JPH05103774A - Measuring device for metabolism information - Google Patents
Measuring device for metabolism informationInfo
- Publication number
- JPH05103774A JPH05103774A JP3270998A JP27099891A JPH05103774A JP H05103774 A JPH05103774 A JP H05103774A JP 3270998 A JP3270998 A JP 3270998A JP 27099891 A JP27099891 A JP 27099891A JP H05103774 A JPH05103774 A JP H05103774A
- Authority
- JP
- Japan
- Prior art keywords
- light
- tissue
- probe
- receiving
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004060 metabolic process Effects 0.000 title abstract description 12
- 239000000523 sample Substances 0.000 claims abstract description 48
- 230000002503 metabolic effect Effects 0.000 claims description 32
- 238000007689 inspection Methods 0.000 abstract description 23
- 230000006870 function Effects 0.000 abstract description 7
- 210000001519 tissue Anatomy 0.000 description 62
- 239000000835 fiber Substances 0.000 description 29
- 230000003287 optical effect Effects 0.000 description 17
- 238000003780 insertion Methods 0.000 description 16
- 230000037431 insertion Effects 0.000 description 16
- 239000013307 optical fiber Substances 0.000 description 14
- 210000004165 myocardium Anatomy 0.000 description 12
- 230000008557 oxygen metabolism Effects 0.000 description 10
- 210000000056 organ Anatomy 0.000 description 9
- 210000002216 heart Anatomy 0.000 description 8
- 102000018832 Cytochromes Human genes 0.000 description 7
- 108010052832 Cytochromes Proteins 0.000 description 7
- 102000001554 Hemoglobins Human genes 0.000 description 6
- 108010054147 Hemoglobins Proteins 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 208000010125 myocardial infarction Diseases 0.000 description 4
- 239000002504 physiological saline solution Substances 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 102000036675 Myoglobin Human genes 0.000 description 3
- 108010062374 Myoglobin Proteins 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000002107 myocardial effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004066 metabolic change Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- KKJUPNGICOCCDW-UHFFFAOYSA-N 7-N,N-Dimethylamino-1,2,3,4,5-pentathiocyclooctane Chemical compound CN(C)C1CSSSSSC1 KKJUPNGICOCCDW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 1
- 108050008072 Cytochrome c oxidase subunit IV Proteins 0.000 description 1
- 101000777138 Homo sapiens Ubiquitin carboxyl-terminal hydrolase 42 Proteins 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 102100031310 Ubiquitin carboxyl-terminal hydrolase 42 Human genes 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Endoscopes (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、光を用いて心臓や脳
等の生体組織や器官内の酸素飽和度すなわち酸素代謝等
の生体情報を測定するのに適した生体組織の代謝情報測
定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring metabolic information of biological tissue, which is suitable for measuring biological information such as oxygen saturation in biological tissue and organs such as heart and brain using light, that is, oxygen metabolism. Regarding
【0002】[0002]
【従来の技術】赤色から近赤外領域の光は生体組織に対
しての高い透過性やヘモグロビン、ミオグロビン、チト
クローム酸化酵素などの生体の酸素代謝をつかさどる物
質への吸光性やその酸素結合情報に対応する吸光スペク
トルの変化といった特徴を持っている。2. Description of the Related Art Light in the red to near-infrared region has high permeability to living tissues and its light absorption and oxygen binding information to substances that control oxygen metabolism of living organisms such as hemoglobin, myoglobin, and cytochrome oxidase. It has features such as corresponding changes in absorption spectrum.
【0003】このような特徴を利用して、USP422
3680,USP4281645に示されているよう
に、生体内の心臓や脳などの各種器官の酸素代謝を測定
する方法が知られている。これは、700〜1300n
mの近赤外領域の光を生体内の器官や組織に照射し、前
記器官および組織深部より反射してきた反射光、あるい
は透過してきた光を検出して、波長間の光強度を比較演
算することで血液量、ヘモグロビンおよびチトクローム
の酸素化度を測定している。Utilizing such characteristics, USP422
As shown in 3680, US Pat. No. 4,281,645, a method of measuring oxygen metabolism of various organs such as heart and brain in a living body is known. This is 700-1300n
Light in the near-infrared region of m is applied to an organ or a tissue in a living body, reflected light reflected from the deep organ or tissue or light transmitted therethrough is detected, and light intensity between wavelengths is compared and calculated. It measures blood volume, hemoglobin and cytochrome oxygenation.
【0004】ここで、前記チトクロームとは、細胞のミ
トコンドリア内に存在する銅を持つ色素タンパク質(酸
化型Cu2+還元型Cu+ )。通常80%が酸化型である
が、虚血時、早期に還元型となる。このため、各波長の
吸収量からチトクロームの酸化還元状態を測定でき、組
織の酸素代謝の指標として使用される。Here, the cytochrome is a pigment protein (oxidized Cu2 + reduced Cu +) having copper existing in the mitochondria of cells. Usually, 80% is an oxidative type, but during ischemia, it becomes a reducing type early. Therefore, the redox state of cytochrome can be measured from the absorption amount at each wavelength, and it can be used as an index of tissue oxygen metabolism.
【0005】心筋梗塞が起きた場合、最悪の場合は心筋
の壊死に至るが、早期や急性の場合には心筋の活動は停
止しているが、壊死に至らない場合がある。このような
場合にはPTCAやバイパスが有効である。これまで、
PETを用いて心筋が生きているか、死んでいるかの診
断を行い、バイパス術の実施の判断を行っていたが、P
ET装置は、きわめて高価であり、あまり普及していな
い。When myocardial infarction occurs, myocardial necrosis is caused in the worst case, but in early or acute cases, myocardial activity is stopped but sometimes it is not. In such a case, PTCA and bypass are effective. So far
I used PET to diagnose whether myocardium was alive or dead, and decided to perform bypass surgery.
ET devices are extremely expensive and not very popular.
【0006】心筋組織を測定する場合、実際には、下肢
大動脈からスコープを挿入し、図20に示すように、ス
コープ1の先端部2を心筋組織3に押し当てながら冠状
動脈にあらかじめ配置されたバルーン等で所定期間閉塞
させて心筋の代謝変化を測定することで診断している。
このとき、心筋が死んでいると代謝変化はないことか
ら、心筋が生きているか、死んでいるかを診断できる。When the myocardial tissue is measured, the scope is actually inserted from the aorta of the lower extremity and, as shown in FIG. 20, the distal end portion 2 of the scope 1 is pressed against the myocardial tissue 3 and placed in advance in the coronary artery. Diagnosis is made by occluding a balloon for a predetermined period of time and measuring the metabolic changes in myocardium.
At this time, since there is no metabolic change when the myocardium is dead, it is possible to diagnose whether the myocardium is alive or dead.
【0007】ところで、従来の代謝情報測定装置として
知られている特開昭59−230533号公報は、光源
からの光を投光用ファイバを通じて生体組織に投光し、
生体組織からの反射光を複数の光ファイバ束を用いて受
光部へ伝送し、端面にそれぞれ設けた異なる波長フィル
タで分光した後、各波長別に反射光の強さを測定して対
象となる生体組織の情報を測定している。By the way, Japanese Patent Application Laid-Open No. 59-230533, which is known as a conventional metabolic information measuring apparatus, projects light from a light source onto a living tissue through a light projecting fiber,
The reflected light from the living tissue is transmitted to the light receiving part using a plurality of optical fiber bundles, and after being separated by different wavelength filters provided on the end faces, the intensity of the reflected light is measured for each wavelength and the target living body It measures the information of the organization.
【0008】また、特公昭61−11614号公報は、
700〜1300nmのスペクトル範囲内にある各種波
長の光を含む近赤外領域を所定のサイクルで交互に断続
的に生体組織に投光し、生体組織からの反射光を受光部
で受光し、各波長別に反射光の強さを測定して対象とな
る生体組織の情報を測定している。Further, Japanese Patent Publication No. 61-11614 discloses
Near-infrared regions including light of various wavelengths within a spectrum range of 700 to 1300 nm are alternately and intermittently projected onto a living tissue in a predetermined cycle, and reflected light from the living tissue is received by a light receiving unit, Information on the target biological tissue is measured by measuring the intensity of reflected light for each wavelength.
【0009】[0009]
【発明が解決しようとする課題】ところで、USP42
23680,USP4281645の両特許において、
出願人は近赤外領域の光を用いて酸素代謝を計測する場
合では、その光の経路は比較的長くなければならないと
強調している。つまり、長い経路にまたがるというよう
にするということは対象とする組織に対し深部の代謝情
報を含むことができるからである。By the way, USP42
In both patents of 23680 and USP 4281645,
The applicant emphasizes that when measuring oxygen metabolism using light in the near infrared region, the light path must be relatively long. In other words, the fact that it spans a long path can include the metabolic information of the deep part in the target tissue.
【0010】また、臓器の代謝を一方向から光を照射お
よび検出する(これを反射方式と呼ぶ)場合、前記目的
を達成するためには、光の照射部および検出部はそれぞ
れ数センチ程度離す必要があると述べている。“近赤外
生体計測法を用いた対外循環時の脳酸素代謝の監視”人
口臓器19(1)535-538(1990)では脳内の酸素代謝を測定す
るため照射部と検出部を3〜4cm離している。Further, in the case of irradiating and detecting the metabolism of an organ with light from one direction (this is called a reflection system), in order to achieve the above-mentioned object, the light irradiation part and the detection part are separated from each other by several centimeters. States that it is necessary. “Monitoring cerebral oxygen metabolism during external circulation using near-infrared biometrics” In artificial organ 19 (1) 535-538 (1990), the irradiation part and the detection part are 3 to measure oxygen metabolism in the brain. 4 cm apart.
【0011】また、近年、光ファイバーバンドルを用い
て、胃、大腸はもちろんのこと血管内を画像で観察でき
る内視鏡が医学全般で利用されている。この内視鏡は対
外から見えない臓器を体腔内から直接観察することで疾
患の診断を正確かつ早期に行える特徴を持つ。In recent years, an endoscope which uses an optical fiber bundle to observe not only the stomach and large intestine but also the inside of blood vessels has been used in general medicine. This endoscope has a characteristic that a disease can be diagnosed accurately and early by directly observing an organ that cannot be seen from the outside from the body cavity.
【0012】さらに、内視鏡にはチャンネルという孔が
設けられており、対外よりチャンネルを通じて体内に生
検鉗子、電気メスなどの処置具が挿入可能で画像による
診断では分からない病変部の診断や治療等に用いられ
る。Furthermore, the endoscope is provided with a hole called a channel, and a treatment instrument such as biopsy forceps or an electric scalpel can be inserted into the body through the channel from the outside. Used for medical treatment.
【0013】最近ではこのチャンネルを利用して酸素飽
和度を測定するための光ファイバープローブを挿入し
て、病変部の代謝情報を診断したり、または光プローブ
をX線透視下で直接挿入して臓器の酸素代謝を求める検
討が行われている。Recently, an optical fiber probe for measuring oxygen saturation using this channel is inserted to diagnose metabolic information of a lesion site, or an optical probe is directly inserted under X-ray fluoroscopy to detect organs. Studies are being conducted to determine the oxygen metabolism of.
【0014】前記光プローブについては“光ファイバー
プローブを用いた医用反射光スペクトル分析装置”医用
電子と生体工学Vol.28No3(1990),特開昭59−2305
33に詳しい。Regarding the optical probe, "Medical reflection spectrum analyzer using optical fiber probe" Medical Electronics and Biotechnology Vol.28 No3 (1990), JP-A-59-2305
Detailed in 33.
【0015】ところで、前述のような光ファイバープロ
ーブは体腔内に挿入可能なように、そのプローブの挿入
部の外径は細く、そのため、光を照射する照射部と検出
する検出部が極めて近接して配置されており、また光速
に比べ十分に長い時間幅のパルス光を使っているため、
光が比較的長い経路をまたがらず組織表面を通過した光
を検出するようになっている。すなわち、このような方
法は組織の表面に限って代謝情報を測定するものであ
り、組織深部の代謝情報は組織の表皮や表皮表面につい
た体液や血液の影響を強く受け測定できなかった。By the way, the above-mentioned optical fiber probe has a small outer diameter at the insertion portion of the probe so that it can be inserted into the body cavity, and therefore the irradiation portion for irradiating light and the detecting portion for detecting are extremely close to each other. Since it is arranged and uses pulsed light with a time width that is sufficiently longer than the speed of light,
It is designed to detect light that has passed through the tissue surface without crossing a relatively long path. That is, such a method measures the metabolic information only on the surface of the tissue, and the metabolic information in the deep tissue cannot be measured because it is strongly influenced by the epidermis of the tissue, the body fluid attached to the surface of the epidermis, and blood.
【0016】この発明は、前記事情に着目してなされた
もので、その目的とするところは、生体組織の代謝情報
を分布的に正確に測定できる代謝情報測定装置を提供す
ることにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a metabolic information measuring device capable of accurately measuring metabolic information of a living tissue in a distributed manner.
【0017】[0017]
【課題を解決するための手段】この発明は、前記目的を
達成するために、生体組織に対して組織の代謝情報を測
定する検査光を出射する検査光出射手段と、前記組織内
を透過した検査光を受光する受光手段とを有するものに
おいて、プローブの軸方向に沿って前記検査光出射部ま
たは検査光受光部のうち少なくとも一方を複数配置した
ことにある。In order to achieve the above object, the present invention provides an inspection light emitting means for emitting inspection light for measuring metabolic information of a tissue to a living tissue, and an inspection light emitting means for transmitting the inspection light. And a light receiving means for receiving the inspection light, wherein a plurality of at least one of the inspection light emitting section and the inspection light receiving section are arranged along the axial direction of the probe.
【0018】[0018]
【作用】生体の体腔内に挿入したプローブの先端部を被
検査部としての生体組織に押し当て、複数の検査光出射
部から順次検査光を出射すると、検査光は生体組織を散
乱、反射しながら透過し、前記検査光出射部に対応する
検査光受光部に受光される。これを繰り返すことによっ
て生体組織の代謝情報を分布的に測定する。[Function] When the tip of the probe inserted into the body cavity of the living body is pressed against the living tissue as the portion to be inspected and the inspection light is sequentially emitted from the plurality of inspection light emitting portions, the inspection light scatters and reflects the biological tissue. While being transmitted, it is received by the inspection light receiving portion corresponding to the inspection light emitting portion. By repeating this, metabolic information of the living tissue is measured in a distributed manner.
【0019】[0019]
【実施例】以下、この発明の各実施例を図面に基づいて
説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0020】図1〜図4は第1の実施例であり、図1は
代謝情報検出用プローブ4の先端部5を示す。プローブ
4には複数本の光ファイバー6が内装されており、先端
部5の側面においては挿入部の軸方向に沿って等間隔に
複数の送受光窓7a〜7gが配置され、前記各光ファイ
バー6の先端面は各送受光窓7a〜7gに接続されてい
る。1 to 4 show a first embodiment, and FIG. 1 shows a tip portion 5 of a metabolic information detecting probe 4. A plurality of optical fibers 6 are incorporated in the probe 4, and a plurality of transmitting / receiving windows 7a to 7g are arranged at equal intervals along the axial direction of the insertion portion on the side surface of the distal end portion 5 of each optical fiber 6. The tip surface is connected to each of the light transmitting / receiving windows 7a to 7g.
【0021】また、前記各光ファイバー6の末端部は図
3に示すように、ハーフミラー8を介して光源としての
レーザダイオード9と、検出器としての受光素子10に
対向している。したがって、レーザダイオード9から所
定の波長のパルス光を発光すると、ハーフミラー8によ
って反射され、光ファイバー6によって送受光窓7a〜
7gに導光され、また送受光窓7a〜7gから受光され
た反射光は光ファイバー6によって導光され、ハーフミ
ラー8を透過して受光素子10に受光される。Further, as shown in FIG. 3, the end of each optical fiber 6 faces a laser diode 9 as a light source and a light receiving element 10 as a detector through a half mirror 8. Therefore, when the laser diode 9 emits pulsed light of a predetermined wavelength, it is reflected by the half mirror 8 and is transmitted / received by the optical fiber 6 to the light transmitting / receiving windows 7a ...
The reflected light guided to 7 g and received from the light transmitting / receiving windows 7 a to 7 g is guided by the optical fiber 6, passes through the half mirror 8, and is received by the light receiving element 10.
【0022】したがって、前記先端部5に配置された複
数の送受光窓7a〜7gは、照射用と受光用の共用であ
る。ここで、先端側の3つの送受光窓7a,7b,7c
およびこれに接続する光ファイバー6を照射用とし、送
受光窓7d,7e,7fを受光用とした場合、送受光窓
7aから照射された光Aは送受光窓7dに受光され、送
受光窓7bから照射された光Bは送受光窓7eに受光さ
れ、同様に、送受光窓7cから照射された光Cは送受光
窓7fに受光されるようになっている。Therefore, the plurality of light transmitting / receiving windows 7a to 7g arranged at the tip portion 5 are used for both irradiation and light reception. Here, three transmitting / receiving windows 7a, 7b, 7c on the tip side are provided.
When the optical fiber 6 connected thereto is used for irradiation and the transmitting / receiving windows 7d, 7e, 7f are used for receiving light, the light A emitted from the transmitting / receiving window 7a is received by the transmitting / receiving window 7d, and the transmitting / receiving window 7b. The light B emitted from is received by the light transmitting / receiving window 7e, and similarly, the light C emitted from the light transmitting / receiving window 7c is received by the light transmitting / receiving window 7f.
【0023】そして、プローブ4を生体腔内に挿入し、
プローブ4の先端部5を生体組織に押し当てた状態で、
図2に示すように、送受光窓7a,7b,7cから順次
パルス光を照射すると、送受光窓7aから照射された光
Aは生体組織内を拡散しながら進行し、生体組織の深部
を通過した反射光は送受光窓7dに受光される。同様
に、送受光窓7bから照射された光Bは送受光窓7eに
受光され、送受光窓7cから照射された光Cは送受光窓
7fに受光される。Then, the probe 4 is inserted into the living body cavity,
With the tip 5 of the probe 4 pressed against living tissue,
As shown in FIG. 2, when pulsed light is sequentially emitted from the light transmitting / receiving windows 7a, 7b, 7c, the light A emitted from the light transmitting / receiving window 7a proceeds while diffusing in the living tissue and passes through a deep portion of the living tissue. The reflected light thus received is received by the light transmitting / receiving window 7d. Similarly, the light B emitted from the light transmitting / receiving window 7b is received by the light transmitting / receiving window 7e, and the light C emitted from the light transmitting / receiving window 7c is received by the light transmitting / receiving window 7f.
【0024】前記パルス光は、例えばこの波長は酸素代
謝情報を含むチトクローム、ヘモグロビンに吸収のある
700nm〜950nmの近赤外光であり、生体組織の
深部を通過した反射光を有効に捕らえることができ、こ
の反射光は受光素子10によって検出してそれぞれの波
長の検出光を演算することにより、ヘモグロビン、ミオ
グロビン、チトクロームの酸素飽和度を求める。The pulsed light is, for example, near-infrared light having a wavelength of 700 nm to 950 nm which has absorption in cytochrome and hemoglobin containing oxygen metabolism information, and can effectively capture the reflected light that has passed through the deep part of the living tissue. This reflected light can be detected by the light receiving element 10 and the detection light of each wavelength is calculated to obtain the oxygen saturation levels of hemoglobin, myoglobin, and cytochrome.
【0025】そして、光A,B,Cの順に走査すること
により、図4に示すように、代謝活動の少ない領域イ、
代謝活動の多い領域ロの代謝分布が得られ、生体組織の
代謝状態を局部のみならず、広い領域を一度に測定でき
る。Then, by scanning the light A, B, and C in this order, as shown in FIG.
It is possible to obtain the metabolic distribution of a region b with a large amount of metabolic activity, and to measure the metabolic state of living tissue not only locally but in a wide region at one time.
【0026】図5は第2の実施例である。この実施例
は、プローブ4の先端部5の最も先端側の1つの送受光
窓7aを照射用とし、残りの複数の送受光窓7b,7c
…を受光用としたものである。この実施例によれば、受
光用としての送受光窓7b,7c…を順次切り替えるこ
とによって照射部と受光部との間隔を可変することがで
き、生体組織の浅い部分から深い部分までの代謝状態を
分布的に測定できる。FIG. 5 shows a second embodiment. In this embodiment, one of the light-transmitting / receiving windows 7a on the most tip side of the tip portion 5 of the probe 4 is used for irradiation, and the remaining plurality of light-transmitting / receiving windows 7b, 7c.
Is used for receiving light. According to this embodiment, the interval between the irradiation unit and the light receiving unit can be changed by sequentially switching the light transmitting / receiving windows 7b, 7c ... For light reception, and the metabolic state from the shallow portion to the deep portion of the biological tissue can be changed. Can be measured in a distributed manner.
【0027】図6は第3の実施例である。この実施例
は、プローブ4の先端部5に複数の送受光窓7a,7
b,7c…をリング状に形成したものである。この実施
例によれば、例えば最も先端側の1つの送受光窓7aを
照射用とし、残りの複数の送受光窓7b,7c…を受光
用とすることにより、第2の実施例と同様に受光用とし
ての送受光窓7b,7c…を順次切り替えることによっ
て照射部と受光部との間隔を可変することができ、生体
組織の浅い部分から深い部分までの代謝状態を分布的に
測定できるとともに、生体の管腔等を測定する場合に1
度の測定で全周を測定できる。FIG. 6 shows a third embodiment. In this embodiment, a plurality of transmitting / receiving windows 7a, 7a are provided at the tip 5 of the probe 4.
b, 7c ... Are formed in a ring shape. According to this embodiment, for example, one of the most distal light-transmitting / receiving windows 7a is used for irradiation and the remaining plurality of light-transmitting / receiving windows 7b, 7c ... Are used for light reception, similar to the second embodiment. By sequentially switching the light transmitting / receiving windows 7b, 7c ... For light reception, the distance between the irradiation unit and the light receiving unit can be varied, and the metabolic state from a shallow portion to a deep portion of the biological tissue can be measured in a distributed manner. , 1 when measuring the lumen of a living body
The entire circumference can be measured by measuring the degree.
【0028】なお、前記各実施例においては、プローブ
4を体腔内に挿入し、先端部5を生体組織に押し当てた
状態、つまり固定した状態で測定する場合について説明
したが、プローブ4の基端部に回転角検出手段を設け、
プローブ4を体腔内で回転させることにより、3次元的
に表示したり、プローブ4の軸に直角な面の断面におけ
る代謝活動を表示することもできる。In each of the above-mentioned embodiments, the case where the probe 4 is inserted into the body cavity and the tip portion 5 is pressed against the living tissue, that is, the measurement is performed in a fixed state has been described. Providing rotation angle detection means at the end,
By rotating the probe 4 in the body cavity, it is possible to display it three-dimensionally or to display metabolic activity in a cross section of a plane perpendicular to the axis of the probe 4.
【0029】また、前記照射と受光の位置関係でそれぞ
れ各照射、受光用の光ファイバー6がプローブ4の表面
に対し、直角に露出するとしたとき、照射、受光位置を
結ぶ曲線上の代謝状態を確率的に多く反映するという仮
定に基ずく。したがって、例えばこの曲線上に反射の多
い骨や空気体または屈折率の大きい異なる組織がある場
合には正しく診断結果は得られない。しかし、一様な臓
器中の管腔内ではほぼ代謝の活動状況を反映した結果が
得られ、組織の生死に関する情報が得られる。Further, when the optical fibers 6 for irradiation and light reception are exposed at right angles to the surface of the probe 4 due to the positional relationship of irradiation and light reception, the metabolic state on the curve connecting the irradiation and light reception positions is probable. It is based on the assumption that it will be reflected in large numbers. Therefore, for example, if there are bones having many reflections, air bodies, or different tissues having a large refractive index on this curve, a correct diagnostic result cannot be obtained. However, in the lumen of a uniform organ, the result that almost reflects the activity of metabolism is obtained, and the information about life and death of the tissue is obtained.
【0030】図7は代謝情報測定装置の全体構成を示す
もので、11は図示しない4つのレーザダイオードから
なる光源である。12は体腔内の例えば心臓、胃、大
腸、脳等に挿入可能な伸長で、かつ細径なフレキシブル
チューブよりなるプローブである。FIG. 7 shows the overall structure of the metabolic information measuring device, and 11 is a light source composed of four laser diodes (not shown). Reference numeral 12 is a probe which is an elongated flexible tube that can be inserted into the body cavity, such as the heart, stomach, large intestine, and brain.
【0031】また、13は生体組織に照射される光強度
を測定する参照光検出器で、14は生体組織深部に至り
反射してきた光を測定する検出器であり、さらに15は
前記光源11を制御し、かつそれと同期して参照光検出
器13と検出器14の信号より代謝を求める制御装置で
ある。Reference numeral 13 is a reference light detector for measuring the intensity of light applied to the living tissue, 14 is a detector for measuring the light reflected to the deep portion of the living tissue, and 15 is the light source 11. It is a control device that controls and calculates metabolism from the signals of the reference light detector 13 and the detector 14 in synchronization with it.
【0032】前記プローブ12は図示しない6束よりな
る光ファイバー束をフレキシブルチューブによって覆っ
たもので、体腔内に挿入する挿入部16と、挿入部16
の先端部17に設けた湾曲部18およびこの湾曲部18
を湾曲操作するためのアングル操作部19を有した操作
部20を備えている。The probe 12 is formed by covering an optical fiber bundle of 6 bundles (not shown) with a flexible tube. The insertion portion 16 is inserted into the body cavity and the insertion portion 16 is inserted.
Curved portion 18 provided at the distal end portion 17 of this and this curved portion 18
An operation unit 20 having an angle operation unit 19 for performing a bending operation is provided.
【0033】さらに、前記操作部20にはユニバーサル
コード21が接続され、このユニバーサルコード21に
は前記光源11とコネクタ22を介して接続する複数の
光伝送用ファイバー22a、参照光検出器13とコネク
タ24を介して接続する参照光検出用ファイバー25お
よび検出器14とコネクタ26を介して接続する受光用
ファイバー27が内装されている。Further, a universal cord 21 is connected to the operation section 20, and a plurality of optical transmission fibers 22a connected to the light source 11 via a connector 22 and a reference photodetector 13 are connected to the universal cord 21. A reference light detecting fiber 25 connected via 24 and a light receiving fiber 27 connected to the detector 14 via a connector 26 are incorporated.
【0034】前記複数の光伝送用ファイバー22aは照
射用ファイバー23に接続され、この照射用ファイバー
23および受光用ファイバー27はプローブ12の挿入
部16を通って先端部17まで延長している。そして、
その1つについて説明すると、図8に示すように、前記
照射用ファイバー23の出射端23aおよび受光用ファ
イバー27の入射端27aは、先端部17にその軸方向
に対して直角方向に設けられたプリズム28,29に接
合され、光学的に接続されている。The plurality of optical transmission fibers 22a are connected to the irradiation fiber 23, and the irradiation fiber 23 and the light receiving fiber 27 extend through the insertion portion 16 of the probe 12 to the tip portion 17. And
Explaining one of them, as shown in FIG. 8, the emitting end 23a of the irradiation fiber 23 and the incident end 27a of the light receiving fiber 27 are provided in the tip portion 17 in a direction perpendicular to the axial direction thereof. It is joined to the prisms 28 and 29 and is optically connected.
【0035】したがって、前記照射用ファイバー23お
よび受光用ファイバー27の光軸はプリズム28,29
によって先端部17の長手方向に対して直角に変換され
るようになっており、両プリズム28,29の反射面2
8a,29aには光を効率的に反射させるためのアルミ
等の反射膜が蒸着されている。Therefore, the optical axes of the irradiation fiber 23 and the reception fiber 27 are prisms 28 and 29.
The prism 17 is adapted to be converted at a right angle to the longitudinal direction of the tip portion 17, and the reflecting surfaces 2 of both prisms 28 and 29 can be converted.
A reflective film of aluminum or the like is vapor-deposited on 8a and 29a for efficiently reflecting light.
【0036】図9は前記プリズム28,29に代わって
前記照射用ファイバー23および受光用ファイバー27
の先端部を挿入部16の先端部17において直角に湾曲
し、出射端23aおよび入射端27aを先端部17の側
面に向けるとともに、側面より僅かに突出した構造であ
る。また、前記出射端23aおよび入射端27aの突出
部分は俺や生体組織への侵襲を防ぐ保護部17aが設け
られている。In FIG. 9, instead of the prisms 28 and 29, the irradiation fiber 23 and the light reception fiber 27 are used.
The distal end portion of is curved at a right angle at the distal end portion 17 of the insertion portion 16, and the emission end 23a and the incident end 27a are directed toward the side surface of the distal end portion 17 and slightly protruded from the side surface. Further, the protruding portions of the emitting end 23a and the incident end 27a are provided with a protective portion 17a for preventing invasion of myself and living tissue.
【0037】なお、前記照射用ファイバー23および受
光用ファイバー27の曲げ角は直角である必要はなく、
前記出射端23aより出射した光の光軸および入射端2
7aで検出する光の光軸が先端部17より離れるにした
がい広がるような曲げ角に設定してもよい。次に、前述
のように構成された代謝情報測定装置の作用について説
明する。The bending angles of the irradiation fiber 23 and the light reception fiber 27 do not have to be right angles.
The optical axis of the light emitted from the emitting end 23a and the incident end 2
The bending angle may be set such that the optical axis of the light detected by 7a spreads as it goes away from the tip portion 17. Next, the operation of the metabolic information measuring device configured as described above will be described.
【0038】まず、光源11により4つの異なる波長の
パルス光を順次発生させる。例えばこの波長は酸素代謝
情報を含むチトクローム、ヘモグロビンに吸収のある7
00nm〜950nmの近赤外光である。これらの光は
それぞれコネクタ22に接続されたている照射用ファイ
バー23に導光される。First, the light source 11 sequentially generates pulsed lights of four different wavelengths. For example, this wavelength is absorbed by cytochrome and hemoglobin, which contain oxygen metabolism information.
It is near infrared light of 00 nm to 950 nm. Each of these lights is guided to the irradiation fiber 23 connected to the connector 22.
【0039】照射用ファイバー23に導光された光はプ
ローブ11の先端部17に導光され、出射端23aから
プリズム28を介して生体組織30に均一に照射され
る。ここで、照射用ファイバー23は参照光検出用ファ
イバー25を介して参照光検出器14とも接続されてい
るため、生体組織30に照射された直後の反射光つまり
照射光強度を測定することができる。The light guided to the irradiation fiber 23 is guided to the tip portion 17 of the probe 11, and is uniformly irradiated to the living tissue 30 from the emitting end 23a through the prism 28. Here, since the irradiation fiber 23 is also connected to the reference light detector 14 through the reference light detection fiber 25, it is possible to measure the reflected light immediately after being irradiated to the biological tissue 30, that is, the irradiation light intensity. ..
【0040】生体組織30に照射された光は組織による
光散乱のため、生体組織30内を拡散しながら進行す
る。そして、この光の一部、つまり反射光は前記プリズ
ム28と約5mm〜数cm離れたプリズム29から受光
用ファイバー27の入射端27aに入射し、受光用ファ
イバー27を介して検出器14に導光される。The light applied to the living tissue 30 propagates while diffusing in the living tissue 30 due to light scattering by the tissue. Then, a part of this light, that is, the reflected light is incident on the incident end 27 a of the light receiving fiber 27 from the prism 29 which is separated from the prism 28 by about 5 mm to several cm, and is guided to the detector 14 via the light receiving fiber 27. Be illuminated.
【0041】したがって、生体組織30の深部を通過し
た反射光を有効に捕らえることができ、それぞれ異なる
波長の光を順次検出し、それぞれの波長の参照光波長と
検出光を相互に演算することにより、ヘモグロビン、ミ
オグロビン、チトクロームの酸素飽和度を求めて表示部
(図示しない)に表示する。Therefore, the reflected light that has passed through the deep portion of the living tissue 30 can be effectively captured, the lights of different wavelengths are sequentially detected, and the reference light of each wavelength and the detected light are mutually calculated. , Oxygen saturation of hemoglobin, myoglobin, and cytochrome are obtained and displayed on a display unit (not shown).
【0042】例えば、心筋の代謝を測定する際には、前
記挿入部16をX線透視下で大腿動脈より挿入して大動
脈を経て、左心室の心筋に先端部17の側部を押し当て
る。このとき、先端部17が生体組織30に当たるよう
にアングル操作部19を操作して湾曲部18を湾曲し、
先端部17に設けられたプリズム28,29と生体組織
30が隙間なく接触するようにする。For example, when measuring the metabolism of the myocardium, the insertion portion 16 is inserted from the femoral artery under fluoroscopy, and the side portion of the tip portion 17 is pressed against the myocardium of the left ventricle through the aorta. At this time, the bending portion 18 is bent by operating the angle operation portion 19 so that the tip portion 17 hits the living tissue 30.
The prisms 28 and 29 provided on the tip portion 17 and the biological tissue 30 are brought into contact with each other without a gap.
【0043】なお、心筋の代謝だけでなく、胃に挿入さ
れた内視鏡のチャンネルを利用し、内視鏡下で観察しな
がら胃内壁の代謝を測定したり、脳血管よりプローブ1
2を挿入して膵臓、肝嚢、肝臓等の代謝を測定してもよ
い。Not only the metabolism of the myocardium but also the metabolism of the inner wall of the stomach can be measured while observing under the endoscope using the channel of the endoscope inserted into the stomach, and the probe 1 can be measured from the cerebral blood vessels.
2 may be inserted to measure the metabolism of the pancreas, liver sac, liver and the like.
【0044】図10〜図12はプローブの挿入部31の
先端部32に吸引機能を備えたもので、33は照射窓、
34は受光窓である。照射窓33および受光窓34の両
側には吸引穴35が設けられている。この吸引穴35は
挿入部31に内挿された吸引用チューブ36を介して外
部に設けられた真空ポンプ(図示しない)に接続されて
いる。10 to 12 show a tip end portion 32 of a probe insertion portion 31 having a suction function, and 33 is an irradiation window.
Reference numeral 34 is a light receiving window. Suction holes 35 are provided on both sides of the irradiation window 33 and the light receiving window 34. The suction hole 35 is connected to a vacuum pump (not shown) provided outside via a suction tube 36 inserted in the insertion portion 31.
【0045】したがって、挿入部31を体腔内に挿入
し、先端部32を生体組織30に位置した後、真空ポン
プによって吸引穴35を負圧にすることによって、先端
部32を生体組織30に吸着させることができ、生体組
織30の代謝情報を正確に測定できる。Therefore, after the insertion portion 31 is inserted into the body cavity and the tip portion 32 is located in the living tissue 30, the suction hole 35 is made to have a negative pressure by the vacuum pump so that the tip portion 32 is attracted to the living tissue 30. The metabolic information of the living tissue 30 can be accurately measured.
【0046】図13はプローブの挿入部31の先端部3
2に押圧機能を備えたもので、33は照射窓、34は受
光窓である。照射窓33および受光窓34の反対側に位
置する先端部32の側面にはバルーン37が設けられて
いる。このバルーン37は挿入部31に内挿された送気
用チューブ38を介して外部に設けられ、制御装置39
によって制御されるコンプレッサ40に接続されてい
る。FIG. 13 shows the tip portion 3 of the insertion portion 31 of the probe.
2 is provided with a pressing function, and 33 is an irradiation window and 34 is a light receiving window. A balloon 37 is provided on the side surface of the tip portion 32 located on the opposite side of the irradiation window 33 and the light receiving window 34. The balloon 37 is provided outside through an air supply tube 38 inserted in the insertion portion 31, and a control device 39
Connected to a compressor 40 controlled by.
【0047】したがって、挿入部31を管腔に挿入し、
先端部32を生体組織30に位置した後、コンプレッサ
40によってバルーン37に空気を圧送することによ
り、バルーン37が膨張して一方の管腔壁を押圧し、そ
の反力によって先端部32を生体組織30の目的部位に
押し当てることができ、生体組織30の代謝情報を正確
に測定できる。Therefore, the insertion portion 31 is inserted into the lumen,
After the distal end portion 32 is positioned on the living tissue 30, the air is pumped to the balloon 37 by the compressor 40 so that the balloon 37 expands and presses one lumen wall, and the reaction force causes the distal end portion 32 to move the living tissue. It can be pressed against the target site of 30, and the metabolic information of the biological tissue 30 can be accurately measured.
【0048】図14はプローブの挿入部31の先端部3
2に送液機能を備えたもので、33は照射窓、34は受
光窓である。照射窓33および受光窓34の反対側に位
置する先端部32の側面には送液チャンネル41と連通
する送液口42が設けられている。送液チャンネル41
はポンプ43を介して生理食塩水を収容するリザーバ4
4に連通している。FIG. 14 shows the tip portion 3 of the insertion portion 31 of the probe.
2 is provided with a liquid sending function, and 33 is an irradiation window and 34 is a light receiving window. A liquid feed port 42 communicating with the liquid feed channel 41 is provided on the side surface of the tip portion 32 located on the opposite side of the irradiation window 33 and the light receiving window 34. Liquid transfer channel 41
Is a reservoir 4 for storing a physiological saline solution via a pump 43.
It communicates with 4.
【0049】したがって、挿入部31を管腔に挿入し、
先端部32を生体組織30に位置した後、ポンプ43に
よって生理食塩水を送液チャンネル41を圧送すること
により、送液口42から生理食塩水が一方の管腔壁に向
かって噴出し、その反力によって先端部32を生体組織
30の目的部位に押し当てることができ、生体組織30
の代謝情報を正確に測定できる。Therefore, the insertion portion 31 is inserted into the lumen,
After the distal end portion 32 is located in the living tissue 30, the physiological saline is pumped through the liquid feeding channel 41 by the pump 43, so that the physiological saline is ejected from the liquid feeding port 42 toward one lumen wall. The tip portion 32 can be pressed against the target site of the living tissue 30 by the reaction force,
The metabolic information of can be measured accurately.
【0050】図15〜図17は先端部に偏平状の送受光
部材45を有したプローブ46を示すもので、送受光部
材45の偏平部分には複数の照射窓47と1つの受光窓
48が設けられている。FIGS. 15 to 17 show a probe 46 having a flat light-transmitting / receiving member 45 at its tip, and a flat portion of the light-transmitting / receiving member 45 has a plurality of irradiation windows 47 and one light-receiving window 48. It is provided.
【0051】前記複数の照射窓47はそれぞれプローブ
46に内挿された複数本の照射用ファイバー49の一端
に接続され、受光窓48は同じくプローブ46に内挿さ
れた1本の受光用ファイバー50の一端に接続されてい
る。The plurality of irradiation windows 47 are respectively connected to one ends of a plurality of irradiation fibers 49 inserted in the probe 46, and the light receiving window 48 is one light receiving fiber 50 also inserted in the probe 46. Is connected to one end of.
【0052】一方、光源としての複数のレーザダイオー
ド51の光路上にはダイクロイックミラー52が配置さ
れ、この反射光路上にはミラー53が設置されている。
さらに、このミラー53の反射光路上にはプリズム54
が回動自在に設けられ、このプリズム54によって照射
光を前記照射用ファイバー49の入射端に選択的に入射
できるようになっている。また、前記受光用ファイバー
50の他端は受光素子55に対向して設けられている。On the other hand, a dichroic mirror 52 is arranged on the optical paths of a plurality of laser diodes 51 as light sources, and a mirror 53 is installed on the reflected optical path.
Further, a prism 54 is provided on the reflection optical path of the mirror 53.
Is rotatably provided, and this prism 54 allows the irradiation light to be selectively incident on the incident end of the irradiation fiber 49. The other end of the light receiving fiber 50 is provided so as to face the light receiving element 55.
【0053】したがって、プローブ46を体腔内に挿入
し、送受光部材45を生体組織30の目的部位に接合し
た状態で、複数のレーザダイオード51の各々からシリ
アルに発光すると、ダイクロイックミラー52、ミラー
53およびプリズム54を介して照射光が照射用ファイ
バー49の入射端に選択的に入射される。Therefore, when the probe 46 is inserted into the body cavity and the light transmitting / receiving member 45 is bonded to the target site of the living tissue 30, each of the plurality of laser diodes 51 emits light serially, the dichroic mirror 52 and the mirror 53. And the irradiation light is selectively incident on the incident end of the irradiation fiber 49 via the prism 54.
【0054】照射用ファイバー49に入射された照射光
は送受光部材45の照射窓47から生体組織30に照射
され、その反射光は受光窓48によって受光される。そ
して、受光用ファイバー50を介して受光素子55に受
光される。The irradiation light incident on the irradiation fiber 49 is irradiated onto the living tissue 30 through the irradiation window 47 of the light transmitting / receiving member 45, and the reflected light is received by the light receiving window 48. Then, the light is received by the light receiving element 55 through the light receiving fiber 50.
【0055】この場合、複数の照射窓47を有している
ため、照射窓47を選択することにより、照射部と受光
部との間隔を可変することができ、生体組織の浅い部分
から深い部分までの代謝状態を分布的に測定できる。ま
た、送受光部材45が偏平状であるため、照射部と受光
部を生体組織30に密着でき、効率の良い情報検出がで
きる。In this case, since a plurality of irradiation windows 47 are provided, the distance between the irradiation section and the light receiving section can be changed by selecting the irradiation window 47, and a portion from a shallow portion to a deep portion of the living tissue can be changed. The metabolic state up to can be measured in a distributed manner. Further, since the light transmitting / receiving member 45 has a flat shape, the irradiation unit and the light receiving unit can be brought into close contact with the biological tissue 30, and efficient information detection can be performed.
【0056】また、図17に示すように、プローブ46
の先端の送受光部材45を生体組織30上でスキャンさ
せることにより、深さ方向に対して3次元的な情報が得
られる。Further, as shown in FIG.
By scanning the light transmitting / receiving member 45 at the tip of the body tissue 30 on the living tissue 30, three-dimensional information in the depth direction can be obtained.
【0057】図18および図19は、プローブ56に渦
巻き状の先端部57を設け、この先端部に照射窓58と
受光窓59を設け、生体組織に対する先端部57の密着
性を向上させたものである。18 and 19, a probe 56 is provided with a spiral tip portion 57, and an irradiation window 58 and a light receiving window 59 are provided at this tip portion to improve the adhesion of the tip portion 57 to a living tissue. Is.
【0058】前記先端部57には形状記憶合金からなる
ワイヤ60が内挿されている。このワイヤ60は渦巻状
に記憶されており、非通電時には真っ直ぐであるが、加
熱することによって渦巻状に復元する。A wire 60 made of a shape memory alloy is inserted in the tip portion 57. The wire 60 is stored in a spiral shape and is straight when not energized, but is restored to a spiral shape by heating.
【0059】したがって、例えば、胸壁61にガイド筒
62を貫通し、このガイド筒62を体腔内に挿入し、心
臓63に通じる膜(図示しない)を切り、心膜を切開す
ると、心筋が露出する。心筋は心筋梗塞の疑いがあるも
ので、もし梗塞の範囲が少なければ冠状動脈バイパス手
術等で治療し、心筋梗塞周囲の心筋を虚血から救うこと
ができる。Therefore, for example, when the guide cylinder 62 is penetrated through the chest wall 61, the guide cylinder 62 is inserted into the body cavity, the membrane (not shown) leading to the heart 63 is cut, and the pericardium is incised, the myocardium is exposed. .. Myocardium is suspected to be myocardial infarction, and if the extent of infarction is small, it can be treated by coronary artery bypass surgery or the like to rescue the myocardium around myocardial infarction from ischemia.
【0060】この判定を行うために前記のように心筋を
胸腔鏡下で見ながら、前記ガイド筒62をガイドとして
先端部57が真っ直ぐなプローブ56を挿入し、挿入
後、ワイヤ60に通電して加熱し、先端部57を渦巻状
にして心臓63の筋層の上に接合する。In order to make this determination, while observing the myocardium under the thoracoscope as described above, the guide tube 62 is used as a guide to insert the probe 56 having the straight tip portion 57, and after insertion, the wire 60 is energized. Heat to make the tip 57 spiral and bond onto the muscle layer of the heart 63.
【0061】そして、照射窓58と受光窓59を心臓6
3の筋層上に密着した状態で、照射窓58から心臓63
に向かって照射することにより、心臓63の代謝情報を
正確に測定できる。The irradiation window 58 and the light receiving window 59 are connected to the heart 6
3 in close contact with the muscle layer 3 through the irradiation window 58 to the heart 63
By irradiating toward, the metabolic information of the heart 63 can be accurately measured.
【0062】[0062]
【発明の効果】以上説明したように、この発明によれ
ば、プローブの軸方向に沿って検査光出射部または検査
光受光部のうち少なくとも一方を複数配置し、複数の検
査光出射部から順次検査光を出射すると、検査光は生体
組織を散乱、反射しながら透過し、検査光出射部に対応
する検査光受光部に受光される。これを繰り返すことに
よって生体組織の代謝情報を分布的に測定でき、広い範
囲を短時間に正確に測定できるという効果がある。As described above, according to the present invention, at least one of the inspection light emitting portion and the inspection light receiving portion is arranged along the axial direction of the probe, and the inspection light emitting portions are sequentially arranged. When the inspection light is emitted, the inspection light is transmitted through the living tissue while being scattered, reflected, and received by the inspection light receiving portion corresponding to the inspection light emitting portion. By repeating this, the metabolic information of the living tissue can be measured in a distributed manner, and there is an effect that a wide range can be accurately measured in a short time.
【図1】この発明の第1の実施例に係わるプローブの先
端部の縦断側面図。FIG. 1 is a vertical sectional side view of a tip portion of a probe according to a first embodiment of the present invention.
【図2】同実施例のタイミングチャート図。FIG. 2 is a timing chart of the embodiment.
【図3】同実施例の発光部と受光部の配置状態を示す斜
視図。FIG. 3 is a perspective view showing an arrangement state of a light emitting unit and a light receiving unit of the embodiment.
【図4】同実施例の代謝分布図。FIG. 4 is a metabolic distribution map of the same example.
【図5】この発明の第2の実施例に係わるプローブの斜
視図。FIG. 5 is a perspective view of a probe according to a second embodiment of the present invention.
【図6】この発明の第3の実施例に係わるプローブの斜
視図。FIG. 6 is a perspective view of a probe according to a third embodiment of the present invention.
【図7】代謝情報測定装置の全体の概略的構成図。FIG. 7 is a schematic configuration diagram of an entire metabolic information measuring device.
【図8】同装置のプローブの縦断側面図。FIG. 8 is a vertical sectional side view of a probe of the apparatus.
【図9】同装置のブローブの縦断側面図。FIG. 9 is a vertical sectional side view of the probe of the apparatus.
【図10】吸引機能を持ったプローブの側面図。FIG. 10 is a side view of a probe having a suction function.
【図11】図10の矢印a−a線に沿う断面図、11 is a sectional view taken along the line aa in FIG.
【図12】同プローブの使用状態の側面図。FIG. 12 is a side view of the probe in use.
【図13】バルーンを持ったプローブの縦断側面図。FIG. 13 is a vertical sectional side view of a probe having a balloon.
【図14】生理食塩水を噴出する噴出機能を持ったプロ
ーブの縦断側面図。FIG. 14 is a vertical cross-sectional side view of a probe having a jetting function for jetting physiological saline.
【図15】プローブの先端部に偏平状の送受光部材を持
った代謝情報測定装置の全体の概略的構成図。FIG. 15 is a schematic configuration diagram of an entire metabolic information measuring device having a flat light transmitting / receiving member at the tip of the probe.
【図16】同装置の使用状態の側面図。FIG. 16 is a side view of the device in use.
【図17】同装置の使用状態の斜視図。FIG. 17 is a perspective view of the device in use.
【図18】先端部が渦巻状に湾曲するプローブにおける
使用状態の斜視図。FIG. 18 is a perspective view of a probe in which the tip portion is curved in a spiral shape in a usage state.
【図19】図18の矢印b−b線に沿う断面図。19 is a sectional view taken along the line bb of FIG.
【図20】心筋の一般的な測定状態を示す斜視図。FIG. 20 is a perspective view showing a general measurement state of myocardium.
4…プローブ、6…光ファイバー、7a〜7f…送受光
窓。11…光源、14…検出器。4 ... Probe, 6 ... Optical fiber, 7a-7f ... Transmitting / receiving window. 11 ... Light source, 14 ... Detector.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大曲 泰彦 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 田代 芳夫 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 中村 一成 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 梅山 広一 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 大明 義直 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 高山 修一 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 山口 征治 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Omagari 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Yoshio Tashiro 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Inventor Issei Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Koichi Umeyama 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. Olympus Optical Co., Ltd. (72) Inventor Yoshinao Daimei 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Shuichi Takayama 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. Olympus Optical Co., Ltd. (72) Inventor Seiji Yamaguchi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olin Scan Optical Industry Co., Ltd. in
Claims (1)
する検査光を出射する検査光出射手段と、前記組織内を
透過した検査光を受光する受光手段とを有する代謝情報
測定装置において、プローブの軸方向に沿って前記検査
光出射部または検査光受光部のうち少なくとも一方を複
数配置したことを特徴とする代謝情報測定装置。1. A metabolic information measuring device comprising: a test light emitting means for emitting a test light for measuring tissue metabolic information with respect to a biological tissue; and a light receiving means for receiving the test light transmitted through the tissue, A metabolic information measuring device, wherein a plurality of at least one of the test light emitting section and the test light receiving section are arranged along the axial direction of the probe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3270998A JPH05103774A (en) | 1991-10-18 | 1991-10-18 | Measuring device for metabolism information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3270998A JPH05103774A (en) | 1991-10-18 | 1991-10-18 | Measuring device for metabolism information |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05103774A true JPH05103774A (en) | 1993-04-27 |
Family
ID=17493984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3270998A Pending JPH05103774A (en) | 1991-10-18 | 1991-10-18 | Measuring device for metabolism information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05103774A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0928696A (en) * | 1995-07-21 | 1997-02-04 | Hitachi Ltd | Optical measuring device and optical measuring method |
JP2002531846A (en) * | 1998-12-07 | 2002-09-24 | レア メディツィンテクニック ゲーエムベーハー | Detection probe for depth-resolved optical spectroscopy and spectrometry |
JP2004534934A (en) * | 2000-08-04 | 2004-11-18 | フォトニフィー テクノロジーズ,インコーポレーテッド | System and method for providing information about chromophores in physiological media |
JP2005328990A (en) * | 2004-05-19 | 2005-12-02 | Olympus Corp | Biological information measuring apparatus and endoscope apparatus |
JP2006513773A (en) * | 2003-03-05 | 2006-04-27 | インフラレドックス インコーポレーティッド | Catheter probe apparatus for radiant energy delivery and radiant energy collection |
US7286870B2 (en) | 1994-10-06 | 2007-10-23 | Hitachi, Ltd. | Optical system for measuring metabolism in a body and imaging method |
JP2009538672A (en) * | 2006-05-30 | 2009-11-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Apparatus for depth-resolved measurement of tissue attributes |
US8060172B2 (en) | 2004-03-29 | 2011-11-15 | Olympus Corporation | In-vivo information measurement apparatus |
US8386023B2 (en) | 2001-12-31 | 2013-02-26 | Infraredx, Inc. | Catheter probe arrangement for tissue analysis by radiant energy delivery and radiant energy collection |
JPWO2020054674A1 (en) * | 2018-09-10 | 2021-08-30 | 古河電気工業株式会社 | Optical probes, medical laser probes, and cauterizers |
-
1991
- 1991-10-18 JP JP3270998A patent/JPH05103774A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8050744B2 (en) | 1994-10-06 | 2011-11-01 | Hitachi, Ltd. | Optical system for measuring metabolism in a body and imaging method |
US7286870B2 (en) | 1994-10-06 | 2007-10-23 | Hitachi, Ltd. | Optical system for measuring metabolism in a body and imaging method |
US7715904B2 (en) | 1994-10-06 | 2010-05-11 | Hitachi, Ltd. | Optical system for measuring metabolism in a body and imaging method |
US7440794B2 (en) | 1994-10-06 | 2008-10-21 | Hitachi, Ltd. | Optical system for measuring metabolism in a body and imaging method |
JPH0928696A (en) * | 1995-07-21 | 1997-02-04 | Hitachi Ltd | Optical measuring device and optical measuring method |
JP2002531846A (en) * | 1998-12-07 | 2002-09-24 | レア メディツィンテクニック ゲーエムベーハー | Detection probe for depth-resolved optical spectroscopy and spectrometry |
JP4846181B2 (en) * | 2000-08-04 | 2011-12-28 | フォトニフィー テクノロジーズ,インコーポレーテッド | System and method for providing information about chromophores in physiological media |
JP2004534934A (en) * | 2000-08-04 | 2004-11-18 | フォトニフィー テクノロジーズ,インコーポレーテッド | System and method for providing information about chromophores in physiological media |
US8386023B2 (en) | 2001-12-31 | 2013-02-26 | Infraredx, Inc. | Catheter probe arrangement for tissue analysis by radiant energy delivery and radiant energy collection |
JP2006513773A (en) * | 2003-03-05 | 2006-04-27 | インフラレドックス インコーポレーティッド | Catheter probe apparatus for radiant energy delivery and radiant energy collection |
US8060172B2 (en) | 2004-03-29 | 2011-11-15 | Olympus Corporation | In-vivo information measurement apparatus |
JP2005328990A (en) * | 2004-05-19 | 2005-12-02 | Olympus Corp | Biological information measuring apparatus and endoscope apparatus |
JP2009538672A (en) * | 2006-05-30 | 2009-11-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Apparatus for depth-resolved measurement of tissue attributes |
JPWO2020054674A1 (en) * | 2018-09-10 | 2021-08-30 | 古河電気工業株式会社 | Optical probes, medical laser probes, and cauterizers |
US11553964B2 (en) | 2018-09-10 | 2023-01-17 | Furukawa Electric Co., Ltd. | Optical probe, medical laser probe, and cauterization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220192503A1 (en) | Apparatus, systems, methods and computer-accessible medium for analyzing information regarding cardiovascular diseases and functions | |
US12076109B1 (en) | Using an oximeter probe to detect intestinal ischemia | |
JPH05103746A (en) | Metabolism information measuring device | |
JP5926806B2 (en) | System and method for visualizing ablated tissue | |
US6594518B1 (en) | Device and method for classification of tissue | |
US20080125634A1 (en) | Method and apparatus for identifying and treating myocardial infarction | |
EP1465684B1 (en) | Intra vascular imaging method and apparatus | |
JP4340392B2 (en) | Method and apparatus for detecting, locating and targeting an in-vivo interior field using an optical contrast factor | |
US10674947B1 (en) | Diagnosing intestinal ischemia based on oxygen saturation measurements | |
US20080039715A1 (en) | Three-dimensional optical guidance for catheter placement | |
US11696690B2 (en) | Apparatus, systems and methods for characterizing, imaging and/or modifying an object | |
US20070015981A1 (en) | Device and methods for the detection of locally-weighted tissue ischemia | |
JPH05103774A (en) | Measuring device for metabolism information | |
CN201042433Y (en) | Optical detection device for living tissue | |
Katzir | Optical fibers in medicine | |
JP2009153828A (en) | Apparatus for observing living body | |
JPH05115463A (en) | Metabolism information measuring system | |
CN117835915A (en) | Sequential adapter for combined ultrasound and photoacoustic diagnostic exploration of the left innominate vein | |
JPH05115465A (en) | Metabolic information measuring instrument | |
JPH05111477A (en) | Metabolism information measuring instrument | |
JPH05103786A (en) | Measuring device for metabolism information | |
JPH05103775A (en) | Measuring device for metabolism information | |
JPH05115467A (en) | Metabolic information measuring system | |
JPH05111478A (en) | Metabolism information measuring instrument | |
JPH05103773A (en) | Measuring device for metabolism information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010109 |