[go: up one dir, main page]

JPH06308422A - Visual display device - Google Patents

Visual display device

Info

Publication number
JPH06308422A
JPH06308422A JP10136993A JP10136993A JPH06308422A JP H06308422 A JPH06308422 A JP H06308422A JP 10136993 A JP10136993 A JP 10136993A JP 10136993 A JP10136993 A JP 10136993A JP H06308422 A JPH06308422 A JP H06308422A
Authority
JP
Japan
Prior art keywords
optical system
image
observer
resolving power
eyeball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10136993A
Other languages
Japanese (ja)
Other versions
JP3212179B2 (en
Inventor
Kokichi Kenno
研野孝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10136993A priority Critical patent/JP3212179B2/en
Publication of JPH06308422A publication Critical patent/JPH06308422A/en
Application granted granted Critical
Publication of JP3212179B2 publication Critical patent/JP3212179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an image with high resolving power only at a part being near a gazing point and requiring resolving power and to observe the peripheral image thereof which is not gazed without being vignetted. CONSTITUTION:In a visual display device constituting of display elements 9 and 9', a relay optical system 4 projecting the real images of the elements 9 and 9' and an eyepiece optical system 3 enlarging and projecting the primary image projected by the optical system 4 in the air as a virtual image; the emitting pupil of the optical system 3 is arranged near the winding point of the eyeball of an observer. Besides, an optical path splitting means such as a half mirror 10 or a perforated mirror is arranged near the pupil position of the optical system 4 conjugated with the emitting pupil position of the optical system 3. Then while the image with high resolving power in an observing direction which is gazed by moving the eyeballs is displayed on one element 9, he peripheral image requiring the resolving power not so much is displayed on the other element 9. As the result, the peripheral image can be observed without being vignetted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、視覚表示装置に関し、
特に、観察者の頭部又は顔面に保持することが可能な、
小型で、広画角の、解像力の良いポータブル型頭部又は
顔面装着式視覚表示装置の光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visual display device,
In particular, it can be held on the observer's head or face,
The present invention relates to an optical system of a small-sized, wide-angle, high-resolution portable head or face-mounted visual display device.

【0002】[0002]

【従来の技術】このような頭部装着式視覚表示装置とし
ては、2次元表示素子を接眼光学系で空中に拡大投影す
る本出願人による特願平3−295874号のものの他
に、特願平4−106912号、同4−106913
号、同4−199487号等の例がある。
2. Description of the Related Art As such a head-mounted visual display device, in addition to the Japanese Patent Application No. 3-295874 filed by the applicant of the present invention in which a two-dimensional display element is magnified and projected in the air by an eyepiece optical system, there is a Japanese Patent Application. No. 4-106912 and 4-106913
And No. 4-199487.

【0003】[0003]

【発明が解決しようとする課題】観察画角30°(片側
15°)を超えるような広角の接眼光学系においては、
眼球を回転させて視野周辺を観察しようとした場合に、
眼球の回転により眼球の虹彩位置のズレが発生する。こ
の虹彩位置のズレによって、観察しようとする視野周辺
と反対側の視野の光線が虹彩でケラレてしまい、観察す
ることができなくなってしまう。この様子を図4から図
6を用いて説明する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In a wide-angle eyepiece optical system in which an observation angle of view exceeds 30 ° (15 ° on one side),
When trying to observe the periphery of the visual field by rotating the eyeball,
The rotation of the eyeball causes the displacement of the iris position of the eyeball. Due to this displacement of the iris position, the light rays in the visual field on the side opposite to the peripheral visual field to be observed are vignetted by the iris, making it impossible to observe. This state will be described with reference to FIGS. 4 to 6.

【0004】図4(a)に示すように、接眼光学系の射
出瞳を眼球の虹彩位置に合わせると、観察画像の中心を
見ている時は視野周辺まで観察できる。しかし、図4
(b)に示すように、眼球を回転させて視野周辺を観察
しようとした場合は、接眼光学系の射出瞳位置と眼球の
虹彩位置がズレて、観察しようとする観察像の周辺と反
対側の画角の光線は虹彩でケラレてしまい、観察するこ
とができなくなってしまう。
As shown in FIG. 4A, if the exit pupil of the eyepiece optical system is aligned with the iris position of the eyeball, the periphery of the visual field can be observed when looking at the center of the observed image. However, FIG.
As shown in (b), when trying to observe the periphery of the visual field by rotating the eyeball, the exit pupil position of the eyepiece optical system is displaced from the iris position of the eyeball, and the side opposite to the periphery of the observed image to be observed. The rays with the angle of view will be vignetted by the iris and will not be observable.

【0005】また、図5(a)のように、接眼光学系の
射出瞳と眼球の回転中心を一致させた場合には、光軸上
の中心付近を観察している時に周辺が見えなくなってし
まう。しかし、図5(b)のように、周辺を観察しよう
とした場合には、観察しようとした方向はその部分のみ
が観察することができる。
Further, as shown in FIG. 5A, when the exit pupil of the eyepiece optical system and the center of rotation of the eyeball are aligned with each other, the periphery cannot be seen when observing the vicinity of the center on the optical axis. I will end up. However, as shown in FIG. 5B, when an attempt is made to observe the periphery, only that portion can be observed in the direction of the observation.

【0006】さらに、図6(a)のように、接眼光学系
の射出瞳を眼球の回転中心と眼球の虹彩位置との中間に
配置した場合は、画像中心を観察した場合(a)にも、
画像周辺を観察した場合(b)にも、接眼光学系を射出
した光線の一部は眼球の虹彩を通過するので、全視野の
観察は、どこを注視していようが観察することができ
る。しかし、光彩による光線のケラレは発生しているの
で、周辺画像の明るさ不足等の問題が発生する。また、
図示した画角以上の画角を設定した場合には、図5の場
合と同様に、視野周辺の観察ができない問題が発生す
る。
Further, as shown in FIG. 6 (a), when the exit pupil of the eyepiece optical system is arranged between the center of rotation of the eyeball and the iris position of the eyeball, even when the center of the image is observed (a). ,
Even when the periphery of the image is observed (b), a part of the light beam emitted from the eyepiece optical system passes through the iris of the eyeball, so that the entire visual field can be observed regardless of where the user is gazing. However, since vignetting of light rays due to iris occurs, problems such as insufficient brightness of peripheral images occur. Also,
If the angle of view is set to be larger than the illustrated angle of view, the problem that the periphery of the visual field cannot be observed occurs as in the case of FIG.

【0007】上記問題点を解決するためには、接眼光学
系の射出瞳径を大きく設計することが必要となるが、接
眼光学系の射出瞳径を大きくすることは、接眼光学系の
Fナンバーを小さくすることとなり、特に小型軽量化が
求められる頭部装着式視覚表示装置では、装置全体が大
きく重くなってしまうという問題が生じる。
In order to solve the above-mentioned problems, it is necessary to design the exit pupil diameter of the eyepiece optical system to be large, but increasing the exit pupil diameter of the eyepiece optical system means to increase the F number of the eyepiece optical system. Therefore, in a head-mounted visual display device that is particularly required to be small and lightweight, there arises a problem that the entire device becomes large and heavy.

【0008】本発明はこのような問題点を解決するため
になされたものであり、その目的は、観察画角が広くか
つ解像力が高い視覚表示装置を提供する場合に、注視点
近傍の特に解像力を必要とする部分のみ高い解像力の画
像を提供して、注視していない周辺の画像はケラレるこ
となく観察できる小型でポータブル型の視覚表示装置を
提供することである。
The present invention has been made in order to solve such a problem, and an object thereof is to provide a visual display device having a wide observation angle of view and a high resolving power, in particular, a resolving power near a gazing point. It is an object of the present invention to provide a small and portable visual display device that can provide an image with high resolution only in a portion that needs to be observed, and can observe an image of the surrounding area that is not gazing without vignetting.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の視覚表示装置は、観察像を表示する2次元表示素子
と、該2次元表示素子の実像を投影するリレー光学系
と、リレー光学系により投影された1次像を空中に虚像
として拡大投影する接眼光学系とからなる視覚表示装置
において、前記接眼光学系の射出瞳を観察者の眼球回旋
点近傍に配置し、接眼光学系の射出瞳位置と共役なリレ
ー光学系の瞳位置近傍に光路を分割する手段を配置した
ことを特徴とするものである。
A visual display device of the present invention which achieves the above object comprises a two-dimensional display element for displaying an observation image, a relay optical system for projecting a real image of the two-dimensional display element, and a relay optical element. In a visual display device comprising an eyepiece optical system for magnifying and projecting a primary image projected by the system as a virtual image in the air, an exit pupil of the eyepiece optical system is arranged in the vicinity of an eyeball turning point of an observer, It is characterized in that means for dividing the optical path is arranged in the vicinity of the pupil position of the relay optical system which is conjugate with the exit pupil position.

【0010】[0010]

【作用】以下、上記構成をとる理由と作用について説明
する。本発明の要点は、眼球を回転させて注視している
観察方向の解像力を確保しつつ、解像力をそれほど必要
としない周辺画像がケラレることなく観察できる接眼光
学系を提供することである。
The function and operation of the above configuration will be described below. The main point of the present invention is to provide an eyepiece optical system which can observe a peripheral image which does not require so much resolution without vignetting, while ensuring the resolution in the observation direction in which the eyeball is rotated and gazing.

【0011】人間の視野内の情報受容特性は、注視して
いる方向を向いている眼球の視軸上の極小さい角度内に
おいてのみ、優れた解像力と色彩感覚を持っている(テ
レビジョン学会技術報告VVI 47−3 p.6
0)。すなわち、眼球が回転して注視している方向の解
像力を損なうことがないように、接眼光学系の収差を補
正すればよい。さらに、注視していない方向の観察画像
については、眼球虹彩で光線のケラレがなく眼球の網膜
まで達していることが重要であり、元々注視点以外の周
辺部の網膜上においては解像力がないので、注視してい
ない方向の収差はそれほど補正されている必要はない。
The information receiving characteristic of the human visual field has excellent resolution and color sensation only within a very small angle on the visual axis of the eyeball facing the gazing direction (Technical Society of Television Engineers). Report VVI 47-3 p.6
0). That is, the aberration of the eyepiece optical system may be corrected so that the resolving power in the direction in which the eyeball rotates and gazes is not impaired. Furthermore, for the observation image in the direction not gazed, it is important that there is no vignetting of the light rays in the eye iris and that it reaches the retina of the eyeball, so there is originally no resolution on the retina in the peripheral area other than the gazing point. , Aberrations in the direction not being watched do not need to be corrected so much.

【0012】接眼光学系の射出瞳を大きく設定し、その
瞳径内で収差補正を行ってもよいが、大きな瞳径内で収
差補正を行うことには非常な困難が伴い、現実的ではな
い。そこで、本発明の重要な2つの手段について以下に
説明する。
Although the exit pupil of the eyepiece optical system may be set large and the aberration correction may be performed within the pupil diameter, it is not practical because it is extremely difficult to perform the aberration correction within the large pupil diameter. . Therefore, two important means of the present invention will be described below.

【0013】まず、接眼光学系の射出瞳位置と眼球の虹
彩位置との関係を、図5のように、接眼光学系の射出瞳
位置と観察者の眼球の回転中心とを一致させるように配
置することが重要である。この配置をとることによっ
て、観察者が注視している方向の観察像を形成する光束
は、通常の明るさにおける虹彩径2〜4mmφの部分だ
けになる。つまり、眼球が回転してどの方向を注視して
いようと、回転中心と接眼光学系の射出瞳位置を一致さ
せておくと、最も解像力の必要とされる注視方向の解像
力は、この2〜4mmφの射出瞳径を通過する光束だけ
に対して収差補正を行っておけば、高いままで維持され
る。このような配置をとることによって、高い解像力を
得るための収差補正が比較的容易に実現できる。この様
子を図7を用いて説明する。
First, the relationship between the exit pupil position of the eyepiece optical system and the iris position of the eyeball is arranged so that the exit pupil position of the eyepiece optical system and the center of rotation of the observer's eyeball coincide with each other, as shown in FIG. It is important to. By adopting this arrangement, the luminous flux forming the observation image in the direction in which the observer is gazing becomes only the portion having the iris diameter of 2 to 4 mmφ at normal brightness. That is, no matter which direction the eyeball rotates and gaze, if the center of rotation and the exit pupil position of the eyepiece optical system are matched, the resolving power in the gazing direction that requires the most resolving power is 2 to 4 mmφ. If the aberration correction is performed only on the light flux that passes through the exit pupil diameter of, the value remains high. With such an arrangement, aberration correction for obtaining high resolution can be realized relatively easily. This situation will be described with reference to FIG.

【0014】図7は、接眼光学系の射出瞳位置を眼球の
回転中心に一致させた場合の様子を示すもので、同図
(a)は観察画角の中心を注視している状態であり、注
視点周辺は、「光軸側ビネット光束」、すなわち、接眼
光学系の射出瞳径外の光軸に近い側を通る収差補正の必
要のないの光束によって観察している。同図(b)は、
図中の上の方向を注視している状態であり、注視点は、
「収差補正の必要な射出瞳径内の光束」で観察してい
る。また、注視点周辺の画像は、同図(a)と同様に、
「光軸側ビネット光束」で観察している。
FIG. 7 shows a state in which the exit pupil position of the eyepiece optical system is made to coincide with the center of rotation of the eyeball. FIG. 7A shows a state in which the center of the observation angle of view is focused. The vicinity of the gazing point is observed by an “optical-axis-side vignette light beam”, that is, a light beam that does not require aberration correction and passes through a side near the optical axis outside the exit pupil diameter of the eyepiece optical system. The figure (b) is
It is a state of gazing at the upper direction in the figure, and the gazing point is
The observation is made with "a light beam within the exit pupil diameter that requires aberration correction". In addition, the image around the gazing point is similar to that of FIG.
It is observed with "optical axis side vignette light flux".

【0015】図7から明らかなように、注視方向観察画
像の解像力を決定する瞳径は、この収差補正の必要な射
出瞳径のみで済むことが分かる。
As is apparent from FIG. 7, the pupil diameter that determines the resolving power of the gaze direction observation image is only the exit pupil diameter that requires this aberration correction.

【0016】次に、本発明においては、眼球の回転中心
と一致させた接眼光学系の射出瞳位置と共役な位置にな
るリレー光学系の瞳位置近傍に、注視点の観察光路とそ
の周辺画像の観察光路とを分割する光路分割手段を配置
することが重要である。この光路分割手段により、解像
力の最も必要とする注視点とほとんど解像力の必要とし
ない注視点周辺の周辺画像とを、観察者の眼球がどこを
向いていようが関係なく、分割することが可能となる。
Next, in the present invention, the observation optical path of the gazing point and its peripheral image are provided near the pupil position of the relay optical system which is a position conjugate with the exit pupil position of the eyepiece optical system which coincides with the center of rotation of the eyeball. It is important to dispose an optical path splitting unit that splits the observation optical path of With this optical path dividing means, it is possible to divide the gazing point that requires the most resolving power and the peripheral image around the gazing point that hardly requires the resolving power, regardless of where the observer's eyeballs face. Become.

【0017】光路分割手段として、接眼光学系の射出瞳
位置と共役な位置になるリレー光学系の瞳位置近傍に、
例えば、穴のあいた穴空き鏡等を配置すると、解像力を
必要とする注視点付近の観察画像と解像力をさほど必要
としない注視点周辺の周辺画像とを効率よく分割するこ
とができる。
As an optical path dividing means, in the vicinity of the pupil position of the relay optical system which is a position conjugate with the exit pupil position of the eyepiece optical system,
For example, by disposing a perforated mirror or the like having a hole, it is possible to efficiently divide an observation image near the gazing point that requires resolving power and a peripheral image around the gazing point that does not require much resolving power.

【0018】このようにして分割された光路の光学系の
それぞれを、以上に従うように特徴付けて構成すること
によって、広い画角に対して適切な画像を観察者に提供
することができる。
By structuring and configuring each of the optical systems of the optical paths divided in this way so as to comply with the above, it is possible to provide the observer with an image suitable for a wide angle of view.

【0019】例えば、1つの光路は小さな射出瞳径に対
して最適化してあり、良好な収差を持つ第1リレー光学
系で構成し、他方は大きな射出瞳径で比較的大きな収差
を持つ第2リレー光学系で構成する。それぞれの光学系
で投影される投影像は、光路分割手段で合成されると、
注視点に関しては、第1リレー光学系で形成された収差
のよく補正された解像力の良い観察画像を提供し、注視
点周辺の画像に対しては、比較的大きな収差を持つ第2
リレー光学系で形成された画像を観察するように構成す
ることができる。
For example, one optical path is optimized for a small exit pupil diameter and is composed of a first relay optical system having a good aberration, and the other is a second relay optical system having a large exit pupil diameter and a relatively large aberration. Consists of a relay optical system. When the projected images projected by each optical system are combined by the optical path splitting means,
Regarding the point of gaze, the observation image formed by the first relay optical system with good correction and good resolution is provided, and for the image around the point of gaze, the second image having a relatively large aberration is provided.
It can be configured to observe the image formed by the relay optics.

【0020】また、前記第1リレー光学系と第2リレー
光学系を同じ光学系で構成し、2次元表示素子の表示密
度や、提示画角を分割することも可能である。
It is also possible to configure the first relay optical system and the second relay optical system with the same optical system to divide the display density of the two-dimensional display element and the presentation angle of view.

【0021】このように構成すると、観察画像を例えば
コンピューターグラフィックス(CG)等で生成する場
合には、大幅な計算時間の節約になる。解像力の必要と
される注視点のみ厳密な計算を行って画像を生成し、解
像力のさほど必要としない注視点周辺のほとんどの領域
の画像を大幅に簡略化して生成することが可能となるか
らである。
With this configuration, when the observation image is generated by, for example, computer graphics (CG) or the like, the calculation time is greatly saved. It is possible to generate an image by performing rigorous calculation only on the gazing point that requires resolution, and to greatly simplify and generate the image of almost the area around the gazing point that does not require much resolution. is there.

【0022】また、観察者の頭部に頭の向いている方向
を検出する手段を配置した場合は、解像力の必要とされ
る注視点の画像を表示する2次元表示素子を小型にする
ことも可能である。一般に、人間の眼球の回転のみで観
察する視野は、観察者頭部に対して30°程度である
(テレビジョン学会技術報告VVI 47−3 p.6
0)。これ以上広い画角を観察する場合には、人間は無
意識に頭を回転して「見たい方向をみる」ことを行って
いる。つまり、解像力の必要とする注視点は30°まで
の観察画角で対応すればよく、30°以上の周辺の方向
を見ようとした場合には、頭を回転したときに始めて視
野中央(30°以下の画角)に再生画像が移動して、視
野に入ってくるのが自然である。
Further, when a means for detecting the direction of the head is arranged on the head of the observer, the two-dimensional display element for displaying the image of the gazing point at which resolving power is required can be downsized. It is possible. In general, the visual field observed only by rotation of the human eyeball is about 30 ° with respect to the observer's head (Technical Report of the Television Society VVI 47-3 p. 6).
0). When observing an angle of view wider than this, humans unconsciously rotate their heads to "look in the desired direction". In other words, the gazing point that requires resolving power may correspond to an observation angle of view up to 30 °, and when trying to see the peripheral direction of 30 ° or more, it is only when the head is rotated that the center of the field of view (30 ° It is natural that the reproduced image moves to the following field of view and enters the field of view.

【0023】上記のような構成をとると、解像力のない
周辺画像の画角を大きくとっても、解像力の必要となる
注視点近傍の画像生成の領域は30°以下でよくなるの
で、画像生成のための計算処理は、例えば90°の画角
の場合には、その面積で考えると、1/9の30°領域
のみでよいということになる。しかし、観察画角は始め
から30°まででよいかという点については、物の有る
無ししか判別できないような解像力の低い注視点周辺の
画像も、観察者に臨場感を与えるために特に重要な要素
となることが上記文献にも記載されており、したがっ
て、観察画角は90°必要になる。
With the above-mentioned configuration, even if the angle of view of the peripheral image having no resolution is large, the image generation region near the gazing point where the resolution is required is 30 ° or less, which is sufficient for image generation. For example, in the case of an angle of view of 90 °, the calculation process requires only a 1/9 30 ° region. However, regarding whether the observation angle of view from the beginning to 30 ° is sufficient, an image around the gazing point with a low resolving power that can be determined only with or without an object is particularly important to give the observer a realistic sensation. It is also described in the above document that it becomes an element, and therefore, an observation angle of view of 90 ° is required.

【0024】[0024]

【実施例】以下、本発明の視覚表示装置の実施例1〜3
について説明する。 実施例1 図1に実施例1の視覚表示装置の水平方向の断面図を示
す。図中、1は観察者瞳位置、2は観察者が正面を観察
しているときの視軸、3は凹面鏡によって構成された接
眼光学系、4はリレー光学系、5はリレー光学系の第1
群、6はリレー光学系の第2群、7はリレー光学系の第
3群、8はリレー光学系の第4群、9、9′は2次元表
示素子、10はハーフミラーである。
EXAMPLES Examples 1 to 3 of the visual display device of the present invention will be described below.
Will be described. Example 1 FIG. 1 is a horizontal sectional view of a visual display device of Example 1. In the figure, 1 is the observer's pupil position, 2 is the visual axis when the observer is observing the front, 3 is an eyepiece optical system composed of a concave mirror, 4 is a relay optical system, and 5 is a relay optical system. 1
A group, 6 is a second group of relay optical systems, 7 is a third group of relay optical systems, 8 is a fourth group of relay optical systems, 9 and 9'are two-dimensional display elements, and 10 is a half mirror.

【0025】座標系を、図示のように、観察者の左右方
向の右から左を正方向とするY軸、観察者の視軸2方向
の眼球側から凹面鏡3側を正方向とするZ軸、上下方向
の上から下を正方向とするX軸と定義する。つまり、図
1は、観察者の右目に本発明の光学系を配置した場合の
観察者上部より見た図となっている。
As shown in the figure, the coordinate system has a Y axis whose right to left in the observer's left-right direction is a positive direction, and a Z axis whose eyeball side in the observer's visual axis 2 direction is a concave mirror 3 side is a positive direction. , Is defined as the X axis with the positive direction from the top to the bottom in the vertical direction. That is, FIG. 1 is a view seen from the upper part of the observer when the optical system of the present invention is arranged in the right eye of the observer.

【0026】以下、この光学系の構成パラメータを示す
が、面番号は射出瞳1位置から2次元表示素子9へ向か
う逆追跡の面番号として示してある。
The constituent parameters of this optical system are shown below, and the surface number is shown as the surface number for the backward tracking from the position of the exit pupil 1 toward the two-dimensional display element 9.

【0027】各面の偏心量と傾き角は、凹面鏡3(面
番:2)については、Y軸方向への偏心量のみが与えら
れ、その頂点が射出瞳1中心を通る視軸2(Z軸方向)
からのY軸方向への偏心距離であり、リレー光学系4の
第1群5(面番号:3、4)については、各面の頂点の
射出瞳1中心からのY軸正方向及びZ軸正方向への偏心
量と、その面の頂点を通る中心軸のZ軸方向からの傾き
角が与えられている。面の中心軸の傾き角は、Z軸正方
向からY軸正方向へ向かう回転角(図では、反時計方
向)を正方向の角度として与えられる。リレー光学系4
の第2群6については、その第1面(面番号:5)の頂
点位置が第1群5の各面と同様に与えられ、その頂点を
通る中心軸が光軸になり、その光軸の傾き角が同様に与
えられる。リレー光学系4の第3群7については、その
第1面(面番号:8)の偏心量と傾き角は、その面の頂
点を通る中心軸(光軸)のその前の面の光軸に直角な方
向への偏心量(便宜上、Yで与えてある。)とその光軸
に対する傾き角で与えられる。偏心量と傾き角の表示の
ない面(面番号:6〜7、9〜12)は、その前の面と
同軸であることを表す。リレー光学系4の第4群8は、
リレー光学系4の瞳位置近傍に配置したハーフミラー1
0(面番号:14)で光路を分岐された注視点周辺の周
辺画像を表示するリレー光学系の一部を構成するもので
あり、ハーフミラー10及び第4群8についても、各面
の偏心量と傾き角は、第3群7と同様に与えられる。さ
らに、第3群7、第4群8の射出側(実際には、入射
側)に配置される2次元表示素子9、9′の偏心量と傾
き角も、その中心のその前の面(面番:12、16)の
光軸に直角な方向への偏心量(便宜上、Yで与えてあ
る。)とその中心を通る法線の光軸に対する傾き角で与
えられる。
Regarding the eccentricity amount and the tilt angle of each surface, only the eccentricity amount in the Y-axis direction is given for the concave mirror 3 (surface number: 2), and its apex passes through the center of the exit pupil 1 and the visual axis 2 (Z Axial direction)
Is the eccentric distance in the Y-axis direction from the center. For the first group 5 (surface numbers: 3 and 4) of the relay optical system 4, the Y-axis positive direction from the center of the exit pupil 1 at the apex of each surface and the Z-axis. The amount of eccentricity in the positive direction and the tilt angle of the central axis passing through the apex of the surface from the Z-axis direction are given. The inclination angle of the central axis of the surface is given as a positive angle which is a rotation angle (counterclockwise in the figure) from the Z-axis positive direction to the Y-axis positive direction. Relay optical system 4
For the second group 6 of, the vertex position of the first surface (surface number: 5) is given in the same manner as each surface of the first group 5, and the central axis passing through the vertex becomes the optical axis, and the optical axis The tilt angle of is similarly given. Regarding the third group 7 of the relay optical system 4, the eccentricity amount and the tilt angle of the first surface (surface number: 8) are the optical axis of the surface before the central axis (optical axis) passing through the apex of the surface. Is given by the amount of eccentricity in the direction orthogonal to (for convenience, given as Y) and the tilt angle with respect to the optical axis. The surface (surface number: 6 to 7, 9 to 12) without displaying the eccentricity amount and the tilt angle indicates that the surface is coaxial with the surface before it. The fourth group 8 of the relay optical system 4 includes
Half mirror 1 arranged near the pupil position of the relay optical system 4.
0 (surface number: 14) constitutes a part of a relay optical system that displays a peripheral image around the gazing point whose optical path is branched. The half mirror 10 and the fourth group 8 are also eccentric to each surface. The amount and the tilt angle are given in the same manner as the third group 7. Further, the eccentricity amount and the tilt angle of the two-dimensional display elements 9 and 9'arranged on the exit side (actually, the entrance side) of the third group 7 and the fourth group 8 are also the front surface ( Surface number: 12, 16) is given by the amount of eccentricity in the direction perpendicular to the optical axis (for convenience, given as Y) and the inclination angle of the normal line passing through the center with respect to the optical axis.

【0028】また、各面の非球面形状は、座標系を図示
のようにとり、各面の近軸曲率半径を、Y−Z面(紙
面)に垂直な面内での曲率半径をRx 、Y−Z面内での
曲率半径をRy とすると、次の式で表される。 Z =[( X2/Rx )+ (Y2/Ry ) ]/[1+{ 1-(1+Kx ) ( X2/Rx 2) -(1+Ky ) ( Y2/Ry 2)}1/2 ] +AR[ (1-AP) X2+( 1+AP) Y2 2 +BR[ (1-BP) X2+( 1+BP) Y2 3 … ここで、Kx はX方向の円錐係数、Ky はY方向の円錐
係数、AR、BRはそれぞれ回転対称な4次、6次の非
球面係数、AP、BPはそれぞれ非対称な4次、6次の
非球面係数である。
As for the aspherical shape of each surface, the coordinate system is set as shown in the figure, and the paraxial radius of curvature of each surface is Rx , the radius of curvature in the plane perpendicular to the YZ plane (paper surface), When the radius of curvature in the YZ plane is R y , it is expressed by the following equation. Z = [(X 2 / R x) + (Y 2 / R y)] / [1+ {1- (1 + K x) (X 2 / R x 2) - (1 + K y) (Y 2 / R y 2 )} 1/2 ] + AR [(1-AP) X 2 + (1 + AP) Y 2 ] 2 + BR [(1-BP) X 2 + (1 + BP) Y 2 ] 3 … here Where K x is the conical coefficient in the X direction, K y is the conical coefficient in the Y direction, AR and BR are rotationally symmetric fourth-order and sixth-order aspherical coefficients, and AP and BP are asymmetric fourth-order and sixth-order, respectively. Is the aspherical coefficient of.

【0029】また、面間隔は、瞳1と凹面鏡3の間につ
いては、瞳1中心と凹面鏡3頂点間のZ軸方向の間隔、
リレー光学系4の第2群6の第1面からその像面(2次
元表示素子9)に到る間隔は、光軸に沿う間隔で示して
ある。リレー光学系4の第2群6から第3群7について
は、面の曲率半径をr1 〜ri で、面間隔をd1 〜di
で、d線の屈折率をn1 〜ni で、アッベ数をν1 〜ν
i で示す。また、リレー光学系4の第2群6の最終面
(面番:7)ら第4群8の像面(2次元表示素子9′)
に到る間隔は、光軸に沿う間隔で示してあり、面の曲率
半径はr4'〜r6'で、面間隔はd3'〜d6'で、d線の屈
折率はn3'で、アッベ数はν3'で示す。
The surface spacing is the distance between the center of the pupil 1 and the vertex of the concave mirror 3 in the Z-axis direction between the pupil 1 and the concave mirror 3.
The distance from the first surface of the second group 6 of the relay optical system 4 to its image plane (two-dimensional display element 9) is shown as the distance along the optical axis. Regarding the second group 6 to the third group 7 of the relay optical system 4, the radius of curvature of the surface is r 1 to r i and the surface spacing is d 1 to d i.
In the refractive index of the d line with n 1 ~n i, an Abbe number ν 1
Denote by i . Further, from the last surface (surface number: 7) of the second group 6 of the relay optical system 4 to the image surface of the fourth group 8 (two-dimensional display element 9 ').
Spacing throughout, the is shown at intervals along the optical axis, the curvature radius of the surface at r 4 '~r 6', the interplanar spacing in d 3 'to d 6', the refractive index of the d line n 3 And the Abbe number is ν 3 .

【0030】 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(1) ∞(瞳) 47.010 2(3)Ry -71.040 0 Y:-29.891 Rx -53.671 Ky 0.059148 Kx -0.136469 AR 0.360349 ×10-7 BR 0.513037 ×10-12 AP -0.648988 BP -0.313565 3(5)Ry -53.284 0 n =1.554618 ν = 64.3 Rx -39.696 Y:-50.331 -7.811° Ky 1.206766 Z: 25.359 Kx 0.766839 AR -0.134492 ×10-6 BR 0 AP -0.172095 ×10+1 BP 0 4 Ry -42.641 0 Y:-38.199 40.344° Rx -36.603 Z: 23.012 Ky 0.399124 Kx 2.956479 AR 0.219886 ×10-6 BR 0 AP 0.134389 ×10+1 BP 0 5(r1 ) -32.003 (d1 ) -2 n1=1.7466 ν1= 36.2 Y:-46.509 24.174° Z: 7.7456 6(r2 ) -13.011 (d2 ) -13.735 n2=1.5540 ν2= 63.7 7(r3 ) 34.716 (d3 ) -20.957 8(r4 ) -171.983 (d4 ) -2 n3=1.75458 ν3= 27.6 Y: -5.912 2.250° 9(r5 ) -28.012 (d5 ) -5.638 n4=1.49815 ν4= 69.2 10(r6 ) 42.038 (d6 ) -0.5 11(r7 ) -35.519 (d7 ) -11.257 n5=1.64916 ν5= 55.1 12(r8 ) 99.244 (d8 ) -27.944 13(9) ∞(像面) Y: -5.140 19.829° また、ハーフミラー10で分割される周辺画像用第2光
学系は以下の通りである。
Surface number Radius of curvature Interval Refractive index Abbe number (Decentering amount) (Inclination angle) 1 (1) ∞ (Pupil) 47.010 2 (3) R y -71.040 0 Y: -29.891 R x -53.671 K y 0.059148 K x -0.136469 AR 0.360349 × 10 -7 BR 0.513037 × 10 -12 AP -0.648988 BP -0.313565 3 (5) R y -53.284 0 n = 1.554618 ν = 64.3 R x -39.696 Y: -50.331 -7.811 ° K y 1.206766 Z: 25.359 K x 0.766839 AR -0.134492 × 10 -6 BR 0 AP -0.172095 × 10 +1 BP 0 4 R y -42.641 0 Y: -38.199 40.344 ° R x -36.603 Z: 23.012 K y 0.399124 K x 2.956479 AR 0.219886 × 10 -6 BR 0 AP 0.134389 × 10 +1 BP 05 (r 1 ) -32.003 (d 1 ) -2 n 1 = 1.7466 ν 1 = 36.2 Y: -46.509 24.174 ° Z: 7.7456 6 (r 2 ) -13.011 (d 2 ) -13.735 n 2 = 1.5540 ν 2 = 63.7 7 (r 3 ) 34.716 (d 3 ) -20.957 8 (r 4 ) -171.983 (d 4 ) -2 n 3 = 1.75458 ν 3 = 27.6 Y : -5.912 2.250 ° 9 (r 5 )- 28.012 (d 5 ) -5.638 n 4 = 1.49815 ν 4 = 69.2 10 (r 6 ) 42.038 (d 6 ) -0.5 11 (r 7 ) -35.519 (d 7 ) -11.257 n 5 = 1.64916 ν 5 = 55.1 12 ( r 8 ) 99.244 (d 8 ) -27.944 13 (9) ∞ (image plane) Y: -5.140 19.829 ° The second optical system for peripheral image divided by the half mirror 10 is as follows.

【0031】 7(r3 ) 34.716 (d3') -7.000 14(r4') ∞ (d4') 15.000 -40.000° 15(r5') 98.197 (d5') 3.347 n3' =1.64916 ν3' = 55.1 Y: -2.386 16(r6') -43.427 (d6') 41.569 17(9′) ∞(像面) Y:-10.338 -21.088° この実施例は、左右画角45°、上下画角34.65°
で、瞳径4mmφである。
7 (r 3 ) 34.716 (d 3 ' ) -7.000 14 (r 4' ) ∞ (d 4 ' ) 15.000 -40.000 ° 15 (r 5' ) 98.197 (d 5 ' ) 3.347 n 3' = 1.64916 ν 3 ' = 55.1 Y: -2.386 16 (r 6' ) -43.427 (d 6 ' ) 41.569 17 (9') ∞ (image plane) Y: -10.338 -21.088 ° In this embodiment, the horizontal angle of view is 45 °. , Vertical angle of view 34.65 °
Therefore, the pupil diameter is 4 mmφ.

【0032】この実施例の接眼光学系の射出瞳位置は、
観察者の眼球の回転中心と一致するように配置されてお
り、その特徴は、光路分割手段10に(面番号:14)
にハーフミラーを使用していることである。ハーフミラ
ー10を使用することによって、注視点方向の観察像と
注視点周辺の観察像が重なって観察されることになり、
光路の違いによる観察像の境目が目立たなくなる。
The exit pupil position of the eyepiece optical system of this embodiment is
It is arranged so as to coincide with the center of rotation of the observer's eyeball, and its characteristic is that the optical path splitting means 10 (surface number: 14)
Is to use a half mirror. By using the half mirror 10, the observation image in the gazing point direction and the observation image in the vicinity of the gazing point are observed in an overlapping manner,
The boundary of the observed image becomes inconspicuous due to the difference in the optical path.

【0033】実施例2 図2に実施例2の視覚表示装置の左右垂直方向の断面
図、図3にその前後垂直方向の断面図を示す。この実施
例は、接眼光学系をプリズムと凹面反射鏡で構成した例
である。光路は折り曲げて配置されているが、偏心した
面は用いていない。
Embodiment 2 FIG. 2 shows a cross-sectional view of the visual display device of Embodiment 2 in the left-right vertical direction, and FIG. 3 shows a cross-sectional view in the front-rear vertical direction. In this embodiment, the eyepiece optical system is composed of a prism and a concave reflecting mirror. The optical path is bent, but the eccentric surface is not used.

【0034】図2、3中、1は観察者瞳位置、2は観察
者が正面を観察しているときの視軸、30は凹面鏡31
とビームスプリッタープリズム32によって構成された
接眼光学系、40はリレー光学系、50は注視点用のリ
レー光学系、60は注視点周辺の周辺画像用リレー光学
系、9、9′は2次元表示素子、11は中心部のみ反射
面を配置した接合プリズム、12は光路折り曲げ用プリ
ズムである。
2 and 3, 1 is the observer's pupil position, 2 is the visual axis when the observer is observing the front, 30 is a concave mirror 31.
Eyepiece optical system composed of the beam splitter prism 32, 40 is a relay optical system, 50 is a relay optical system for the gazing point, 60 is a relay optical system for peripheral images around the gazing point, and 9 and 9'are two-dimensional display. Reference numeral 11 is an element, 11 is a cemented prism in which a reflecting surface is arranged only in the central portion, and 12 is an optical path bending prism.

【0035】座標系は、実施例1と異なり、観察者の左
右方向の右から左を正方向とするX軸、観察者の視軸2
方向の眼球側から接眼光学系30側を正方向とするZ
軸、上下方向の下から上を正方向とするY軸と定義す
る。つまり、図2は、観察者の左目に本発明の光学系を
配置した場合の観察者正面より見た図となっており、図
3は、観察者左目に本発明の光学系を配置した場合の観
察者右側より見た図となっている。
The coordinate system differs from that of the first embodiment in that the observer's right-left direction has a positive direction from right to left, the X axis, and the observer's visual axis 2.
Z in which the eyepiece optical system 30 side is the positive direction from the eyeball side in the direction
The axis is defined as the Y-axis with the positive direction from the bottom to the top. That is, FIG. 2 is a view as seen from the front of the observer when the optical system of the present invention is arranged in the left eye of the observer, and FIG. 3 is a case where the optical system of the present invention is arranged in the left eye of the observer. The view is from the right side of the observer.

【0036】以下、この光学系の構成パラメータを示す
が、面番号は、実施例1と同様に、射出瞳1位置から2
次元表示素子9へ向かう逆追跡の面番号として示してあ
る。以下において、各反射面又はレンズ面の曲率半径を
1 〜ri で、面間隔をd1 〜di で、d線の屈折率を
1 〜ni で、アッベ数をν1 〜νi で示す。
The constituent parameters of this optical system are shown below. The surface numbers are from the position of the exit pupil 1 to 2 as in the first embodiment.
It is shown as the surface number of the backward trace toward the dimensional display element 9. In the following, the radius of curvature of each reflective surface or lens surface at r 1 ~r i, the surface interval d 1 to d i, the refractive index of the d line with n 1 ~n i, an Abbe number ν 1Denote by i .

【0037】 面番号 曲率半径 間隔 屈折率 アッベ数 1(1) ∞(瞳) 22.000 2(r1 ) ∞ (d1 ) 12.000 n1 =1.516 ν1 =64.1 3(r2 ) ∞ (d2 ) 14.500 n2 =1.516 ν2 =64.1 4(r3 ) 84.769 (d3 ) 36.500 n3 =1.516 ν3 =64.1 5(r4 ) ∞ (d4 ) 10.000 n4 =1.516 ν4 =64.1 6(r5 ) ∞ (d5 ) 4.000 7(r6 ) -14.300 (d6 ) 10.000 n5 =1.744 ν5 =29.9 8(r7 ) -16.898 (d7 ) 39.025 9(r8 ) 20.071 (d8 ) 10.000 n6 =1.711 ν6 =38.1 10(r9 ) -14.168 (d9 ) 1.000 n7 =1.762 ν7 =26.6 11(r10)-112.298 (d10) 1.000 12(r11) ∞ (d11) 18.000 n8 =1.516 ν8 =64.1 13(r12) ∞ (d12) 1.000 14(r13) -9.354 (d13) 1.000 n9 =1.762 ν9 =26.6 15(r14) 31.570 (d14) 4.472 n10=1.606 ν10=60.7 16(r15) -12.138 (d15) 9.270 17(r16) 34.535 (d16) 3.145 n11=1.762 ν11=26.6 18(r17) -84.923 (d17) 24.939 19(9) ∞(像面) この実施例においては、光路分割手段は面番号12から
13の間の接合プリズム11で行っている。また、この
実施例の場合は、注視点用光路と注視点周辺の光路の光
学系は同一になっている。
Surface number Curvature radius Spacing Refractive index Abbe number 1 (1) ∞ (pupil) 22.000 2 (r 1 ) ∞ (d 1 ) 12.000 n 1 = 1.516 ν 1 = 64.1 3 (r 2 ) ∞ (d 2 ) 14.500 n 2 = 1.516 ν 2 = 64.1 4 (r 3) 84.769 (d 3) 36.500 n 3 = 1.516 ν 3 = 64.1 5 (r 4) ∞ (d 4) 10.000 n 4 = 1.516 ν 4 = 64.1 6 (r 5 ) ∞ (d 5 ) 4.000 7 (r 6 ) -14.300 (d 6 ) 10.000 n 5 = 1.744 ν 5 = 29.9 8 (r 7 ) -16.898 (d 7 ) 39.025 9 (r 8 ) 20.071 (d 8 ) 10.000 n 6 = 1.711 ν 6 = 38.1 10 (r 9 ) -14.168 (d 9 ) 1.000 n 7 = 1.762 ν 7 = 26.6 11 (r 10 ) -112.298 (d 10 ) 1.000 12 (r 11 ) ∞ (d 11 ) ) 18.000 n 8 = 1.516 ν 8 = 64.1 13 (r 12 ) ∞ (d 12 ) 1.000 14 (r 13 ) -9.354 (d 13 ) 1.000 n 9 = 1.762 ν 9 = 26.6 15 (r 14 ) 31.570 (d 14 ) ) 4.472 n 10 = 1.606 ν 10 = 60.7 16 (r 15 ) -12.138 (d 15 ) 9 .270 17 (r 16 ) 34.535 (d 16 ) 3.145 n 11 = 1.762 ν 11 = 26.6 18 (r 17 ) -84.923 (d 17 ) 24.939 19 (9) ∞ (image plane) In this embodiment, the optical path division is performed. The means is performed by the cemented prism 11 having surface numbers 12 to 13. Further, in the case of this embodiment, the optical system for the gazing point and the optical system around the gazing point are the same.

【0038】この実施例は、左右画角30°、上下画角
21°で、瞳径8mmφである。
In this embodiment, the horizontal angle of view is 30 °, the vertical angle of view is 21 °, and the pupil diameter is 8 mmφ.

【0039】なお、図2、3では、プリズム12で光路
を反射させているが、光路の折り曲げ方は、本実施例に
よらず、適宜折り曲げることが可能なことは周知の事実
であり、また、光路分割手段は、中心部のみ反射面を配
置した接合プリズム11によっているが、穴空きミラ
ー、ハーフミラー等でも可能である。
Although the optical path is reflected by the prism 12 in FIGS. 2 and 3, it is a well-known fact that the optical path can be bent appropriately regardless of the present embodiment, and The optical path splitting means is based on the cemented prism 11 in which the reflecting surface is arranged only in the central portion, but it is also possible to use a perforated mirror, a half mirror, or the like.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
によると、小型でありながら、注視点近傍の特に解像力
を必要とする部分のみ高い解像力の画像を提供し、注視
していない周辺の画像はケラレることなく観察できるよ
うにして、広い提示画角で、周辺の画角まで鮮明に観察
できる小型の頭部装着型表示装置を提供することができ
る。
As is apparent from the above description, according to the present invention, it is possible to provide an image of high resolution only in a portion near the gazing point, which particularly needs a resolution, while being small in size, and It is possible to provide a small head-mounted display device that allows an image to be observed without vignetting and allows a wide viewing angle of view to be clearly observed up to peripheral angles of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の視覚表示装置の実施例1の水平方向の
断面図である。
FIG. 1 is a horizontal cross-sectional view of a first embodiment of a visual display device of the present invention.

【図2】実施例2の視覚表示装置の左右垂直方向の断面
図である。
FIG. 2 is a cross-sectional view of a visual display device according to a second embodiment in the left-right vertical direction.

【図3】実施例2の視覚表示装置の前後垂直方向の断面
図である。
FIG. 3 is a cross-sectional view of a visual display device according to a second embodiment in a front-rear vertical direction.

【図4】接眼光学系の射出瞳位置と光彩位置を一致させ
る場合の説明図である。
FIG. 4 is an explanatory diagram in the case where the exit pupil position and the iris position of the eyepiece optical system are matched.

【図5】接眼光学系の射出瞳位置を眼球回転中心と一致
させる場合の説明図である。
FIG. 5 is an explanatory diagram in a case where the exit pupil position of the eyepiece optical system is matched with the eyeball rotation center.

【図6】接眼光学系の射出瞳位置を眼球回転中心と光彩
位置の中間に配置する場合の説明図である。
FIG. 6 is an explanatory diagram in the case where the exit pupil position of the eyepiece optical system is arranged in the middle of the eyeball rotation center and the iris position.

【図7】本発明による必要射出瞳径と収差補正の必要な
射出瞳径を説明するための図である。
FIG. 7 is a diagram for explaining a required exit pupil diameter and an exit pupil diameter required for aberration correction according to the present invention.

【符号の説明】[Explanation of symbols]

1…観察者瞳位置 2…観察者が正面を観察しているときの視軸 3…凹面鏡(接眼光学系) 4…リレー光学系 5…リレー光学系の第1群 6…リレー光学系の第2群 7…リレー光学系の第3群 8…リレー光学系の第4群 9、9′…2次元表示素子 10…ハーフミラー 11…中心部のみ反射面を配置した接合プリズム 12…光路折り曲げ用プリズム 30…接眼光学系 31…凹面鏡 32…ビームスプリッタープリズム 40…リレー光学系 50…注視点用のリレー光学系 60…周辺画像用リレー光学系 1 ... Observer pupil position 2 ... Visual axis when observer observes front 3 ... Concave mirror (eyepiece optical system) 4 ... Relay optical system 5 ... First group of relay optical system 6 ... First of relay optical system 2nd group 7 ... 3rd group of relay optical system 8 ... 4th group of relay optical system 9, 9 '... Two-dimensional display element 10 ... Half mirror 11 ... Bonding prism 12 with a reflecting surface only in the central part 12 ... For optical path bending Prism 30 ... Eyepiece optical system 31 ... Concave mirror 32 ... Beam splitter prism 40 ... Relay optical system 50 ... Gaze point relay optical system 60 ... Peripheral image relay optical system

【手続補正書】[Procedure amendment]

【提出日】平成5年6月23日[Submission date] June 23, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Figure 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 観察像を表示する2次元表示素子と、該
2次元表示素子の実像を投影するリレー光学系と、リレ
ー光学系により投影された1次像を空中に虚像として拡
大投影する接眼光学系とからなる視覚表示装置におい
て、前記接眼光学系の射出瞳を観察者の眼球回旋点近傍
に配置し、接眼光学系の射出瞳位置と共役なリレー光学
系の瞳位置近傍に光路を分割する手段を配置したことを
特徴とする視覚表示装置。
1. A two-dimensional display element for displaying an observation image, a relay optical system for projecting a real image of the two-dimensional display element, and an eyepiece for magnifying and projecting a primary image projected by the relay optical system into the air as a virtual image. In a visual display device including an optical system, the exit pupil of the eyepiece optical system is arranged near the eyeball turning point of the observer, and the optical path is divided near the exit pupil position of the eyepiece optical system and the pupil position of the relay optical system which is conjugate. A visual display device characterized by arranging means for performing.
JP10136993A 1993-04-27 1993-04-27 Visual display device Expired - Fee Related JP3212179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136993A JP3212179B2 (en) 1993-04-27 1993-04-27 Visual display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136993A JP3212179B2 (en) 1993-04-27 1993-04-27 Visual display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000118016A Division JP2000338446A (en) 2000-01-01 2000-04-19 Visual display device

Publications (2)

Publication Number Publication Date
JPH06308422A true JPH06308422A (en) 1994-11-04
JP3212179B2 JP3212179B2 (en) 2001-09-25

Family

ID=14298912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136993A Expired - Fee Related JP3212179B2 (en) 1993-04-27 1993-04-27 Visual display device

Country Status (1)

Country Link
JP (1) JP3212179B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104209A (en) * 1993-10-05 1995-04-21 Canon Inc Display device
JP2004538501A (en) * 2001-06-06 2004-12-24 ディートリッヒ クラウス Apparatus and method for high-resolution laser retinal projection superimposed on image content of field of view
JP2010169916A (en) * 2009-01-23 2010-08-05 Konica Minolta Holdings Inc Video display device and head-mount display
CN107918208A (en) * 2017-09-06 2018-04-17 塔普翊海(上海)智能科技有限公司 Field stitching formula head-wearing display device
WO2024062812A1 (en) 2022-09-21 2024-03-28 Sony Group Corporation Image display device and light guide plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104209A (en) * 1993-10-05 1995-04-21 Canon Inc Display device
JP2004538501A (en) * 2001-06-06 2004-12-24 ディートリッヒ クラウス Apparatus and method for high-resolution laser retinal projection superimposed on image content of field of view
JP2010169916A (en) * 2009-01-23 2010-08-05 Konica Minolta Holdings Inc Video display device and head-mount display
CN107918208A (en) * 2017-09-06 2018-04-17 塔普翊海(上海)智能科技有限公司 Field stitching formula head-wearing display device
CN107918208B (en) * 2017-09-06 2023-10-03 塔普翊海(上海)智能科技有限公司 Visual field spliced head-mounted display device
WO2024062812A1 (en) 2022-09-21 2024-03-28 Sony Group Corporation Image display device and light guide plate

Also Published As

Publication number Publication date
JP3212179B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3155360B2 (en) Visual display device
US5751494A (en) Image display apparatus
US5940218A (en) Optical system and optical apparatus
US6008778A (en) Visual display apparatus
JP3392929B2 (en) Video display device
JP3212203B2 (en) Visual display device
USRE37579E1 (en) Image display apparatus comprising an internally reflecting ocular optical system
US6130784A (en) Resolution enhancing image display apparatus
US5745295A (en) Image display apparatus
EP0660155A1 (en) Image display apparatus
US6757107B2 (en) Optical path splitting element and image display apparatus using the same
US6464361B2 (en) Image display apparatus having three-dimensionally decentered optical path
JP3212204B2 (en) Visual display device
JP3245472B2 (en) Head mounted display
JPH06308422A (en) Visual display device
JP3346641B2 (en) Video display device
JP3346640B2 (en) Video display device
JP3542214B2 (en) Image display device
JP3340118B2 (en) Eccentric optical system and visual display device using it
JP3394758B2 (en) Video display device
JP2000338446A (en) Visual display device
JPH0983908A (en) Picture display device
JP3607736B2 (en) Image display device
JPH09166760A (en) Picture display device
JP2000352690A (en) Visual display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010626

LAPS Cancellation because of no payment of annual fees