiple layers without forming voids between them.
【0018】この発明の請求項5記載の発明は、上記請
求項4記載の発明の目的と併せて、複合フィルム間に未
焼結プリプレグを介設することで、回路の層間厚さを任
意に設定することができる積層板の製造方法の提供を目
的とする。According to the invention of claim 5 of the present invention, in addition to the object of the invention of claim 4, an unsintered prepreg is interposed between the composite films to arbitrarily set the interlayer thickness of the circuit. An object of the present invention is to provide a method for manufacturing a laminated plate that can be set.
【0019】この発明の請求項6記載の発明は、上記請
求項4記載の発明の目的と併せて、複合フィルム間に焼
結プリプレグを介設することで、回路の層間厚さを任意
に設定することができる積層板の製造方法の提供を目的
とする。In the invention according to claim 6 of the present invention, in addition to the object of the invention according to claim 4, a sintered prepreg is provided between the composite films to arbitrarily set the interlayer thickness of the circuit. It is an object of the present invention to provide a method for manufacturing a laminated plate that can be manufactured.
【0020】この発明の請求項7記載の発明は、積層板
を多層化するに際して二次成形を行なっても、層間のず
れや回路部の流動いわゆるスイミング現象がなく、また
回路部と複合フィルムとの間に空隙が形成されることも
なく、ハンダ耐熱性、熱衝撃性、寸法安定性に優れ、多
層化が可能なことと併せて、複合フィルム間に熱硬化性
プリプレグを介設することで、回路の層間厚さを任意に
設定することができると共に、上述の熱硬化性プリプレ
グの介設により積層板全体の剛性向上を図り、圧縮、復
元力が繰返し付勢されるテストボードに適用しても耐久
性の向上を図ることができ、また部品実装後においてシ
ャーシ等に取付けることが可能な積層板の製造方法の提
供を目的とする。In the invention according to claim 7 of the present invention, even when secondary molding is carried out when the laminated board is made into multiple layers, there is no gap between layers or flow of the circuit part, so-called swimming phenomenon, and the circuit part and the composite film are formed. By forming a thermosetting prepreg between the composite films, in addition to having excellent heat resistance, thermal shock resistance and dimensional stability of solder without forming voids between The thickness of the circuit layer can be set arbitrarily, and the thermosetting prepreg described above is used to improve the rigidity of the entire laminated board, and is applied to a test board where compression and restoring forces are repeatedly applied. However, it is an object of the present invention to provide a method for manufacturing a laminated plate that can improve durability and can be attached to a chassis or the like after mounting components.
【0021】この発明の請求項8記載の発明は、上記請
求項7記載の発明の目的と併せて、諸種の2層構造の複
合フィルムを選定することで、プリプレグの製造工程を
標準化することができる積層板用複合フィルムを用いた
積層板の製造方法の提供を目的とする。In addition to the object of the invention described in claim 7, the invention described in claim 8 of the present invention can standardize the manufacturing process of the prepreg by selecting various kinds of composite films having a two-layer structure. An object of the present invention is to provide a method for producing a laminated board using the composite film for laminated boards that can be used.
【0022】[0022]
【課題を解決するための手段】この発明の請求項1記載
の発明は、基材にPTFE樹脂ディスパージョンを含浸
し、該PTFE樹脂の融点に対して低温で乾燥処理し、
上記含浸および乾燥を繰返して必要樹脂保持量と成した
未焼結プリプレグを形成する一方、一層がPTFE樹脂
で、他層が該PTFE樹脂に対して低融点のフッ素樹脂
で形成された2層構造の積層板用複合フィルムを形成
し、上記未焼結プリプレグの少なくとも片側外面に上記
複合フィルムを介して金属箔を配置した後に、PTFE
樹脂の融点に対して高温で加熱加圧する積層板の製造方
法であることを特徴とする。According to a first aspect of the present invention, a base material is impregnated with a PTFE resin dispersion and dried at a low temperature relative to the melting point of the PTFE resin,
A two-layer structure in which the above-mentioned impregnation and drying are repeated to form an unsintered prepreg having a required resin holding amount, while one layer is made of PTFE resin and the other layer is made of fluorine resin having a low melting point with respect to the PTFE resin. After forming the composite film for laminated plate of the above, and arranging the metal foil on the outer surface of at least one side of the above-mentioned unsintered prepreg via the above composite film, PTFE
It is characterized in that it is a method for producing a laminated plate which is heated and pressed at a high temperature relative to the melting point of the resin.
【0023】この発明の請求項2記載の発明は、PTF
E樹脂ディスパージョンをプレート上に付着して薄層と
成した後、該薄層表面にPTFE樹脂に対して低融点の
フッ素樹脂ディスパージョンが付着された2層構造フィ
ルムを上記プレートから剥離して形成された積層板用複
合フィルムであることを特徴とする。The invention according to claim 2 of the present invention is the PTF.
After the E resin dispersion was deposited on the plate to form a thin layer, the two-layer structure film having the fluororesin dispersion having a low melting point with respect to the PTFE resin deposited on the thin layer surface was peeled from the plate. It is characterized by being the formed composite film for laminated plates.
【0024】この発明の請求項3記載の発明は、上記請
求項2記載の発明の構成と併せて、上記低融点のフッ素
樹脂ディスパージョンは、PFA、FEP、ETFE、
ECTFEおよびPCTFEのうちの1つのフッ素樹脂
ディスパージョンとした積層板用複合フィルムであるこ
とを特徴とする。In the invention according to claim 3 of the present invention, in addition to the constitution of the invention according to claim 2, the low melting point fluororesin dispersion is PFA, FEP, ETFE,
One of the ECTFE and PCTFE is a fluororesin dispersion composite film for laminated plate.
【0025】この発明の請求項4記載の発明は、基材に
フッ素樹脂ディスパージョンを含浸した後に、乾燥して
未焼結プリプレグを形成し、該未焼結プリプレグの少な
くとも片面に金属箔を配置し、上記フッ素樹脂の融点よ
り高温で加熱加圧した回路部を有する内層用および外層
用の複数の回路層が形成され、上記複数の回路層間に、
一層がPTFE樹脂で、他層が該PTFE樹脂に対して
低融点のフッ素樹脂で形成された2層構造の複合フィル
ムを介設し、上記複合フィルムの一層側を反回路部側
に、他層側を回路部側に対向させると共に、複合フィル
ムの一層側と対向部材との間にPFAもしくはFEPの
介挿フィルムを介設し、PTFEの融点より高温で加熱
加圧する積層板の製造方法であることを特徴とする。According to a fourth aspect of the present invention, the base material is impregnated with the fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg. Then, a plurality of circuit layers for inner layer and outer layer having a circuit portion heated and pressed at a temperature higher than the melting point of the fluororesin is formed, and between the plurality of circuit layers,
A composite film having a two-layer structure in which one layer is made of a PTFE resin and the other layer is made of a fluororesin having a low melting point with respect to the PTFE resin is interposed, and one layer side of the composite film is opposite to the circuit side and the other layer. And a circuit part side, the PFA or FEP interposing film is interposed between the composite film one-layer side and the facing member, and the laminated plate is heated and pressed at a temperature higher than the melting point of PTFE. It is characterized by
【0026】この発明の請求項5記載の発明は、上記請
求項4記載の発明の構成と併せて、上記複数の回路層間
に上記複合フィルムを複数介設すると共に、複数の複合
フィルム間には、基材にフッ素樹脂を含浸後、乾燥した
未焼結プリプレグを介設した積層板の製造方法であるこ
とを特徴とする。According to the invention of claim 5 of the present invention, in addition to the constitution of the invention of claim 4, a plurality of the composite films are provided between the plurality of circuit layers, and the plurality of composite films are provided between the plurality of circuit films. The method for producing a laminated plate is characterized in that a base material is impregnated with a fluororesin, and then a dry green prepreg is interposed.
【0027】この発明の請求項6記載の発明は、上記請
求項4記載の発明の構成と併せて、上記複数の回路層間
に上記複合フィルムを複数介設すると共に、複数の複合
フィルム間には、基材にフッ素樹脂を含浸後、乾燥およ
び焼結した焼結プリプレグを介設した積層板の製造方法
であることを特徴とする。According to a sixth aspect of the present invention, in addition to the structure of the fourth aspect of the invention, a plurality of the composite films are provided between the plurality of circuit layers, and the plurality of composite films are provided between the plurality of composite films. The method for producing a laminated plate is characterized by including a sintered prepreg obtained by impregnating a base material with a fluororesin, and then drying and sintering the same.
【0028】この発明の請求項7記載の発明は、基材に
フッ素樹脂ディスパージョンを含浸した後に、乾燥して
未焼結プリプレグを形成し、該未焼結プリプレグの少な
くとも片面に金属箔を配置し、上記フッ素樹脂の融点よ
り高温で加熱加圧した回路部を有する内層用および外層
用の複数の回路層が形成され、上記複数の回路層間に、
一層がPTFE樹脂で、他層が該PTFE樹脂に対して
低融点のフッ素樹脂で形成された2層構造の複合フィル
ムを介設し、上記複合フィルムの一層側を反回路部側
に、他層側を回路部側に対向させて熱融着させると共
に、反回路側表面を接触角70度以下に表面改質し、上
記複数の回路層間にはエポキシ系またはポリイミド系の
フッ素樹脂に対して低温で焼成固化する熱硬化性プリプ
レグを介設し、2層構造の複合フィルムを構成するPT
FEより低融点のフッ素樹脂の融点に対して低温で加熱
加圧する積層板の製造方法であることを特徴とする。According to a seventh aspect of the present invention, the substrate is impregnated with the fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg. Then, a plurality of circuit layers for inner layer and outer layer having a circuit portion heated and pressed at a temperature higher than the melting point of the fluororesin is formed, and between the plurality of circuit layers,
A composite film having a two-layer structure in which one layer is made of a PTFE resin and the other layer is made of a fluororesin having a low melting point with respect to the PTFE resin is interposed, and one layer side of the composite film is opposite to the circuit side and the other layer. Side is opposed to the circuit part side and heat-sealed, and the surface opposite to the circuit side is surface-modified to a contact angle of 70 degrees or less, and the temperature between the plurality of circuit layers is lower than that of the epoxy-based or polyimide-based fluororesin. A PT that forms a composite film having a two-layer structure by interposing a thermosetting prepreg that is baked and solidified by
It is characterized in that it is a method for producing a laminated plate, which comprises heating and pressing at a low temperature with respect to the melting point of a fluororesin having a melting point lower than that of FE.
【0029】この発明の請求項8記載の発明は、上記請
求項7記載の発明の構成と併せて、上記低融点のフッ素
樹脂は、PFA、FEP、ETFE、ECTFEおよび
PCTFEのうちの1つのフッ素樹脂とした積層板の製
造方法であることを特徴とする。According to the invention of claim 8 of the present invention, in addition to the constitution of the invention of claim 7, the low melting point fluororesin is one of PFA, FEP, ETFE, ECTFE and PCTFE. It is characterized in that it is a method of manufacturing a laminated plate made of resin.
【0030】[0030]
【発明の効果】この発明の請求項1記載の発明によれ
ば、含浸および乾燥を繰返して必要樹脂保持量と成す未
焼結プリプレグを形成するので、樹脂量の調整はこの未
焼結プリプレグにおいて行なうことができ、また極薄2
層構造の複合フィルムを用いて積層板を製造するので、
この複合フィルムを樹脂量調整に用いることなく接着用
に用いることができ、厚さ精度が高く、厚さ方向の線膨
張係数が小さく、かつハンダ耐熱性に優れると共に、異
物混入が少なく、さらには接着力の向上を図ることがで
き、樹脂保持量の多い低誘電率の積層板を製造すること
ができる効果がある。According to the invention described in claim 1 of the present invention, since the unsintered prepreg having the required resin holding amount is formed by repeating the impregnation and the drying, the resin amount can be adjusted in this unsintered prepreg. It can be done, and it is very thin 2
Since a laminated board is manufactured using a composite film having a layered structure,
This composite film can be used for bonding without being used for adjusting the amount of resin, has high thickness accuracy, has a small linear expansion coefficient in the thickness direction, and is excellent in solder heat resistance, and has less foreign matter mixed in. There is an effect that the adhesive strength can be improved and a low dielectric constant laminate having a large amount of resin held can be manufactured.
【0031】この発明の請求項2記載の発明によれば、
キャスティング法により形成された積層板用複合フィル
ムはPTFE樹脂と、該PTFE樹脂に対して低融点の
フッ素樹脂との2層構造のフィルムとすることができ、
金属粉や炭化微粉の混入がなく、電気絶縁性に優れると
共に、10μm以下の極薄構造とすることができる効果
がある。According to the second aspect of the present invention,
The composite film for laminated plate formed by the casting method may be a film having a two-layer structure of PTFE resin and fluororesin having a low melting point with respect to the PTFE resin,
There is an effect that a metal powder and a carbonized fine powder are not mixed in, the electric insulation is excellent, and an extremely thin structure of 10 μm or less can be formed.
【0032】この発明の請求項3記載の発明によれば、
上記請求項2記載の発明の効果と併せて、上記複合フィ
ルムの一層を構成するPTFE樹脂(融点327℃)に
対して他層を構成するフッ素樹脂は、PFA(融点31
0℃のテトラフルオロエチレン・パーフルオロアルキル
ビニルエーテル共重合体)、FEP(融点275℃のテ
トラフルオロエチレンヘキサフルオロプロピレン共重合
体)、ETFE(融点270℃のテトラフルオロエチレ
ン・エチレン共重合体)、ECTFE(融点245℃の
クロロトリフルオロエチレン・エチレン共重合体)、P
CTFE(融点220℃のポリクロロトリフルオロエチ
レン)の諸種の低融点フッ素樹脂から選定することがで
きるので、諸種の2層構造の極薄複合フィルムを得るこ
とができ、このため未焼結プリプレグの製造工程を標準
化することができる効果がある。According to the invention of claim 3 of the present invention,
In addition to the effect of the invention of claim 2, the PTFE resin (melting point 327 ° C.) that constitutes one layer of the composite film is made of PFA (melting point 31
0 ° C tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene hexafluoropropylene copolymer having a melting point of 275 ° C), ETFE (tetrafluoroethylene / ethylene copolymer having a melting point of 270 ° C), ECTFE (Chlorotrifluoroethylene / ethylene copolymer having a melting point of 245 ° C), P
Since it is possible to select from various low melting point fluorocarbon resins such as CTFE (polychlorotrifluoroethylene having a melting point of 220 ° C.), it is possible to obtain various types of ultra-thin composite films having a two-layer structure. This has the effect of standardizing the manufacturing process.
【0033】この発明の請求項4記載の発明によれば、
回路部を有する複数の回路層間に複合フィルムを介設
し、この複合フィルムのPTFE樹脂よりなる一層側を
反回路側に、PTFE樹脂に対して低融点のフッ素樹脂
よりなる他層側を回路側に配設して製造するので、積層
板を多層化するに際して二次成形を行なっても、回路層
の回路部と複合フィルムとの間の空隙は低融点フッ素樹
脂の溶融流動により埋めることができ、層間のずれや回
路部の流動いわゆるスイミング現象は複合フィルム一層
側のPTFE樹脂により防止することができる。According to the invention of claim 4 of the present invention,
A composite film is interposed between a plurality of circuit layers having a circuit portion, one side of the composite film made of PTFE resin is an anti-circuit side, and the other layer side made of a fluororesin having a low melting point with respect to the PTFE resin is a circuit side. Since it is manufactured by arranging it in a multi-layered structure, the voids between the circuit part of the circuit layer and the composite film can be filled with the melt flow of the low melting point fluororesin even if the secondary molding is performed when the laminated board is made into multiple layers. The gap between the layers and the flow of the circuit portion, so-called swimming phenomenon, can be prevented by the PTFE resin on one side of the composite film.
【0034】この結果、積層板を多層化しても、層間の
ずれや回路部の流動(スイミング現象)がなく、また回
路部と複合フィルムとの間に空隙が形成されることもな
く、また回路層を上記未焼結プリプレグからの製造する
ことで、ハンダ耐熱性、熱衝撃性、寸法安定性に優れ、
かつ多層化が可能な効果がある。As a result, even if the laminated plate is made into a multi-layer, there is no gap between the layers or flow of the circuit portion (swimming phenomenon), no void is formed between the circuit portion and the composite film, and the circuit is not formed. By producing a layer from the above-mentioned unsintered prepreg, solder heat resistance, thermal shock resistance, excellent dimensional stability,
In addition, there is an effect that it can be multi-layered.
【0035】この発明の請求項5記載の発明によれば、
上記請求項4記載の発明の効果と併せて、複数の複合フ
ィルム間に未焼結プリプレグを介設したので、この未焼
結プリプレグにより回路の層間厚さを任意に設定するこ
とができる効果がある。According to the invention of claim 5 of the present invention,
In addition to the effect of the invention described in claim 4, since the unsintered prepreg is interposed between the plurality of composite films, there is an effect that the unsintered prepreg can arbitrarily set the interlayer thickness of the circuit. is there.
【0036】この発明の請求項6記載の発明によれば、
上記請求項4記載の発明の効果と併せて、複数の複合フ
ィルム間に焼結プリプレグを介設したので、この焼結プ
リプレグにより回路の層間厚さを任意に設定することが
できる効果がある。According to the invention of claim 6 of the present invention,
In addition to the effect of the invention described in claim 4, since the sintered prepreg is provided between the plurality of composite films, there is an effect that the interlayer thickness of the circuit can be arbitrarily set by the sintered prepreg.
【0037】この発明の請求項7記載の発明によれば、
回路部を有する複数の回路層間に複合フィルムを介設
し、この複合フィルムのPTFE樹脂よりなる一層側を
反回路側に、PTFE樹脂に対して低融点のフッ素樹脂
よりなる他層側を回路側に配設して製造するので、積層
板を多層化するに際して二次成形を行なっても、回路層
の回路部と複合フィルムとの間の空隙は低融点フッ素樹
脂の溶融流動により埋めることができ、層間のずれや回
路部の流動いわゆるスイミング現象を複合フィルム一層
側のPTFE樹脂により防止することと併せて、複数の
複合フィルム間に熱硬化性プリプレグを介設したので、
この熱硬化性プリプレグにより回路の層間厚さを任意に
設定することができるのは勿論、この熱硬化性プリプレ
グの介設により積層板全体の剛性向上を図ることができ
るから、圧縮、復元力が繰返し付勢されるテストボード
に適用しても充分な耐久性の向上を図ることができ、ま
た部品実装後において積層板をシャーシ等に取付けるに
は、上述の熱硬化性プリプレグを取付座として用いるこ
とができるで、積層板のネジ止め固定が可能となる効果
がある。According to the invention of claim 7 of the present invention,
A composite film is interposed between a plurality of circuit layers having a circuit portion, one side of the composite film made of PTFE resin is an anti-circuit side, and the other layer side made of a fluororesin having a low melting point with respect to the PTFE resin is a circuit side. Since it is manufactured by arranging it in a multi-layered structure, the voids between the circuit part of the circuit layer and the composite film can be filled with the melt flow of the low melting point fluororesin even if the secondary molding is performed when the laminated board is made into multiple layers. In addition to preventing the gap between layers and the flow phenomenon of the circuit part, so-called swimming phenomenon, by the PTFE resin on the one side of the composite film, the thermosetting prepreg is provided between the plurality of composite films.
The thermosetting prepreg allows the interlayer thickness of the circuit to be arbitrarily set, and the interposition of the thermosetting prepreg can improve the rigidity of the entire laminated plate. Even if it is applied to a test board that is repeatedly biased, its durability can be improved sufficiently, and the above-mentioned thermosetting prepreg is used as a mounting seat to mount the laminated board to the chassis etc. after mounting the components. Therefore, there is an effect that the laminated plate can be fixed with screws.
【0038】加えて熱硬化性プリプレグと対接する複合
フィルムの対向面を接触角70度以下に表面改質したの
で、これら両者(熱硬化性プリプレグと複合フィルム)
の接合性の向上を図ることができる効果がある。In addition, since the opposing surface of the composite film which is in contact with the thermosetting prepreg is surface-modified to a contact angle of 70 degrees or less, both of these (thermosetting prepreg and composite film) are used.
There is an effect that the bondability of can be improved.
【0039】この発明の請求項8記載の発明によれば、
上記請求項7記載の発明の効果と併せて、上記複合フィ
ルムの一層を構成するPTFE樹脂(融点327℃)に
対して他層を構成するフッ素樹脂は、PFA、FEP、
ETFE、ECTFE、PCTFEの諸種の低融点フッ
素樹脂から選定することができるので、諸種の2層構造
の極薄複合フィルムを得ることができ、このため熱硬化
性プリプレグや未焼結プリプレグを用いた積層板の製造
工程を標準化することができる効果がある。According to the invention of claim 8 of the present invention,
In addition to the effect of the invention described in claim 7, the fluororesin constituting the other layer with respect to the PTFE resin (melting point 327 ° C.) constituting one layer of the composite film is PFA, FEP,
Since it is possible to select from various low melting point fluororesins such as ETFE, ECTFE, and PCTFE, it is possible to obtain various kinds of ultra-thin composite films having a two-layer structure. Therefore, thermosetting prepregs and unsintered prepregs are used. There is an effect that the manufacturing process of the laminated plate can be standardized.
【0040】[0040]
【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は積層板の製造方法および積層板用複合フ
ィルムを示し、まず図1に示すように目付48g/ m2 の
ガラス布基材1にPTFE樹脂2、具体的にはPTFE
樹脂ディスパージョンを含浸し、このPTFE樹脂2の
融点327℃に対して低温の305℃の条件下で乾燥処
理して、未焼結樹脂を上記ガラス布基材1に保持させ
る。このような含浸および低温条件下での乾燥処理を繰
返して樹脂保持量が80〜96vol %の範囲内、例えば
90vol %の未焼結プリプレグ3を複数層形成する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The drawing shows a method for manufacturing a laminated plate and a composite film for a laminated plate. First, as shown in FIG. 1, a glass cloth substrate 1 having a basis weight of 48 g / m 2 is coated with PTFE resin 2, specifically PTFE.
A resin dispersion is impregnated, and the PTFE resin 2 is dried at a melting point of 327 ° C. at a low temperature of 305 ° C. to hold the unsintered resin on the glass cloth substrate 1. Such impregnation and drying treatment under low temperature conditions are repeated to form a plurality of layers of the unsintered prepreg 3 having a resin retention amount within the range of 80 to 96 vol%, for example, 90 vol%.
【0041】一方、図2に示す積層板用複合フィルムの
製造装置を用いてキャスティング法により図3に示す如
く一層がPTFE樹脂4、他層がこのPTFE樹脂4に
対して低融点のフッ素樹脂5で形成された極薄かつ2層
構造の複合フィルム6を形成する。ここで、上述の低融
点のフッ素樹脂5としてはPFA、FEP、ETFE、
ECTFEおよびPCTFEのうちの1つ例えばPFA
を選定する。On the other hand, as shown in FIG. 3, one layer of the PTFE resin 4 and the other layer of the fluororesin 5 having a low melting point with respect to the PTFE resin 4 are prepared by the casting method using the apparatus for producing a laminated plate composite film shown in FIG. The composite film 6 having the ultra-thin and two-layer structure formed in 1 is formed. Here, as the above-mentioned low melting point fluororesin 5, PFA, FEP, ETFE,
One of ECTFE and PCTFE, eg PFA
Is selected.
【0042】上述の図2に示す製造装置は、繰出し位置
Aと巻取り位置Bとの間を移動するステンレス薄板(具
体的にはSUS箔)製のキャリア7と、PTFE樹脂デ
ィスパージョン8を貯溜した第1容器9と、PFA樹脂
ディスパージョン10を貯溜した第2容器11と、加熱
用の第1ヒータ12,12および第2ヒータ13,13
と、必要箇所に配設した案内ローラ14〜22とを備え
ている。The above-described manufacturing apparatus shown in FIG. 2 stores a carrier 7 made of a stainless thin plate (specifically, SUS foil) which moves between the feeding position A and the winding position B, and a PTFE resin dispersion 8. The first container 9, the second container 11 storing the PFA resin dispersion 10, the first heaters 12 and 12 for heating, and the second heaters 13 and 13
And guide rollers 14 to 22 arranged at necessary positions.
【0043】そしてSUS箔製のキャリア7を第1容器
9のPTFE樹脂ディスパージョン8内へ搬送し、この
キャリア7の両面にPTFE樹脂ディスパージョン8を
付着(コーティング)させ、次に上述のキャリア7を第
1ヒータ12,12間において例えば370℃で乾燥処
理した後に、両面にPTFE樹脂4がコーティングされ
たキャリア7を次の第2容器11のPFA樹脂ディスパ
ージョン10内へ搬送し、PTFE樹脂4の表面にPF
A樹脂ディスパージョン10を付着(コーティング)さ
せ、次に上述のキャリア7を第2ヒータ13,13間に
おいて乾燥処理し、次に上述の2層構造の複合フィルム
6を剥離位置Cにおいてキャリア7から剥離すると、等
方性を有する10μm以下の極薄の複合フィルム6を製
造することができる。Then, the carrier 7 made of SUS foil is conveyed into the PTFE resin dispersion 8 of the first container 9, the PTFE resin dispersion 8 is adhered (coated) on both surfaces of the carrier 7, and then the carrier 7 described above. Is dried between the first heaters 12 and 12 at, for example, 370 ° C., and then the carrier 7 coated with the PTFE resin 4 on both sides is conveyed into the PFA resin dispersion 10 of the next second container 11 to remove the PTFE resin 4 PF on the surface of
A resin dispersion 10 is adhered (coated), then the above-mentioned carrier 7 is dried between the second heaters 13 and 13, and then the above-mentioned two-layer composite film 6 is removed from the carrier 7 at the peeling position C. When peeled off, an extremely thin composite film 6 having an isotropic property of 10 μm or less can be manufactured.
【0044】ここで、上述の複合フィルム6は図3に示
すPTFE樹脂4の厚さを4〜25μmの範囲に、PF
A等の低融点フッ素樹脂5の厚さを3〜20μmの範囲
に調整することができるので、最小厚さ7μmの複合フ
ィルム6を得ることができる。Here, the above-mentioned composite film 6 has a thickness of the PTFE resin 4 shown in FIG.
Since the thickness of the low melting point fluororesin 5 such as A can be adjusted in the range of 3 to 20 μm, the composite film 6 having a minimum thickness of 7 μm can be obtained.
【0045】なお、図2の製造装置においては容器およ
びヒータを前後2段構成としたが、一側のみの1段構成
の製造装置においてPTFE樹脂4をSUS箔にコーテ
ィングし、剥離後のPTFE樹脂4に対してPFA樹脂
をコーティングするように構成してもよい。In the manufacturing apparatus of FIG. 2, the container and the heater have a front and rear two-stage structure. However, in the manufacturing apparatus having only one side and one step, the PTFE resin 4 is coated on the SUS foil and the PTFE resin after peeling is coated. 4 may be coated with a PFA resin.
【0046】またSUS箔製のキャリア7に対してまず
PTFE樹脂4をコーティングしたので、剥離位置Cに
おける剥離性が良好となるうえ、このPTFE樹脂4の
表面にPFA樹脂をコーティングするので、PFA樹脂
のPTFE樹脂4に対する接着性が良好となる。Further, since the PTFE resin 4 is first coated on the carrier 7 made of SUS foil, the releasability at the peeling position C is good and the surface of the PTFE resin 4 is coated with the PFA resin. The adhesiveness to the PTFE resin 4 becomes good.
【0047】そして上記未焼結プリプレグ3を複数層、
例えば4層重ね合わせ、この上下外層に上述の複合フィ
ルム6,6を介して金属箔としての厚さ約35μmのC
u箔23,23を配置したものに対して、上記PTFE
樹脂2,4の融点327℃より高温の380℃の条件下
で、かつ面圧3.4MPa、加圧時間約60分の積層成
形条件下で積層成形した結果、図1に示すように厚さ
0.8mm、比誘電率εr=2.32の両面銅箔張り積層
板24(次表1の実施例品)を製造することができた。A plurality of layers of the green prepreg 3 are formed,
For example, four layers are superposed, and C having a thickness of about 35 μm as a metal foil is formed on the upper and lower outer layers with the above-mentioned composite films 6 and 6 interposed therebetween.
For the one in which u foils 23, 23 are arranged, the above PTFE
As a result of lamination molding under the conditions of the temperature of 380 ° C., which is higher than the melting point 327 ° C. of the resins 2 and 4, and the surface pressure of 3.4 MPa and the pressurizing time of about 60 minutes, the thickness is as shown in FIG. A double-sided copper foil-clad laminate 24 (Example product in the following Table 1) having a thickness of 0.8 mm and a relative permittivity εr = 2.32 could be manufactured.
【0048】一方、比較例として目付48g/ m2 のガラ
ス布基材にPTFE樹脂ディスパージョンを含浸および
乾燥後、380℃で焼結し、この含浸、乾燥および焼結
を繰返して樹脂保持量75vol %の焼結プリプレグを形
成し、2層1組の焼結プリプレグ相互間および2層1組
の焼結プリプレグと厚さ約35μmのCu箔との間にそ
れぞれ従前のPFAフィルム(厚さ約25μm)を介設
し、380℃の高温条件下で、面圧3.4MPa、加圧
時間約60分の積層成形条件下で積層成形し、全体の厚
さが0.8mm、比誘電率εr=2.6の両面銅箔張り積
層板(次表1の比較品1)を製造した。On the other hand, as a comparative example, a glass cloth substrate having a basis weight of 48 g / m 2 was impregnated with PTFE resin dispersion, dried and then sintered at 380 ° C. The impregnation, drying and sintering were repeated to maintain a resin retention amount of 75 vol. % Sintered prepreg is formed, and the conventional PFA film (thickness of about 25 μm is provided between the two sets of two layers of the sintered prepreg and between the two sets of one set of the sintered prepreg and the Cu foil having a thickness of about 35 μm, respectively. ) Is placed under the conditions of a high temperature of 380 ° C., a surface pressure of 3.4 MPa, and a pressing time of about 60 minutes to perform laminate molding, and the overall thickness is 0.8 mm and the relative permittivity εr = A double-sided copper foil-clad laminate of 2.6 (Comparative Product 1 in Table 1 below) was produced.
【0049】同様に、比較例として目付48g/ m2 のガ
ラス布基材にPTFE樹脂ディスパージョンを含浸およ
び乾燥後、380℃で焼結し、この含浸、乾燥および焼
結を繰返して樹脂保持量80vol %の焼結プリプレグを
合計3層形成し、これらの各焼結プリプレグ相互間およ
び焼結プリプレグと厚さ約35μmのCu箔との間にそ
れぞれ従前のPFAフィルム(厚さ50μm)を介設
し、380℃の高温条件下で、面圧3.4MPa、加圧
時間約60分の積層成形条件下で積層成形し、全体の厚
さが0.6mm、比誘電率εr=2.33の両面銅箔張り
積層板(次表1の比較品2)を製造した。Similarly, as a comparative example, a glass cloth substrate having a basis weight of 48 g / m 2 was impregnated with PTFE resin dispersion, dried and then sintered at 380 ° C. This impregnation, drying and sintering were repeated to maintain the resin retention amount. A total of three layers of 80 vol% sintered prepregs were formed, and the conventional PFA film (thickness: 50 μm) was interposed between each of these sintered prepregs and between the sintered prepreg and a Cu foil having a thickness of about 35 μm. Then, under high temperature conditions of 380 ° C., lamination molding was performed under surface pressure of 3.4 MPa and pressurization time of about 60 minutes, and the total thickness was 0.6 mm and the relative permittivity εr = 2.33. A double-sided copper foil-clad laminate (Comparative Product 2 in Table 1 below) was produced.
【0050】上述の実施例品、比較品1、比較品2に対
して各種の測定および試験を行なった結果を次表1に示
す。The following Table 1 shows the results of various measurements and tests performed on the above-described example product, comparative product 1 and comparative product 2.
【0051】[0051]
【表1】 [Table 1]
【0052】上表1から明らかなように、実施例品のも
のは板厚のばらつきR(但しRは最大寸法から最小寸法
を減算した値)が0.012mmと最も小さく、ハンダ耐
熱性も良好で、線膨張係数は180×10-6/kと良好な値
を示した。なお上表1中のxは板厚を示す。As is clear from Table 1 above, in the case of the example product, the variation R in plate thickness (where R is the value obtained by subtracting the minimum dimension from the maximum dimension) is as small as 0.012 mm, and the solder heat resistance is also good. The linear expansion coefficient was 180 × 10 −6 / k, which was a good value. Note that x in Table 1 above indicates the plate thickness.
【0053】以上要するに、この実施例の製造方法(請
求項1に対応)によれば、含浸および乾燥を繰返して必
要樹脂保持量(たとえば90vol %)と成した未焼結プ
リプレグ3を形成するので、樹脂量の調整はこの未焼結
プリプレグ3において行なうことができ、また極薄2層
構造の複合フィルム6を用いて積層板24を製造するの
で、この複合フィルム6を樹脂量調整に用いることな
く、接着用に用いることができる。この結果、厚さ精度
が高く、厚さ方向の線膨張係数が小さく、かつハンダ耐
熱性に優れると共に、異物混入が少なく、さらには接着
力の向上を図ることができ、樹脂保持量の多い低誘電率
の積層板24を製造することができる効果がある。In summary, according to the manufacturing method of this embodiment (corresponding to claim 1), the impregnation and the drying are repeated to form the unsintered prepreg 3 having the required resin holding amount (for example, 90 vol%). The amount of resin can be adjusted in this unsintered prepreg 3, and since the laminated plate 24 is manufactured using the composite film 6 having an ultrathin two-layer structure, the composite film 6 can be used for adjusting the amount of resin. Instead, it can be used for bonding. As a result, the thickness accuracy is high, the linear expansion coefficient in the thickness direction is small, the solder heat resistance is excellent, the inclusion of foreign matter is small, and the adhesive strength can be improved. There is an effect that the laminated plate 24 having a dielectric constant can be manufactured.
【0054】また、上記実施例のキャスティング法によ
り形成された積層板用複合フィルム6(請求項2、3に
対応)はPTFE樹脂4と該PTFE樹脂4に対して低
融点のフッ素樹脂5との2層構造のフィルムとすること
ができ、金属粉や炭化微粉の混入がないため、電気絶縁
性に優れると共に、10μm以下の極薄構造とすること
ができる効果がある。The composite film 6 for laminates formed by the casting method of the above-described embodiment (corresponding to claims 2 and 3) comprises the PTFE resin 4 and the fluororesin 5 having a low melting point with respect to the PTFE resin 4. A film having a two-layer structure can be formed, and since metal powder and carbonized fine powder are not mixed in, it is excellent in electrical insulation and has an effect that an extremely thin structure of 10 μm or less can be formed.
【0055】さらに、上述の複合フィルム6の一層を構
成するPTFE樹脂4に対して他層を構成する低融点フ
ッ素樹脂5は、PFA、FEP、ETFE、ECTF
E、PCTFEの諸種の低融点フッ素樹脂から選定する
ことができるので、諸種の2層構造の極薄複合フィルム
6を得ることができ、このため上述の未焼結プリプレグ
3の製造工程を標準化することができる効果がある。Further, the low melting point fluororesin 5 constituting another layer in addition to the PTFE resin 4 constituting one layer of the composite film 6 is made of PFA, FEP, ETFE, ECTF.
Since it is possible to select from various kinds of low melting point fluororesins such as E and PCTFE, it is possible to obtain various kinds of ultra-thin composite films 6 having a two-layer structure, and thus standardize the manufacturing process of the above-mentioned unsintered prepreg 3. There is an effect that can be.
【0056】図4は積層板の製造方法の他の実施例(請
求項4に対応)を示し、ガラス布基材25にフッ素樹脂
ディスパージョン、例えばPTFE樹脂26のディスパ
ージョンを含浸した後に、乾燥し、樹脂保持量60〜7
0vol %の未焼結プリプレグ27を形成し、少なくとも
1枚の未焼結プリプレグ27の両面にCu箔28,28
を配置し、PTFE樹脂26の融点より高温(例えば3
80℃)で加熱加圧した外層用の複数の回路層G,Gを
形成し、この回路層G,Gの片面のCu箔28,28を
図4の如くエッチングして回路部29,29いわゆる回
路パターンを形成する。FIG. 4 shows another embodiment (corresponding to claim 4) of a method for manufacturing a laminated plate, in which a glass cloth substrate 25 is impregnated with a fluororesin dispersion, for example, a dispersion of PTFE resin 26, and then dried. However, the resin retention amount is 60 to 7
0 vol% of unsintered prepreg 27 is formed, and Cu foils 28, 28 are formed on both sides of at least one unsintered prepreg 27.
Is placed at a temperature higher than the melting point of the PTFE resin 26 (for example, 3
A plurality of circuit layers G, G for outer layers, which are heated and pressed at 80 ° C.), are formed, and Cu foils 28, 28 on one surface of the circuit layers G, G are etched as shown in FIG. Form a circuit pattern.
【0057】次に上述の複数の回路層G,G間に、一層
がPTFE樹脂4で、他層が該PTFE樹脂4に対して
低融点のフッ素樹脂5で形成された極薄2層構造の上述
同様の複合フィルム6,6を介設し、これら複合フィル
ム6,6のPTFE樹脂4側を反回路部側に、低融点フ
ッ素樹脂5側を回路部29側に対向させると共に、2枚
の複合フィルム6,6間にPFAもしくはFEPの介挿
フィルム30(流動層として用いるフィルム)を介設
し、PTFEの融点より高温(たとえば380℃)で加
熱加圧して多層プリント配線板31を製造した。Next, between the above-mentioned plurality of circuit layers G, G, one layer is made of PTFE resin 4, and the other layer is made of fluororesin 5 having a low melting point with respect to the PTFE resin 4, and thus has an extremely thin two-layer structure. The same composite films 6 and 6 as described above are provided, and the PTFE resin 4 side of these composite films 6 and 6 faces the non-circuit part side and the low melting point fluororesin 5 side faces the circuit part 29 side, and An intervening film 30 of PFA or FEP (film used as a fluidized bed) is interposed between the composite films 6 and 6, and heated and pressed at a temperature higher than the melting point of PTFE (for example, 380 ° C.) to manufacture a multilayer printed wiring board 31. .
【0058】このように回路部29を有する複数の回路
層G,G間に複合フィルム6を介設し、この複合フィル
ム6のPTFE樹脂4よりなる一層側を反回路側に、P
TFE樹脂4に対して低融点のフッ素樹脂5よりなる他
層側を回路部29側に配設して製造するので、多層板の
製造時に二次成形を行なっても、図5(二次成形完了後
の一部断面図)に示すように、回路層Gの回路部29と
複合フィルム6との間の空隙は低融点フッ素樹脂5の溶
融流動により埋めることができ、層間のずれや回路部2
9の流動いわゆるスイミング現象は複合フィルム6の一
層側のPTFE樹脂4により防止することができる。In this way, the composite film 6 is interposed between the plurality of circuit layers G having the circuit portion 29, and the one side of the composite film 6 made of the PTFE resin 4 is the opposite circuit side, and P is the opposite side.
Since the other layer side made of the fluororesin 5 having a low melting point with respect to the TFE resin 4 is disposed on the side of the circuit portion 29 for manufacturing, even if the secondary molding is performed at the time of manufacturing the multilayer board, the structure shown in FIG. As shown in (partial cross-sectional view after completion), the gap between the circuit portion 29 of the circuit layer G and the composite film 6 can be filled with the melt flow of the low melting point fluororesin 5, resulting in a gap between layers and a circuit portion. Two
The flow phenomenon of 9 (so-called swimming phenomenon) can be prevented by the PTFE resin 4 on one side of the composite film 6.
【0059】この結果、積層板を多層化しても、層間の
ずれや回路部29の流動(スイミング現象)がなく、ま
た回路部29と複合フィルム6との間に空隙が形成され
ることもなく、また未焼結プリプレグ27からの製造に
より、ハンダ耐熱性、熱衝撃性、寸法安定性が優れ、か
つ、多層化が可能な効果がある。As a result, even if the laminated plates are made into multiple layers, there is no gap between the layers or flow of the circuit portion 29 (swimming phenomenon), and no void is formed between the circuit portion 29 and the composite film 6. In addition, the production from the unsintered prepreg 27 has the effects of excellent solder heat resistance, thermal shock resistance, and dimensional stability, and also capable of forming multiple layers.
【0060】この実施例の比較例として、図6に示すよ
うに複合フィルム6に代えてPTFEフィルムのみを用
いた場合には、その溶融粘度が380℃で1010〜10
11ポイズと高いためPTFE樹脂が回路部29の角部に
流れ込まず、回路部29とPTFEフィルムとの間に空
隙32(PTFE樹脂が固化する時の収縮により形成さ
れる場合を含む)が残存し、接着力が弱く、ハンダ耐熱
性、熱衝撃性の何れにも劣った。As a comparative example of this example, when only the PTFE film was used instead of the composite film 6 as shown in FIG. 6, the melt viscosity was 10 10 to 10 10 at 380 ° C.
Because of the high poise of 11 poise, the PTFE resin does not flow into the corners of the circuit portion 29, and the void 32 (including the case where it is formed by the contraction when the PTFE resin solidifies) remains between the circuit portion 29 and the PTFE film. The adhesive strength was weak, and it was inferior to both solder heat resistance and thermal shock resistance.
【0061】また上述の実施例の比較例として、複合フ
ィルム6に代えてPFAフィルムのみを用いた場合に
は、その溶融粘度が380℃条件下で104 〜105 ポ
イズで、溶融流動性が大きいため、層間のずれや回路部
29の流動が生じた。Further, as a comparative example of the above-mentioned examples, when only the PFA film was used in place of the composite film 6, the melt viscosity was 10 4 to 10 5 poises under the condition of 380 ° C., and the melt fluidity was Since it is large, a gap between layers and a flow of the circuit portion 29 occur.
【0062】図7は積層板の製造方法の他の実施例(請
求項4に対応)を示し、ガラス布基材25にフッ素樹脂
ディスパージョン、例えばPTFE樹脂26のディスパ
ージョンを含浸した後に、乾燥し、樹脂保持量60〜7
0vol %の未焼結プリプレグ27を形成し、少なくとも
1枚の未焼結プリプレグ27の両面にCu箔28,28
を配置し、PTFE樹脂26の融点より高温(たとえば
380℃)で加熱加圧した内層用の回路層Nを形成し、
この回路層Nの両面のCu箔28,28を図7の如くエ
ッチングして回路部29,29を形成する。FIG. 7 shows another embodiment (corresponding to claim 4) of the method for manufacturing a laminated plate, in which the glass cloth substrate 25 is impregnated with a fluororesin dispersion, for example, a dispersion of PTFE resin 26, and then dried. However, the resin retention amount is 60 to 7
0 vol% of unsintered prepreg 27 is formed, and Cu foils 28, 28 are formed on both sides of at least one unsintered prepreg 27.
To form the circuit layer N for the inner layer, which is heated and pressed at a temperature higher than the melting point of the PTFE resin 26 (for example, 380 ° C.),
The Cu foils 28, 28 on both surfaces of the circuit layer N are etched as shown in FIG. 7 to form circuit portions 29, 29.
【0063】この内層用の回路層Nの上下両面に複合フ
ィルム6,6、介挿フィルム30,30を介して図4の
実施例と同一製造方法により形成された外層用の回路層
G,Gを配設し、PTFEの融点より高温の380℃で
加熱加圧して多層プリント配線板33を製造した。Circuit layers G, G for outer layers formed on the upper and lower surfaces of the circuit layer N for inner layers through the composite films 6, 6 and the interposing films 30, 30 by the same manufacturing method as in the embodiment of FIG. And was heated and pressed at 380 ° C., which is higher than the melting point of PTFE, to manufacture a multilayer printed wiring board 33.
【0064】このように構成しても図4の実施例とほぼ
同様の作用、効果を奏するので、図7において図4と同
一の部分には同一番号および同一符号を付して、その詳
しい説明を省略する。Even with such a configuration, the same operation and effect as those of the embodiment of FIG. 4 can be obtained. Therefore, in FIG. 7, the same parts as those of FIG. Is omitted.
【0065】図8は積層板の製造方法のさらに他の実施
例(請求項4に対応)を示し、内層用の回路層Nの上下
両面に複合フィルム6,6、介挿フィルム30,30、
複合フィルム6,6、外層用の回路層Gを配設し、PT
FEの融点より高温の380℃で加熱加圧して多層プリ
ント配線板34を製造したものである。FIG. 8 shows still another embodiment (corresponding to claim 4) of the method for producing a laminated plate, in which the composite films 6 and 6, the interposing films 30 and 30, are formed on the upper and lower surfaces of the circuit layer N for the inner layer.
The composite films 6 and 6 and the circuit layer G for the outer layer are provided, and PT
The multilayer printed wiring board 34 is manufactured by heating and pressing at 380 ° C., which is higher than the melting point of FE.
【0066】このように構成しても図4、図7の各実施
例とほぼ同様の作用、効果を奏するので、図8において
前図と同一の部分には同一番号および同一符号を付し
て、その詳しい説明を省略する。Even with such a configuration, the same operation and effect as those of the respective embodiments of FIGS. 4 and 7 can be obtained. Therefore, in FIG. 8, the same parts as those in the previous figure are designated by the same reference numerals and symbols. , Its detailed description is omitted.
【0067】図9は積層板の製造方法のさらに他の実施
例(請求項5に対応)を示し、複数の外層用の回路層
G,G間に複合フィルム6,6を複数介設すると共に、
複数の複合フィルム6,6間には、ガラス布基材35に
例えばPTFE樹脂36のディスパージョンを含浸後、
乾燥した未焼結プリプレグ37(電気絶縁層として用い
る)を介設し、この未焼結プリプレグ37の上下両面に
介挿フィルム30,30を配設して、上述同様の製造方
法により多層プリント配線板38を製造したものであ
る。FIG. 9 shows still another embodiment (corresponding to claim 5) of the method for manufacturing a laminated board, in which a plurality of composite films 6 and 6 are provided between a plurality of circuit layers G for outer layers. ,
Between the composite films 6 and 6, after impregnating the glass cloth base material 35 with a dispersion of PTFE resin 36, for example,
A dry unsintered prepreg 37 (used as an electric insulating layer) is interposed, and interposing films 30, 30 are provided on both upper and lower surfaces of this unsintered prepreg 37, and a multilayer printed wiring is manufactured by the same manufacturing method as described above. The plate 38 is manufactured.
【0068】このように構成した場合には、上述の未焼
結プリプレグ37により回路の層間厚さを任意に設定す
ることができる効果がある。なお、その他の点について
は先の各実施例と同様の作用、効果を奏するので、図9
において前図と同一の部分には同一番号および同一符号
を付してその詳しい説明を省略する。With such a structure, there is an effect that the green thickness of the circuit can be arbitrarily set by the above-mentioned green prepreg 37. In addition, in other respects, the same operation and effect as those of the respective embodiments described above are obtained, and therefore, FIG.
In the figure, the same parts as those in the previous figure are designated by the same reference numerals and their detailed description will be omitted.
【0069】図10は積層板の製造方法のさらに他の実
施例(請求項5に対応)を示し、内層用の回路層Nの上
下両面に複合フィルム6、介挿フィルム30、未焼結プ
リプレグ37、介挿フィルム30、複合フィルム6、外
層用の回路層Gをこの順にそれぞれ配設し、PTFEの
融点より高温の380℃で加熱加圧して多層プリント配
線板39を製造したものである。FIG. 10 shows still another embodiment of the method for manufacturing a laminated board (corresponding to claim 5), in which the composite film 6, the interposing film 30, the unsintered prepreg are formed on the upper and lower surfaces of the circuit layer N for the inner layer. 37, the interposer film 30, the composite film 6, and the circuit layer G for the outer layer are respectively arranged in this order, and the multilayer printed wiring board 39 is manufactured by heating and pressing at 380 ° C., which is higher than the melting point of PTFE.
【0070】このように構成しても図9の実施例とほぼ
同様の作用、効果を奏するので、図10において前図と
同一の部分には同一番号および同一符号を付して、その
詳しい説明を省略する。Even with this configuration, the same operation and effect as those of the embodiment of FIG. 9 can be obtained. Therefore, in FIG. 10, the same parts as those in the previous figure are designated by the same reference numerals and symbols, and detailed description thereof will be given. Is omitted.
【0071】図11は積層板の製造方法のさらに他の実
施例(請求項6に対応)を示し、複数の外層用の回路層
G,G間に複合フィルム6,6を複数介設すると共に、
複数の複合フィルム6,6間には、ガラス布基材40に
例えばPTFE樹脂41のディスパージョンを含浸後、
乾燥および焼結した焼結プリプレグ42(電気絶縁層と
して用いる)を介設し、この焼結プリプレグ42の上下
両面に介挿フィルム30,30を配設して、上述同様の
製造方法により多層プリント配線板43を製造したもの
である。FIG. 11 shows still another embodiment (corresponding to claim 6) of the method for manufacturing a laminated plate, in which a plurality of composite films 6 and 6 are provided between a plurality of outer circuit layers G and G. ,
Between the composite films 6 and 6, after impregnating the glass cloth base material 40 with a dispersion of the PTFE resin 41, for example,
A dried and sintered sintered prepreg 42 (used as an electric insulating layer) is interposed, and interposing films 30, 30 are provided on both upper and lower surfaces of this sintered prepreg 42, and a multilayer printing is performed by the same manufacturing method as described above. The wiring board 43 is manufactured.
【0072】このように構成した場合には、上述の焼結
プリプレグ42により回路の層間厚さを任意に設定する
ことができる効果がある。なお、その他の点については
先の各実施例と同様の作用、効果を奏するので、図11
において前図と同一の部分には同一番号および同一符号
を付してその詳しい説明を省略する。In the case of such a construction, there is an effect that the above-mentioned sintered prepreg 42 can arbitrarily set the interlayer thickness of the circuit. In addition, in other respects, the same operation and effect as those of the above-described respective embodiments are achieved, and therefore, FIG.
In the figure, the same parts as those in the previous figure are designated by the same reference numerals and their detailed description will be omitted.
【0073】図12は積層板の製造方法のさらに他の実
施例(請求項7に対応)を示し、複数の外層用の回路層
G,G間に複合フィルム6,6を複数介設して熱融着す
ると共に、複数の複合フィルム6,6間には、ガラス布
基材44にエポキシ系またはポリイミド系のフッ素樹脂
に対して低温で焼成、固化する熱硬化性プリプレグ46
(電気絶縁層を兼ねる)を介設し、複合フィルム6,6
を構成するPTFEより低融点のフッ素樹脂の融点より
低温で加熱加圧して多層プリント配線板47を製造した
ものである。FIG. 12 shows still another embodiment of the method for manufacturing a laminated board (corresponding to claim 7) in which a plurality of composite films 6 and 6 are provided between a plurality of outer circuit layers G. A thermosetting prepreg 46 that is heat-fused and is baked and solidified at a low temperature with respect to the epoxy-based or polyimide-based fluororesin on the glass cloth base material 44 between the plurality of composite films 6 and 6.
(Also serves as an electric insulation layer), and the composite film 6, 6
The multilayer printed wiring board 47 is manufactured by heating and pressurizing at a temperature lower than the melting point of the fluororesin having a melting point lower than that of PTFE.
【0074】ここで、上述の複合フィルム6,6の熱硬
化性プリプレグ46と対向する面4a,4aはプラズマ
処理法、コロナ放電処理法、薬品処理法などにより水
(H20)との接触角を70°以下まで予め表面改質す
る。Here, the surfaces 4a and 4a of the composite films 6 and 6 facing the thermosetting prepreg 46 are brought into contact with water (H 2 0) by a plasma treatment method, a corona discharge treatment method, a chemical treatment method, or the like. Surface is preliminarily modified to an angle of 70 ° or less.
【0075】このように構成した場合には、複数の複合
フィルム6,6間に介設された熱硬化性プリプレグ46
により回路の層間厚さを任意に設定することができるの
は勿論、この熱硬化性プリプレグ46の介設により多層
プリント配線板47全体の剛性向上を図ることができる
から、圧縮、復元力が繰返し付勢されるテストボードに
適用しても充分な耐久性の向上を図ることができ、また
部品実装後において多層プリント配線板47をシャーシ
等に取付けるには、例えば図12において上側の各要素
G,6,30にネジ頭部配設用の穴を穿孔し、上述の熱
硬化性プリプレグ46を取付座として用いることができ
るので、多層プリント配線板47のネジ止め固定が可能
となる効果がある。In the case of such a structure, the thermosetting prepreg 46 interposed between the plurality of composite films 6 and 6 is provided.
By using the thermosetting prepreg 46, it is possible to improve the rigidity of the entire multilayer printed wiring board 47 by using the thermosetting prepreg 46. Even if it is applied to a biased test board, the durability can be sufficiently improved, and in order to mount the multilayer printed wiring board 47 on the chassis after mounting the components, for example, each upper element G in FIG. , 6, 30 can be provided with holes for disposing screw heads, and the above-mentioned thermosetting prepreg 46 can be used as a mounting seat, so that the multilayer printed wiring board 47 can be screwed and fixed. .
【0076】加えて、上述の熱硬化性プリプレグ46と
対接する複合フィルム6の対抗面4a,4aをH2 Oと
の接触角が70度以下となるように表面改質したので、
これら両者46,6の充分な接合性を確保することがで
きる効果がある。In addition, since the opposing surfaces 4a, 4a of the composite film 6 that are in contact with the thermosetting prepreg 46 described above are surface-modified so that the contact angle with H 2 O is 70 degrees or less,
There is an effect that a sufficient bondability of these both 46 and 6 can be secured.
【0077】さらに、上述の複合フィルム6の一層を構
成するPTFE樹脂4に対して他層を構成する低融点フ
ッ素樹脂5は、PFA、FEP、ETFE、ECTF
E、PCTFEの諸種の低融点フッ素樹脂から選定する
ことができるので、諸種の2層構造の極薄複合フィルム
6を得ることができ、このため上述の熱硬化性プリプレ
グ46や未焼結プリプレグを用いた積層板の製造工程を
標準化することができる効果がある。Further, the low melting point fluororesin 5 constituting another layer in addition to the PTFE resin 4 constituting one layer of the composite film 6 is made of PFA, FEP, ETFE, ECTF.
Since it is possible to select from various kinds of low melting point fluororesins such as E and PCTFE, it is possible to obtain various kinds of ultra-thin composite films 6 having a two-layer structure. Therefore, the above-mentioned thermosetting prepreg 46 and unsintered prepreg are used. There is an effect that the manufacturing process of the used laminated plate can be standardized.
【0078】この発明の構成と、上述の実施例との対応
において、この発明の基材は、実施例のガラス布基材
1,25,35,40に対応し、以下同様に、金属箔
は、Cu箔23,28に対応するも、この発明は、上述
の実施例の構成のみに限定されるものではない。In the correspondence between the constitution of the present invention and the above-mentioned embodiments, the base material of the present invention corresponds to the glass cloth base materials 1, 25, 35 and 40 of the embodiments, and the same applies to the metal foil. , Cu foils 23 and 28, the present invention is not limited to the configurations of the above-described embodiments.
【図1】本発明の積層板の製造方法により製造された積
層板の断面図。FIG. 1 is a cross-sectional view of a laminated board manufactured by a method for manufacturing a laminated board of the present invention.
【図2】本発明の積層板用複合フィルムの製造に用いる
製造装置の説明図。FIG. 2 is an explanatory view of a manufacturing apparatus used for manufacturing the composite film for laminated plate of the present invention.
【図3】本発明の積層板用複合フィルムの断面図。FIG. 3 is a cross-sectional view of the composite film for laminated plate of the present invention.
【図4】積層板の製造方法の他の実施例を示す分解断面
図。FIG. 4 is an exploded sectional view showing another embodiment of the method for manufacturing a laminated board.
【図5】二次成形完了後の部分断面図。FIG. 5 is a partial cross-sectional view after completion of secondary molding.
【図6】比較例を示す部分断面図。FIG. 6 is a partial cross-sectional view showing a comparative example.
【図7】積層板の製造方法のさらに他の実施例を示す分
解断面図。FIG. 7 is an exploded sectional view showing still another embodiment of the method for manufacturing a laminated board.
【図8】積層板の製造方法のさらに他の実施例を示す分
解断面図。FIG. 8 is an exploded sectional view showing still another embodiment of the method for manufacturing a laminated board.
【図9】積層板の製造方法のさらに他の実施例を示す分
解断面図。FIG. 9 is an exploded sectional view showing still another embodiment of the method for manufacturing a laminated board.
【図10】積層板の製造方法のさらに他の実施例を示す
分解断面図。FIG. 10 is an exploded sectional view showing still another embodiment of the method for manufacturing a laminated board.
【図11】積層板の製造方法のさらに他の実施例を示す
分解断面図。FIG. 11 is an exploded cross-sectional view showing still another embodiment of the method for manufacturing a laminated board.
【図12】積層板の製造方法のさらに他の実施例を示す
分解断面図。FIG. 12 is an exploded cross-sectional view showing still another embodiment of the method for manufacturing a laminated board.
1…ガラス布基材 2…PTFE樹脂 3…未焼結プリプレグ 4…PTFE樹脂 4a…対向面 5…低融点フッ素樹脂 6…複合フィルム 23…Cu箔 25,35,40…ガラス布基材 27…未焼結プリプレグ 28…Cu箔 29…回路部 G,N…回路層 30…介挿フィルム 37…未焼結プリプレグ 42…焼結プリプレグ 46…熱硬化性プリプレグ DESCRIPTION OF SYMBOLS 1 ... Glass cloth base material 2 ... PTFE resin 3 ... Unsintered prepreg 4 ... PTFE resin 4a ... Opposing surface 5 ... Low melting point fluororesin 6 ... Composite film 23 ... Cu foil 25, 35, 40 ... Glass cloth base material 27 ... Unsintered prepreg 28 ... Cu foil 29 ... Circuit part G, N ... Circuit layer 30 ... Insertion film 37 ... Unsintered prepreg 42 ... Sintered prepreg 46 ... Thermosetting prepreg
Claims (8)
浸し、該PTFE樹脂の融点に対して低温で乾燥処理
し、上記含浸および乾燥を繰返して必要樹脂保持量と成
した未焼結プリプレグを形成する一方、一層がPTFE
樹脂で、他層が該PTFE樹脂に対して低融点のフッ素
樹脂で形成された2層構造の積層板用複合フィルムを形
成し、上記未焼結プリプレグの少なくとも片側外面に上
記複合フィルムを介して金属箔を配置した後に、PTF
E樹脂の融点に対して高温で加熱加圧する積層板の製造
方法。1. A base material is impregnated with a PTFE resin dispersion, which is dried at a low temperature with respect to the melting point of the PTFE resin, and the impregnation and drying are repeated to form a green prepreg having a required resin retention amount. On the other hand, one layer is PTFE
A composite film for a laminated plate having a two-layer structure in which the other layer is made of a resin and a fluororesin having a low melting point with respect to the PTFE resin is formed. After placing the metal foil, PTF
A method for producing a laminated plate, which comprises heating and pressing at a high temperature with respect to the melting point of E resin.
上に付着して薄層と成した後、該薄層表面にPTFE樹
脂に対して低融点のフッ素樹脂ディスパージョンが付着
された2層構造フィルムを上記プレートから剥離して形
成された積層板用複合フィルム。2. A two-layer structure film comprising a PTFE resin dispersion deposited on a plate to form a thin layer, and a fluorine resin dispersion having a low melting point with respect to PTFE resin deposited on the thin layer surface. A composite film for laminated plates formed by peeling from a plate.
は、PFA、FEP、ETFE、ECTFEおよびPC
TFEのうちの1つのフッ素樹脂ディスパージョンとし
た請求項2記載の積層板用複合フィルム。3. The low melting point fluororesin dispersion comprises PFA, FEP, ETFE, ECTFE and PC.
The composite film for a laminate according to claim 2, which is one of TFEs made of a fluororesin dispersion.
した後に、乾燥して未焼結プリプレグを形成し、該未焼
結プリプレグの少なくとも片面に金属箔を配置し、上記
フッ素樹脂の融点より高温で加熱加圧した回路部を有す
る内層用および外層用の複数の回路層が形成され、上記
複数の回路層間に、一層がPTFE樹脂で、他層が該P
TFE樹脂に対して低融点のフッ素樹脂で形成された2
層構造の複合フィルムを介設し、上記複合フィルムの一
層側を反回路部側に、他層側を回路部側に対向させると
共に、複合フィルムの一層側と対向部材との間にPFA
もしくはFEPの介挿フィルムを介設し、PTFEの融
点より高温で加熱加圧する積層板の製造方法。4. A base material impregnated with a fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg, and the temperature is higher than the melting point of the fluororesin. A plurality of circuit layers for the inner layer and the outer layer having a circuit portion heated and pressed by the above are formed, and one layer is a PTFE resin and the other layer is the P layer between the plurality of circuit layers.
Made of fluororesin with a low melting point for TFE resin 2
A composite film having a layered structure is interposed, one side of the composite film is opposed to the circuit side and the other side is opposed to the circuit side, and the PFA is provided between the composite film one side and the facing member.
Alternatively, a method for producing a laminated plate, in which an FEP interposing film is interposed and heating and pressing are performed at a temperature higher than the melting point of PTFE.
複数介設すると共に、複数の複合フィルム間には、基材
にフッ素樹脂を含浸後、乾燥した未焼結プリプレグを介
設した請求項4記載の積層板の製造方法。5. A non-sintered prepreg, which is obtained by impregnating a base material with a fluororesin and then drying, between the plurality of circuit films, wherein a plurality of the composite films are provided between the plurality of circuit layers. 4. The method for producing a laminated plate as described in 4.
複数介設すると共に、複数の複合フィルム間には、基材
にフッ素樹脂を含浸後、乾燥および焼結した焼結プリプ
レグを介設した請求項4記載の積層板の製造方法。6. A plurality of the composite films are provided between the plurality of circuit layers, and a sintered prepreg obtained by impregnating a base material with a fluororesin and then drying and sintering is provided between the plurality of composite films. The method for manufacturing a laminated board according to claim 4.
した後に、乾燥して未焼結プリプレグを形成し、該未焼
結プリプレグの少なくとも片面に金属箔を配置し、上記
フッ素樹脂の融点より高温で加熱加圧した回路部を有す
る内層用および外層用の複数の回路層が形成され、上記
複数の回路層間に、一層がPTFE樹脂で、他層が該P
TFE樹脂に対して低融点のフッ素樹脂で形成された2
層構造の複合フィルムを介設し、上記複合フィルムの一
層側を反回路部側に、他層側を回路部側に対向させて熱
融着させると共に、反回路側表面を接触角70度以下に
表面改質し、上記複数の回路層間にはエポキシ系または
ポリイミド系のフッ素樹脂に対して低温で焼成固化する
熱硬化性プリプレグを介設し、2層構造の複合フィルム
を構成するPTFEより低融点のフッ素樹脂の融点に対
して低温で加熱加圧する積層板の製造方法。7. A substrate is impregnated with a fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg, and the temperature is higher than the melting point of the fluororesin. A plurality of circuit layers for the inner layer and the outer layer having a circuit portion heated and pressed by the above are formed, and one layer is a PTFE resin and the other layer is the P layer between the plurality of circuit layers.
Made of fluororesin with a low melting point for TFE resin 2
A composite film having a layered structure is interposed, and one side of the composite film is opposed to the circuit side and the other side is opposed to the circuit side for heat fusion, and the surface opposite the circuit side has a contact angle of 70 degrees or less. The surface of the two or more circuit layers is thermoset prepreg which is baked and solidified at a low temperature with respect to the epoxy or polyimide fluororesin, and is lower than the PTFE constituting the two-layer structure composite film. A method for producing a laminated plate, which comprises heating and pressurizing at a low temperature with respect to the melting point of the fluororesin.
P、ETFE、ECTFEおよびPCTFEのうちの1
つのフッ素樹脂とした請求項7記載の積層板の製造方
法。8. The low melting point fluororesin is PFA or FE.
1 of P, ETFE, ECTFE and PCTFE
The method for manufacturing a laminated board according to claim 7, wherein two fluororesins are used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5160256A JPH0818403B2 (en) | 1993-06-03 | 1993-06-03 | Laminates and green composite films for laminates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5160256A JPH0818403B2 (en) | 1993-06-03 | 1993-06-03 | Laminates and green composite films for laminates |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06344503A true JPH06344503A (en) | 1994-12-20 |
JPH0818403B2 JPH0818403B2 (en) | 1996-02-28 |
Family
ID=15711078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5160256A Expired - Lifetime JPH0818403B2 (en) | 1993-06-03 | 1993-06-03 | Laminates and green composite films for laminates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0818403B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1117281A1 (en) * | 1999-07-05 | 2001-07-18 | Nippon Pillar Packing Co., Ltd. | Printed wiring board and prepreg for printed wiring board |
JP2001328205A (en) * | 2000-05-19 | 2001-11-27 | Nippon Pillar Packing Co Ltd | Laminated sheet and method for manufacturing the same |
JP2002151844A (en) * | 2000-11-09 | 2002-05-24 | Nippon Pillar Packing Co Ltd | Multilayer circuit substrate and method of manufacturing the same |
JP2003338670A (en) * | 2002-05-22 | 2003-11-28 | Tomoegawa Paper Co Ltd | Fluororesin printed wiring board and method of manufacturing the same |
JP2004091948A (en) * | 2002-08-30 | 2004-03-25 | Tomoegawa Paper Co Ltd | Fluororesin fiber sheet, metal-clad substrate for printed wiring board using the same, and method of manufacturing the same |
JP2008012683A (en) * | 2006-07-03 | 2008-01-24 | Nippon Pillar Packing Co Ltd | Copper clad substrate, printed circuit board and manufacturing method of copper clad substrate |
WO2013076973A1 (en) * | 2011-11-22 | 2013-05-30 | パナソニック株式会社 | Metal-clad laminate, and printed wiring board |
US20130199828A1 (en) * | 2011-05-23 | 2013-08-08 | Sumitomo Electric Fine Polymer, Inc. | High-frequency circuit substrate |
WO2014192322A1 (en) * | 2013-05-31 | 2014-12-04 | 住友電気工業株式会社 | High-frequency printed circuit board and wiring material |
JP2015012197A (en) * | 2013-06-28 | 2015-01-19 | 住友電気工業株式会社 | Flexible printed wiring board |
JP2016164934A (en) * | 2015-03-06 | 2016-09-08 | パナソニックIpマネジメント株式会社 | Manufacturing method for circuit board |
JP5991500B1 (en) * | 2016-03-18 | 2016-09-14 | パナソニックIpマネジメント株式会社 | Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board |
WO2017030190A1 (en) * | 2015-08-20 | 2017-02-23 | 旭硝子株式会社 | Multilayer base and method for producing molded body of same |
JP2017128061A (en) * | 2016-01-21 | 2017-07-27 | 宇部エクシモ株式会社 | Flexible metal laminate |
JP2017170877A (en) * | 2016-08-01 | 2017-09-28 | パナソニックIpマネジメント株式会社 | Metal-clad laminate, printed wiring board, method for manufacturing metal-clad laminate, and method for manufacturing printed wiring board |
JP2019197934A (en) * | 2019-08-26 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Method of manufacturing circuit board |
CN111171736A (en) * | 2020-01-14 | 2020-05-19 | 广东生益科技股份有限公司 | A kind of varnished cloth and preparation method thereof, copper clad laminate containing the same, and application |
CN117048161A (en) * | 2023-10-12 | 2023-11-14 | 山东东岳高分子材料有限公司 | Expanded porous PTFE laminated board and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257592A (en) * | 1984-06-04 | 1985-12-19 | 松下電工株式会社 | Multilayer printed circuit board |
JPS60257596A (en) * | 1984-06-04 | 1985-12-19 | 松下電工株式会社 | Multilayer printed circuit board |
JPS63173638A (en) * | 1987-01-14 | 1988-07-18 | 松下電工株式会社 | Laminated board |
JPS63199636A (en) * | 1987-02-14 | 1988-08-18 | 松下電工株式会社 | Laminated board |
JPH0379343A (en) * | 1989-08-23 | 1991-04-04 | Fujikura Ltd | Metal-foiled laminated sheet and preparation thereof |
-
1993
- 1993-06-03 JP JP5160256A patent/JPH0818403B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257592A (en) * | 1984-06-04 | 1985-12-19 | 松下電工株式会社 | Multilayer printed circuit board |
JPS60257596A (en) * | 1984-06-04 | 1985-12-19 | 松下電工株式会社 | Multilayer printed circuit board |
JPS63173638A (en) * | 1987-01-14 | 1988-07-18 | 松下電工株式会社 | Laminated board |
JPS63199636A (en) * | 1987-02-14 | 1988-08-18 | 松下電工株式会社 | Laminated board |
JPH0379343A (en) * | 1989-08-23 | 1991-04-04 | Fujikura Ltd | Metal-foiled laminated sheet and preparation thereof |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1117281A1 (en) * | 1999-07-05 | 2001-07-18 | Nippon Pillar Packing Co., Ltd. | Printed wiring board and prepreg for printed wiring board |
US6417459B1 (en) * | 1999-07-05 | 2002-07-09 | Nippon Pillar Packing Co., Ltd. | Printed circuit board, and prepreg for a printed circuit board |
EP1117281A4 (en) * | 1999-07-05 | 2006-12-13 | Nippon Pillar Packing | Printed wiring board and prepreg for printed wiring board |
JP2001328205A (en) * | 2000-05-19 | 2001-11-27 | Nippon Pillar Packing Co Ltd | Laminated sheet and method for manufacturing the same |
JP2002151844A (en) * | 2000-11-09 | 2002-05-24 | Nippon Pillar Packing Co Ltd | Multilayer circuit substrate and method of manufacturing the same |
JP2003338670A (en) * | 2002-05-22 | 2003-11-28 | Tomoegawa Paper Co Ltd | Fluororesin printed wiring board and method of manufacturing the same |
JP2004091948A (en) * | 2002-08-30 | 2004-03-25 | Tomoegawa Paper Co Ltd | Fluororesin fiber sheet, metal-clad substrate for printed wiring board using the same, and method of manufacturing the same |
JP2008012683A (en) * | 2006-07-03 | 2008-01-24 | Nippon Pillar Packing Co Ltd | Copper clad substrate, printed circuit board and manufacturing method of copper clad substrate |
US9497852B2 (en) * | 2011-05-23 | 2016-11-15 | Sumitomo Electric Fine Folymer, Inc. | High-frequency circuit substrate |
US20130199828A1 (en) * | 2011-05-23 | 2013-08-08 | Sumitomo Electric Fine Polymer, Inc. | High-frequency circuit substrate |
WO2013076973A1 (en) * | 2011-11-22 | 2013-05-30 | パナソニック株式会社 | Metal-clad laminate, and printed wiring board |
JPWO2013076973A1 (en) * | 2011-11-22 | 2015-04-27 | パナソニックIpマネジメント株式会社 | Metal-clad laminate and printed wiring board |
CN103946021A (en) * | 2011-11-22 | 2014-07-23 | 松下电器产业株式会社 | Metal-clad laminate, and printed wiring board |
US9516746B2 (en) | 2011-11-22 | 2016-12-06 | Panasonic Intellectual Property Management Co., Ltd. | Metal-clad laminate and printed wiring board |
WO2014192322A1 (en) * | 2013-05-31 | 2014-12-04 | 住友電気工業株式会社 | High-frequency printed circuit board and wiring material |
US10383215B2 (en) | 2013-05-31 | 2019-08-13 | Sumitomo Electric Industries, Ltd. | Radio-frequency printed circuit board and wiring material |
JP2015012197A (en) * | 2013-06-28 | 2015-01-19 | 住友電気工業株式会社 | Flexible printed wiring board |
JP2016164934A (en) * | 2015-03-06 | 2016-09-08 | パナソニックIpマネジメント株式会社 | Manufacturing method for circuit board |
WO2017030190A1 (en) * | 2015-08-20 | 2017-02-23 | 旭硝子株式会社 | Multilayer base and method for producing molded body of same |
CN107921732A (en) * | 2015-08-20 | 2018-04-17 | 旭硝子株式会社 | The manufacture method of laminated substrate and its formed body |
JPWO2017030190A1 (en) * | 2015-08-20 | 2018-05-31 | 旭硝子株式会社 | LAMINATED SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME |
CN107921732B (en) * | 2015-08-20 | 2019-08-13 | Agc株式会社 | The manufacturing method of laminated substrate and its formed body |
JP2017128061A (en) * | 2016-01-21 | 2017-07-27 | 宇部エクシモ株式会社 | Flexible metal laminate |
JP2017170640A (en) * | 2016-03-18 | 2017-09-28 | パナソニックIpマネジメント株式会社 | Metal-clad laminate, printed wiring board, method for manufacturing metal-clad laminate, and method for manufacturing printed wiring board |
JP5991500B1 (en) * | 2016-03-18 | 2016-09-14 | パナソニックIpマネジメント株式会社 | Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board |
JP2017170877A (en) * | 2016-08-01 | 2017-09-28 | パナソニックIpマネジメント株式会社 | Metal-clad laminate, printed wiring board, method for manufacturing metal-clad laminate, and method for manufacturing printed wiring board |
JP2019197934A (en) * | 2019-08-26 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Method of manufacturing circuit board |
CN111171736A (en) * | 2020-01-14 | 2020-05-19 | 广东生益科技股份有限公司 | A kind of varnished cloth and preparation method thereof, copper clad laminate containing the same, and application |
CN117048161A (en) * | 2023-10-12 | 2023-11-14 | 山东东岳高分子材料有限公司 | Expanded porous PTFE laminated board and preparation method thereof |
CN117048161B (en) * | 2023-10-12 | 2024-01-12 | 山东东岳高分子材料有限公司 | Expanded porous PTFE laminated board and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0818403B2 (en) | 1996-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06344503A (en) | Production of laminated sheet and composite film for laminated sheet | |
US6734375B2 (en) | Circuit board having an interstitial inner via hole structure | |
CN101313637B (en) | Intermediate material for manufacturing circuit board and method for manufacturing circuit board using such intermediate material | |
EP1180920B1 (en) | Method of manufacturing a circuit board | |
US6534160B2 (en) | Semiconductor device having a thermoset-containing dielectric material and methods for fabricating the same | |
JPH07323501A (en) | Prepreg for multilayered plate, laminated sheet, multilayered printed circuit board and production thereof | |
US8253033B2 (en) | Circuit board with connection layer with fillet | |
EP1487245B1 (en) | Manufacturing method for a circuit board | |
US7281325B2 (en) | Method of manufacturing circuit board | |
US20130062099A1 (en) | Multiple layer z-axis interconnect apparatus and method of use | |
EP1408726B1 (en) | Method of manufacturing a printed wiring board | |
US8007629B2 (en) | Method of manufacturing multi-layer circuit board | |
CA2016234A1 (en) | Asymmetric adhesive sheet | |
JPH06344500A (en) | Production of laminated sheet and mixed film for laminated sheet | |
JPH0790626B2 (en) | Laminated board manufacturing method | |
JPH0880539A (en) | Manufacture of resin laminated plate and metal-clad laminated plate | |
JPH06344502A (en) | Production of laminated sheet | |
JP3299501B2 (en) | Laminate molding plate and laminate | |
JP4089671B2 (en) | Circuit forming substrate manufacturing method and circuit forming substrate | |
JP2004221236A (en) | Process for producing circuit board | |
US8069557B2 (en) | Method of manufacturing circuit forming board | |
JP3238901B2 (en) | Multilayer printed wiring board and method of manufacturing the same | |
JP3982418B2 (en) | Circuit board manufacturing method | |
JP3263173B2 (en) | Method for producing resin laminate and method for producing metal-clad laminate | |
JPH05102628A (en) | Printed circuit board |