[go: up one dir, main page]

JPH06319726A - Device for measuring oxygen metabolism of bio tissue - Google Patents

Device for measuring oxygen metabolism of bio tissue

Info

Publication number
JPH06319726A
JPH06319726A JP5109502A JP10950293A JPH06319726A JP H06319726 A JPH06319726 A JP H06319726A JP 5109502 A JP5109502 A JP 5109502A JP 10950293 A JP10950293 A JP 10950293A JP H06319726 A JPH06319726 A JP H06319726A
Authority
JP
Japan
Prior art keywords
light
optical fiber
probe
fiber bundle
oxygen metabolism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5109502A
Other languages
Japanese (ja)
Inventor
Toshihiko Suzuta
敏彦 鈴田
Akio Nakada
明雄 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5109502A priority Critical patent/JPH06319726A/en
Publication of JPH06319726A publication Critical patent/JPH06319726A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To obtain accurate oxygen metabolism data with a high detection sensitivity by bringing the light emitting surface and light receiving surface of near infrared rays into close contact with biotissue. CONSTITUTION:A probe 8 is constituted of an optical fiber bundle guiding the light from a light source to biotissure and guiding the light reflected from the surface of the biotissure to a reflected light detector, an optical fiber bundle for scattered light guiding the light reaching the deep part of the biotissure to be scattered to scattered light detector, and the flexible tube covering both optical fiber bundless. The optical fiber bundle and the optical fiber bundle for scattered light are arranged at the leading end part 11 the probe 8 so that the line connecting the emitting surface 11a of the optical fiber and the incident surface of the optical fiber for the scattered light become right-angled to the angle direction of the leading end part 11 of the probe 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光を用いて生体組織や器
官内の酸素飽和度すなわち酸素代謝に関わる生体情報を
測定するのに適した、特に心臓や脳の組織の酸素代謝を
測定するのに適した生体組織の酸素代謝測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for measuring oxygen saturation in living tissues and organs, that is, biological information relating to oxygen metabolism, using light, and particularly measuring oxygen metabolism in tissues of heart and brain. The present invention relates to a biological tissue oxygen metabolism measuring apparatus suitable for

【0002】[0002]

【従来の技術】赤色から近赤外領域の光は生体組織に対
しての高い透過性やヘモグロビン、ミオグロビン、チト
クローム酸化酵素など生体内の酸素代謝をつかさどる物
質への吸光性やその酸素結合状態に対応する吸光スペク
トルの変化といった特徴をもっている。このような特徴
を利用して、USP4223680,USP42816
45では、生体内の心臓や脳など各種器官の酸素代謝を
測定する方法が示されている。
2. Description of the Related Art Light in the red to near-infrared region has high permeability to living tissues and its light-absorbing property to oxygen-binding substances such as hemoglobin, myoglobin, and cytochrome oxidase that regulate oxygen metabolism in the living body. It has the characteristic of corresponding change in absorption spectrum. Utilizing such characteristics, USP4223680, USP42816
45, a method for measuring oxygen metabolism of various organs such as heart and brain in the living body is shown.

【0003】また、近年、光イメージファイバーバンド
ルを用いて、胃、大腸はもちろんのこと、血管内を画像
で観察できる内視鏡が医学全般で利用されている。この
ような内視鏡は体外から見えない臓器を体腔内から直接
観察することで疾患の診断を正確かつ早期に行える特徴
をもつ。さらに、内視鏡にはチャンネルという孔が設け
られており、体外よりそのチャンネルを通じて体内に生
検鉗子、電気メスなどの処置具が挿入でき、内視鏡観察
だけでは分からない病変部の診断や治療等に用いられ
る。
[0003] In recent years, an endoscope that uses an optical image fiber bundle to observe not only the stomach and the large intestine but also blood vessels has been used in general medicine. Such an endoscope has a feature that a disease can be diagnosed accurately and early by directly observing an organ that cannot be seen from outside the body from the inside of the body cavity. Further, the endoscope is provided with a hole called a channel, and a treatment tool such as biopsy forceps or an electric scalpel can be inserted into the body from the outside of the body through the channel, and the diagnosis of a lesion part which cannot be understood only by observing the endoscope can be performed. It is used for treatment.

【0004】最近では、胃潰瘍や癌などを診断するた
め、内視鏡チャンネルより光ファイバープローブを挿入
して、体腔内組織の病変部の酸素代謝状態を測定してい
る。さらに、光ファイバープローブをX線透視下で心臓
の心室内に直接挿入し、心筋の酸素代謝を求める検討も
行われている。先の検討については”光ファイバープロ
ーブを用いた医用反射光スペクトル分析装置”医用電子
と生体光学 Vol.28 No.3(1990)、特開昭59−2305
33号に、後の検討については特願平3−194459
号に詳しい。
Recently, in order to diagnose gastric ulcer, cancer and the like, an optical fiber probe is inserted through an endoscope channel to measure the oxygen metabolism state of a lesion site in a body cavity. Furthermore, studies have also been conducted to determine the oxygen metabolism of the myocardium by directly inserting an optical fiber probe into the ventricle of the heart under fluoroscopy. Regarding the previous examination, "Medical reflection spectrum analyzer using optical fiber probe", Medical Electronics and Bio-Optics Vol.28 No.3 (1990), JP-A-59-2305
No. 33, Japanese Patent Application No. 3-194459 for later consideration.
Detailed in the issue.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、光ファ
イバープローブにより生体組織に光を照射する際、出射
面と受光面とが共に生体組織に密着していないと、検出
感度が低下し、正確な酸素代謝情報を得ることができな
いが、上記従来例ではこのような問題に対して何等考慮
がなされていない。
However, when the living tissue is irradiated with light by the optical fiber probe, if both the emitting surface and the light receiving surface are not in close contact with the living tissue, the detection sensitivity is lowered and accurate oxygen metabolism is not achieved. Although information cannot be obtained, no consideration is given to such a problem in the above-mentioned conventional example.

【0006】本発明は、上記事情に鑑みてなされたもの
であり、出射面と受光面とが共に生体組織に密着させ検
出感度が高く、正確な酸素代謝情報を得ることのできる
生体組織の酸素代謝測定装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and the oxygen of the living tissue which has a high detection sensitivity by having both the emitting surface and the light receiving surface in close contact with the living tissue and can obtain accurate oxygen metabolism information. It is an object to provide a metabolism measuring device.

【0007】[0007]

【課題を解決するための手段及び作用】 本発明の生体
組織の酸素代謝測定装置は、近赤外光を発生する光源
と、体腔内に挿入される挿入部を有し、前記光源からの
光により生体組織の代謝を測定するプローブとを備え、
前記プローブは、前記挿入部の先端部を湾曲させる湾曲
機構部を有し、前記挿入部内を挿通し、前記光源からの
光を基端面より入射し先端面より前記生体組織に照射す
る第1の光伝達手段と、前記挿入部内を挿通し、前記生
体組織からの戻り光を伝送する第2の光伝達手段とを備
え、前記第1の光伝達手段の先端面と前記第2の光伝達
手段の先端面とを、前記湾曲機構部が前記挿入部の先端
部を湾曲させる方向に対して互いに交差する方向に配置
して構成したので、出射面と受光面とが共に生体組織に
密着させることが可能となる。
Means and Actions for Solving the Problems An apparatus for measuring oxygen metabolism of living tissue according to the present invention has a light source that emits near-infrared light and an insertion portion that is inserted into a body cavity. With a probe to measure the metabolism of biological tissue by
The probe has a bending mechanism that bends a distal end portion of the insertion portion, is inserted through the insertion portion, and light from the light source is incident from a proximal end surface and irradiates the biological tissue from the distal end surface. A light transmitting unit and a second light transmitting unit that is inserted through the insertion portion and transmits return light from the living tissue, the tip end surface of the first light transmitting unit and the second light transmitting unit. Since the bending mechanism section is arranged in a direction intersecting with the direction in which the bending mechanism section bends the tip section of the insertion section, the emitting surface and the light receiving surface should both be in close contact with the living tissue. Is possible.

【0008】[0008]

【実施例】以下、図を参照して本発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1ないし図4は第1実施例に係わり、図
1は生体組織の酸素代謝を測定する酸素代謝測定装置の
構成を示す構成図、図2は酸素代謝測定装置の外観を示
す斜視図、図3はプローブの先端の構成を示す外観図、
図4は挿入部の心臓への挿入状態を示す説明図である。
1 to 4 relate to the first embodiment, FIG. 1 is a block diagram showing the configuration of an oxygen metabolism measuring apparatus for measuring oxygen metabolism of living tissue, and FIG. 2 is a perspective view showing the appearance of the oxygen metabolism measuring apparatus. FIG. 3 is an external view showing the configuration of the tip of the probe,
FIG. 4 is an explanatory diagram showing a state in which the insertion portion is inserted into the heart.

【0010】図2に示すように、酸素代謝測定装置1
は、光ファイバー束を内蔵した伸長なスコープ3と、後
述する光源2、反射光検出器4a,散乱光検出器4bお
よびコンピュータ5を内蔵した本体装置6と、酸素代謝
を表示する表示装置7より構成される。前記スコープ3
は、体腔内、例えば、心臓・胃・大腸・脳等に挿入可能
で光を送受できるように、光ファイバー束が内蔵された
伸長かつ細径なフレキシブルチューブよりなるプローブ
8と、スコープ3を保持する操作保持部9と、本体装置
6と接続する延長ケーブル10とより構成され、前記プ
ローブ8は、硬性の先端部11と、この先端部11に連
設して設けられた可動部12とからなり、この可動部1
2は、前記操作保持部9に設けられたアングル操作部1
3に連動して、このアングル操作部13を操作すること
により可動するようになっている。
As shown in FIG. 2, the oxygen metabolism measuring device 1
Is composed of an elongated scope 3 having a built-in optical fiber bundle, a main body 6 having a light source 2, a reflected light detector 4a, a scattered light detector 4b and a computer 5 which will be described later, and a display device 7 for displaying oxygen metabolism. To be done. The scope 3
Holds a scope 8 and a probe 8 composed of an elongated and thin flexible tube with a built-in optical fiber bundle so that light can be transmitted and received in a body cavity, for example, the heart, stomach, large intestine, brain, etc. The probe 8 is composed of an operation holding portion 9 and an extension cable 10 connected to the main body device 6, and the probe 8 includes a rigid tip portion 11 and a movable portion 12 provided continuously to the tip portion 11. , This movable part 1
2 is an angle operation unit 1 provided in the operation holding unit 9.
It is adapted to be movable by operating the angle operation unit 13 in conjunction with the position 3.

【0011】図1に示すように、前記本体装置6は、そ
れぞれ波長の異なる光を順次発生する光源2と、前記光
源2より発生した光が生体組織23に照射され反射して
きた光だけを取り出すビームスプリッター等からなる光
学素子14と、前記光学素子14により取り出された生
体組織23から反射してきた光を測定する反射光検出器
4aと、前記生体組織23深部に至り散乱してきた光を
測定する散乱光検出器4bと、前記光源2を制御し、且
つそれと同期して前記反射光検出器4aと散乱光検出器
4bより得られた信号から酸素代謝を計算するコンピュ
ーター5と、前記反射光検出器4aおよび散乱光検出器
4bのアナログ信号をディジタル信号に変換し、前記コ
ンピュータ5に入力するA/D変換器15a,15bと
より構成され、前記コンピューター5により計算された
酸素代謝を前記表示装置7に伝送することにより、該表
示装置7に酸素代謝を表示するようになっている。
As shown in FIG. 1, the main body device 6 takes out only a light source 2 which sequentially emits light having different wavelengths, and only light which is emitted from the light source 2 and is reflected by a living tissue 23. An optical element 14 including a beam splitter, a reflected light detector 4a for measuring light reflected from the living tissue 23 taken out by the optical element 14, and a light scattered to the deep portion of the living tissue 23 are measured. A scattered light detector 4b, a computer 5 for controlling the light source 2 and calculating oxygen metabolism from signals obtained from the reflected light detector 4a and the scattered light detector 4b in synchronization therewith, and the reflected light detection The analog signal of the detector 4a and the scattered light detector 4b is converted into a digital signal, and the A / D converters 15a and 15b for inputting to the computer 5 are provided. By transmitting the calculated oxygen metabolism by computer 5 on the display device 7, and displays the oxygen metabolism in the display device 7.

【0012】前記光源2は、異なる波長λ1 ,λ2 ,λ
3 ,λ4の光を発生するレーザダイオード16a,16
b,16c,16dと、前記レーザダイオード16a,
16b,16c,16dの光を順次照射するため、前記
レーザダイオード16a,16b,16c,16dを順
次駆動する駆動装置17と、前記レーザダイオード16
a,16b,16c,16dのそれぞれの光を順次、前
記プローブ8内に挿通された光ファイバー束18に導光
するため、前記レーザダイオード16a,16b,16
cからの光を反射させるミラー19及び3つの孔20を
有する回転円盤21a,21b,21cと、前記レーザ
ダイオード16dからの光を反射させるミラー22とか
らなり、前記回転円盤21a,21b,21cは、前記
駆動装置17のタイミングと同期して、それぞれのミラ
ー19の位置が一定の位相差をもって回転するように構
成されている。
The light source 2 has different wavelengths λ 1, λ 2, λ
Laser diodes 16a, 16 for generating light of 3, λ4
b, 16c, 16d and the laser diode 16a,
A drive device 17 for sequentially driving the laser diodes 16a, 16b, 16c, 16d for sequentially irradiating the light beams 16b, 16c, 16d, and the laser diode 16
The laser diodes 16a, 16b, 16 are used to sequentially guide the respective lights of a, 16b, 16c, 16d to the optical fiber bundle 18 inserted in the probe 8.
The rotating disk 21a, 21b, 21c having a mirror 19 for reflecting the light from c and three holes 20 and the mirror 22 for reflecting the light from the laser diode 16d, the rotating disks 21a, 21b, 21c are The positions of the respective mirrors 19 are configured to rotate with a constant phase difference in synchronization with the timing of the drive unit 17.

【0013】また、前記プローブ8は、前記光源2から
の光を生体組織23に導くとともに、前記生体組織23
表面より反射してきた光を前記反射光検出器4aに導く
ための前記光ファイバー束18と、生体組織23深部に
至り散乱してきた光を前記散乱光検出器4bに導く散乱
光用光ファイバー束24と、前記光ファイバー束18お
よび散乱光用光ファイバー束24を覆うフレシキブルチ
ューブ25とから構成される。
Further, the probe 8 guides the light from the light source 2 to the living tissue 23, and at the same time, the living tissue 23.
The optical fiber bundle 18 for guiding the light reflected from the surface to the reflected light detector 4a, and the scattered light optical fiber bundle 24 for guiding the light reaching the deep part of the biological tissue 23 and scattered to the scattered light detector 4b. The flexible tube 25 covers the optical fiber bundle 18 and the scattered light optical fiber bundle 24.

【0014】ここで、プローブ8の先端部11では、図
3(a)に示すように、光ファイバー束18の出射面1
1aと、散乱光用光ファイバー束24の入射面(図示は
しないが、出射面11aの反対側に配置されている)と
を結ぶ線が、アングル操作部13を操作することにより
可動するプローブ8の先端部11のアングル方向(図中
の矢印)に対して直角になるように配置されている。
Here, at the tip portion 11 of the probe 8, as shown in FIG.
The line connecting 1a and the incident surface of the scattered light optical fiber bundle 24 (not shown, but arranged on the opposite side of the emission surface 11a) is a probe 8 movable by operating the angle operation unit 13. It is arranged so as to be perpendicular to the angle direction (arrow in the figure) of the tip portion 11.

【0015】このように構成された第1実施例の酸素代
謝測定装置1の作用について説明する。
The operation of the oxygen metabolism measuring apparatus 1 of the first embodiment thus constructed will be described.

【0016】例えば、図3に示すように、心筋の代謝を
測定する際には、プローブ8を大腿動脈により挿入し、
X線透視下で大動脈を経て左心室に入れ、先端部11を
生体組織23である心壁に押し当てる。このとき図3の
ように先端部11が心壁に密着するようにアングル操作
部13を操作し、その部位の心筋26の酸素代謝を測定
する。さらに、スコープ3およびアングル操作部13を
操作して測定位置を変化させ、それぞれの酸素代謝を測
定することで、その心壁の酸素代謝分布を求める。
For example, as shown in FIG. 3, when measuring the metabolism of the myocardium, the probe 8 is inserted through the femoral artery,
Under fluoroscopy, the aorta is inserted into the left ventricle, and the tip 11 is pressed against the heart wall, which is the living tissue 23. At this time, as shown in FIG. 3, the angle operation part 13 is operated so that the tip part 11 comes into close contact with the heart wall, and the oxygen metabolism of the myocardium 26 at that part is measured. Further, the measurement position is changed by operating the scope 3 and the angle operation unit 13, and the oxygen metabolism of each is measured to obtain the oxygen metabolism distribution of the heart wall.

【0017】まず、光源2により4つの異なる波長のパ
ルス光を順次発生させる。例えば、これら波長は、酸素
代謝情報を含むチトクローム、ヘモグロビン、ミオグロ
ビンに吸収のある650nm〜950nmの近赤外光で
ある。これら光はそれぞれ光学素子14を通過し、光フ
ァイバー束18に導光される。スコープ3のプローブ8
は体腔内に挿入され、前記プローブ8の先端部11は、
被測定部の生体組織23に接触しており、前記光ファイ
バー束18に導光された光は、生体組織23に照射され
る。
First, the light source 2 sequentially generates pulsed lights of four different wavelengths. For example, these wavelengths are near infrared light of 650 nm to 950 nm which is absorbed by cytochrome, hemoglobin, and myoglobin containing oxygen metabolism information. Each of these lights passes through the optical element 14 and is guided to the optical fiber bundle 18. Scope 3 probe 8
Is inserted into the body cavity, and the tip 11 of the probe 8 is
The light that is in contact with the living tissue 23 of the measured portion and is guided to the optical fiber bundle 18 is applied to the living tissue 23.

【0018】生体組織23に照射された光のうち一部
は、該生体組織23表面で反射し、再び、光ファイバー
束18を伝搬する。この反射光をビームスプリッタ等か
らなる光学素子14で垂直方向に反射し、反射光検出器
4aで検出する。また、生体組織23に照射された光の
一部は、該生体組織23の深部を散乱しながら散乱光用
光ファイバー束24の一端に到達し、該散乱光用光ファ
イバー束24を経て、散乱光検出器4bで受光される。
A part of the light applied to the living tissue 23 is reflected on the surface of the living tissue 23 and propagates through the optical fiber bundle 18 again. This reflected light is reflected in the vertical direction by the optical element 14 such as a beam splitter and detected by the reflected light detector 4a. Further, a part of the light applied to the living tissue 23 reaches one end of the scattered light optical fiber bundle 24 while scattering the deep portion of the living tissue 23, and passes through the scattered light optical fiber bundle 24 to detect scattered light. The light is received by the device 4b.

【0019】さらに、反射光検出器4aおよび散乱光検
出器4bは、A/D変換器15a、15bに接続されて
おり、反射光検出器4aおよび散乱光検出器4bにより
検出された光は、ディジタルな電気信号変換され、コン
ピュータ5に入力される。コンピュータ5では各波長に
おいて、反射光検出器4aの信号に対する散乱光検出器
4bの信号の比の指数を取り減衰率(O.D.)を計算
する。さらに、各波長における減衰率をもとに連立方程
式を解き、チトクロームやヘモグロビン、ミオグロビン
の酸素代謝を求める。
Further, the reflected light detector 4a and the scattered light detector 4b are connected to A / D converters 15a and 15b, and the light detected by the reflected light detector 4a and the scattered light detector 4b is The digital electric signal is converted and input to the computer 5. The computer 5 calculates the attenuation rate (OD) by taking the index of the ratio of the signal of the scattered light detector 4b to the signal of the reflected light detector 4a at each wavelength. Furthermore, the simultaneous equations are solved based on the attenuation rate at each wavelength to obtain the oxygen metabolism of cytochrome, hemoglobin, and myoglobin.

【0020】このようにして得られた酸素代謝を表示装
置7で表示し、リアルタイムで組織の代謝を知ることが
出来る。
The oxygen metabolism thus obtained is displayed on the display device 7, and the metabolism of the tissue can be known in real time.

【0021】ここで、プローブ8の先端部11と生体組
織23とは、接触状態により検出感度が低下する虞があ
るが、アングル操作部13を操作することによりプロー
ブ8の先端部11と生体組織23とを密着させることが
できる。この際、図3(a)に示すようにアングル方向
と垂直に、光ファイバー束18の出射面11aと、散乱
光用光ファイバー束24の入射面(図示はしないが、出
射面11aの反対側に配置されている)とを配置してい
るので、例えば、図3(b)に示すように、アングル方
向と平行に配置した場合に対し、生体組織23から光フ
ァイバー束の出射面と散乱光用光ファイバー束の入射面
が離れることがなく、正確な酸素代謝情報を得ることが
できる。
Here, the tip 11 of the probe 8 and the living tissue 23 may have a lower detection sensitivity depending on the contact state, but the tip 11 of the probe 8 and the living tissue may be operated by operating the angle operation unit 13. 23 can be brought into close contact. At this time, as shown in FIG. 3A, the exit surface 11a of the optical fiber bundle 18 and the entrance surface of the scattered light optical fiber bundle 24 are arranged perpendicular to the angle direction (not shown, but disposed on the opposite side of the exit surface 11a). 3), the output surface of the optical fiber bundle from the biological tissue 23 and the optical fiber bundle for scattered light are compared with the case where they are arranged parallel to the angle direction, as shown in FIG. 3B. It is possible to obtain accurate oxygen metabolism information without separating the incident surfaces of.

【0022】次に第2実施例について説明する。図5及
び図6は第2実施例に係わり、図5は異なる波長の光を
伝送する複数の光ファイバを説明する説明図、図6は図
5の複数の光ファイバから形成される一本のファイバを
説明する説明図である。
Next, the second embodiment will be described. 5 and 6 relate to the second embodiment, FIG. 5 is an explanatory view for explaining a plurality of optical fibers for transmitting lights of different wavelengths, and FIG. 6 shows one optical fiber formed from the plurality of optical fibers of FIG. It is explanatory drawing explaining a fiber.

【0023】第2実施例は第1実施例とほとんど同じで
あるので、異なる構成のみ説明する。
Since the second embodiment is almost the same as the first embodiment, only the different structure will be described.

【0024】図5(a)に示すように、レーザダイオー
ド16a,16b,16c,16dからの異なる波長λ
1 ,λ2 ,λ3 ,λ4の光を、4本のファイバ束30
a,30b,30c,30dでそれぞれ受光し、各ファ
イバ束30a,30b,30c,30dの各ファイバを
図5(b)に示すようにランダムに配置し一本のファイ
バ束30としてプローブ8内に挿通させ、プローブ8先
端に導光する。
As shown in FIG. 5 (a), different wavelengths λ from the laser diodes 16a, 16b, 16c, 16d.
The light of 1, λ2, λ3, and λ4 is bundled with four fiber bundles 30.
a, 30b, 30c and 30d respectively receive light, and the respective fibers of the fiber bundles 30a, 30b, 30c and 30d are randomly arranged as shown in FIG. The probe 8 is inserted and guided to the tip of the probe 8.

【0025】図6(a)に示すように、ファイバ束30
a,30b,30c,30d及び散乱光用光ファイバー
束24、生体組織23からの反射光を伝送する反射光用
ファイバー束31の分岐部(図中のB)では、図6
(b)に示すように、ファイバ束30a,30b,30
c,30より一本のファイバ束30を形成する際に、各
ファイバ束30a,30b,30c,30dの被覆をず
らして構成している。その他の構成は第1実施例と同じ
である。
As shown in FIG. 6A, the fiber bundle 30
a, 30b, 30c, 30d, the scattered light optical fiber bundle 24, and the branched portion of the reflected light fiber bundle 31 for transmitting the reflected light from the living tissue 23 (B in the figure),
As shown in (b), the fiber bundles 30a, 30b, 30
When forming one fiber bundle 30 from c and 30, the coating of each fiber bundle 30a, 30b, 30c and 30d is shifted. The other structure is the same as that of the first embodiment.

【0026】このように構成された第2実施例によれ
ば、第1実施例の効果に加え、複数波長の光が、プロー
ブ8の先端面のランダムな位置から出射されるので、複
数波長を均一に照射でき、精度よく酸素代謝が測定でき
る。また、ファイバ束30a,30b,30c,30d
の被覆をずらして一本のファイバ束30を構成したの
で、ファイバ束が折れにくいという効果もある。
According to the second embodiment having such a configuration, in addition to the effect of the first embodiment, light of a plurality of wavelengths is emitted from random positions on the tip surface of the probe 8, so that a plurality of wavelengths are emitted. Irradiation can be performed uniformly, and oxygen metabolism can be measured accurately. Further, the fiber bundles 30a, 30b, 30c, 30d
Since the single fiber bundle 30 is formed by shifting the coating of (1), there is also an effect that the fiber bundle is hard to break.

【0027】[0027]

【発明の効果】以上説明したように本発明の生体組織の
酸素代謝測定装置によれば、近赤外光の出射面と受光面
とを共に生体組織に密着させるので、検出感度が高く正
確な酸素代謝情報を得ることができ、病態の早期発見や
診断につなげることができるという効果がある。
As described above, according to the oxygen metabolism measuring apparatus for a living tissue of the present invention, both the emitting surface and the light receiving surface of the near infrared light are brought into close contact with the living tissue. There is an effect that information on oxygen metabolism can be obtained, which can lead to early detection and diagnosis of pathological conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る生体組織の酸素代謝を測定す
る酸素代謝測定装置の構成を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of an oxygen metabolism measuring apparatus for measuring oxygen metabolism of living tissue according to a first embodiment.

【図2】第1実施例に係る酸素代謝測定装置の外観を示
す斜視図である。
FIG. 2 is a perspective view showing the external appearance of the oxygen metabolism measuring device according to the first embodiment.

【図3】第1実施例に係るプローブの先端の構成を示す
外観図である。
FIG. 3 is an external view showing the configuration of the tip of the probe according to the first example.

【図4】第1実施例に係る挿入部の心臓への挿入状態を
示す説明図である
FIG. 4 is an explanatory diagram showing an insertion state of the insertion portion according to the first embodiment into the heart.

【図5】第2実施例に係る異なる波長の光を伝送する複
数の光ファイバを説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a plurality of optical fibers that transmit lights of different wavelengths according to the second embodiment.

【図6】図5の複数の光ファイバから形成される一本の
ファイバを説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a single fiber formed from the plurality of optical fibers in FIG.

【符号の説明】[Explanation of symbols]

1 … 酸素代謝測定装置 2 … 光源 4a… 反射光検出器 4b… 散乱光検出器 5 … コンピュータ 7 … 表示装置 8 … プローブ 11 … 先端部 18 … 光ファイバー束 24 … 散乱光用光ファイバー束 1 ... Oxygen metabolism measuring device 2 ... Light source 4a ... Reflected light detector 4b ... Scattered light detector 5 ... Computer 7 ... Display device 8 ... Probe 11 ... Tip part 18 ... Optical fiber bundle 24 ... Optical fiber bundle for scattered light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 近赤外光を発生する光源と、 体腔内に挿入される挿入部を有し、前記光源からの光に
より生体組織の代謝を測定するプローブとを備え、 前記プローブは、 前記挿入部の先端部を湾曲させる湾曲機構部を有し、 前記挿入部内を挿通し、前記光源からの光を基端面より
入射し先端面より前記生体組織に照射する第1の光伝達
手段と、 前記挿入部内を挿通し、前記生体組織からの戻り光を伝
送する第2の光伝達手段とを備え、 前記第1の光伝達手段の先端面と前記第2の光伝達手段
の先端面とを、前記湾曲機構部が前記挿入部の先端部を
湾曲させる方向に対して互いに交差する方向に配置した
ことを特徴とする生体組織の酸素代謝測定装置。
1. A light source that emits near-infrared light, a probe that has an insertion portion that is inserted into a body cavity, and that measures the metabolism of a biological tissue by light from the light source, wherein the probe comprises: A first light transmitting unit that has a bending mechanism that bends the distal end of the insertion portion, is inserted through the insertion portion, and emits light from the light source from the proximal end surface and irradiates the living tissue from the distal end surface; A second light transmitting unit that transmits the return light from the living tissue by being inserted through the insertion portion; and a front end face of the first light transmitting unit and a front end face of the second light transmitting unit. The oxygen metabolism measuring device for a biological tissue, wherein the bending mechanism section is arranged in a direction intersecting with a direction in which the distal end portion of the insertion section is bent.
JP5109502A 1993-05-11 1993-05-11 Device for measuring oxygen metabolism of bio tissue Withdrawn JPH06319726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5109502A JPH06319726A (en) 1993-05-11 1993-05-11 Device for measuring oxygen metabolism of bio tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5109502A JPH06319726A (en) 1993-05-11 1993-05-11 Device for measuring oxygen metabolism of bio tissue

Publications (1)

Publication Number Publication Date
JPH06319726A true JPH06319726A (en) 1994-11-22

Family

ID=14511895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5109502A Withdrawn JPH06319726A (en) 1993-05-11 1993-05-11 Device for measuring oxygen metabolism of bio tissue

Country Status (1)

Country Link
JP (1) JPH06319726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314686A (en) * 2005-05-16 2006-11-24 Olympus Medical Systems Corp Endoscope
WO2017159799A1 (en) * 2016-03-16 2017-09-21 株式会社フジタ医科器械 Biological tissue information measuring instrument and biological tissue information measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314686A (en) * 2005-05-16 2006-11-24 Olympus Medical Systems Corp Endoscope
WO2017159799A1 (en) * 2016-03-16 2017-09-21 株式会社フジタ医科器械 Biological tissue information measuring instrument and biological tissue information measuring method
JPWO2017159799A1 (en) * 2016-03-16 2019-01-24 株式会社フジタ医科器械 Biological tissue information measuring device and biological tissue information measuring method

Similar Documents

Publication Publication Date Title
US6741884B1 (en) Infrared endoscopic balloon probes
US8024027B2 (en) Infrared endoscopic balloon probes
US7852485B2 (en) Single trace multi-channel low coherence interferometric sensor
JP3869589B2 (en) Fiber bundle and endoscope apparatus
US7301629B2 (en) Apparatus and method for determining tissue characteristics
US6451009B1 (en) OCDR guided laser ablation device
US6419484B1 (en) Optical coherence tomography guided dental drill
US20080013960A1 (en) Apparatus and method for providing information for at least one structure
US20100198081A1 (en) Scanning light imager
US20080125634A1 (en) Method and apparatus for identifying and treating myocardial infarction
WO1999030608A1 (en) Apparatus and method for determining tissue characteristics
US20070014464A1 (en) Optical coherence tomograph
JPH04135551A (en) Optical three-dimensional image observing device
JP2009195617A (en) Biological observation apparatus and biological tomographic image generation method
EP1620001B1 (en) Catheter head
JP2010500086A (en) Light-emitting device specifically for flow measurement
JP5407896B2 (en) Diagnostic aid and optical probe
JPH05103774A (en) Measuring device for metabolism information
JPH06319726A (en) Device for measuring oxygen metabolism of bio tissue
WO2013126576A1 (en) Imaging device and methods of using the same
EP1831638A1 (en) Single trace multi-channel low coherence interferometric sensor
JPH0611439A (en) Measuring device for oxygen metabolism of vital organism tissue
WO2000013578A1 (en) Infrared endoscopic balloon probes
JPH05103786A (en) Measuring device for metabolism information
RU2804292C1 (en) Device for carrying out low-traumatic optical biopsy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801