[go: up one dir, main page]

JPH06294981A - Organic polymer nonlinear optical material - Google Patents

Organic polymer nonlinear optical material

Info

Publication number
JPH06294981A
JPH06294981A JP8303693A JP8303693A JPH06294981A JP H06294981 A JPH06294981 A JP H06294981A JP 8303693 A JP8303693 A JP 8303693A JP 8303693 A JP8303693 A JP 8303693A JP H06294981 A JPH06294981 A JP H06294981A
Authority
JP
Japan
Prior art keywords
nonlinear optical
optical material
group
styrene
thienyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8303693A
Other languages
Japanese (ja)
Other versions
JP2862455B2 (en
Inventor
Naoko Arai
尚子 荒井
Yoshiyuki Tougaki
良之 東垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8303693A priority Critical patent/JP2862455B2/en
Publication of JPH06294981A publication Critical patent/JPH06294981A/en
Application granted granted Critical
Publication of JP2862455B2 publication Critical patent/JP2862455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonlinear optical material having high SHG activity and excellent thermal stability by forming a styrene deriv. in which methoxy groups are introduced to 2- and 5-position and a cyano group and thienyl group are introduced to the beta-position. CONSTITUTION:This material is produced from a styrene deriv. in which methoxy groups are introduced to 2- and 5-position and a cyano group and a thienyl group in the beta-position. The org. nonlinear optical material has high melting point as 88 deg.C which is thermally stable, has the absorption edge in a short wavelength region, and shows high SHG activity. By using the org. material having excellent nonlinear properties, transmitting property, and temp. allowance for phase matching conditions, an org. nonlinear optical material having same characteristics as an expensive inorg. nonlinear optical material can be obtd. at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光コンピュータや光通
信などの広範な分野で光制御素子等として用いられる非
線形光学材料に関し、更に詳しくは室温で安定で、光損
傷強度に優れ、かつSHG活性が大きく、結晶性の良好
な有機非線形光学材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material used as an optical control element or the like in a wide range of fields such as optical computers and optical communications. The present invention relates to an organic nonlinear optical material having high activity and good crystallinity.

【0002】[0002]

【従来の技術】非線形光学材料は、光周波数変換素子、
光シャッター、またEO変換器等として従来より実用化
されている。現在、非線形光学材料としてはリン酸二水
素カリウム(KDP)、ニオブ酸リチウム等の無機の強
誘電性結晶が用いられている。しかしながら、最近では
有機結晶の持つ非線形光学定数の大きさ、及び非線形光
学応答の速さ等が注目され、有機二次非線形光学材料を
中心に精力的に開発が進められている。
2. Description of the Related Art Non-linear optical materials are optical frequency conversion elements,
It has been put to practical use as an optical shutter, an EO converter, and the like. At present, inorganic ferroelectric crystals such as potassium dihydrogen phosphate (KDP) and lithium niobate are used as nonlinear optical materials. However, recently, attention has been paid to the magnitude of the nonlinear optical constant of an organic crystal, the speed of the nonlinear optical response, and the like, and vigorous development is being focused on organic second-order nonlinear optical materials.

【0003】二次効果用の有機非線形光学材料としては
2−メチル−4−ニトロアニリン(MNA)、3−メチ
ル−4−ニトロピリジン−オキサイド(POM)等が開
発されており、MNAの二次非線形定数はKDPの50
倍にも達する。
As organic nonlinear optical materials for secondary effects, 2-methyl-4-nitroaniline (MNA), 3-methyl-4-nitropyridine-oxide (POM), etc. have been developed, and secondary materials of MNA have been developed. The nonlinear constant is 50 of KDP
It doubles.

【0004】このように強い非線形効果を示す有機化合
物は、一般にπ電子共役鎖を挟んで電子受容基及び電子
供与基を有していることは広く知られている。また二次
の非線形光学材料は反転対称心のない結晶を構成しなけ
ればならないことも知られている。
It is widely known that an organic compound exhibiting such a strong nonlinear effect generally has an electron accepting group and an electron donating group with a π electron conjugated chain sandwiched therebetween. It is also known that the second-order nonlinear optical material must form a crystal without an inversion symmetry center.

【0005】[0005]

【発明が解決しようとする課題】有機非線形光学材料は
分子一個が光非線形性の起源を担っているので、非対称
中心の分子はSHG(第2次高調波発生)活性を原理的
には有する。SHG活性分子を結晶化して光学素子とし
て利用する場合、結晶全体としてSHG活性を失うこと
にしばしば遭遇する。従って、有機材料が非線形光学素
子として利用できるかどうかは、実際に分子素材を合成
し、結晶化し、光非線形性を評価しなければならない。
Since a single molecule of an organic nonlinear optical material is responsible for the origin of optical nonlinearity, a molecule having an asymmetric center has SHG (second harmonic generation) activity in principle. When the SHG active molecule is crystallized and used as an optical element, it is often encountered that the SHG activity as a whole is lost. Therefore, it is necessary to actually synthesize the molecular material, crystallize it, and evaluate the optical nonlinearity to determine whether the organic material can be used as the nonlinear optical element.

【0006】有機化合物の分子レベルでの光非線形性
(超分子分極率β)は、分子軌道計算から推定すること
ができるが、分子一個の光非線形性を高めるには、長い
共役系に電子供与性と受容性の置換基を導入すればよ
い。例えば、分子レベルで大きな超分子分極率βの値を
持つスチルベン系分子は、代表的な有機非線形光学材料
のひとつであった。しかし、ACSシリーズの文献によ
ると、この種の素材は結晶状態で対称中心を持ち、結晶
としてSHG不活性になる場合が多かった。
The optical non-linearity (supramolecular polarizability β) of an organic compound at the molecular level can be estimated from molecular orbital calculations, but in order to enhance the optical non-linearity of a single molecule, electron donation to a long conjugated system is required. It is only necessary to introduce a substituent having an acceptability and an acceptability. For example, a stilbene-based molecule having a large supramolecular polarizability β at the molecular level was one of the typical organic nonlinear optical materials. However, according to the ACS series literature, this type of material often has a symmetric center in the crystalline state and becomes SHG-inactive as a crystal in many cases.

【0007】波長変換素子としての利用を考えると、分
子状態又は結晶状態での透光性が重要な因子となる。例
えば、スチルベン系材料は可視光領域で光吸収スペクト
ルのピークを示す例が多い。スチルベン骨格は共役系が
長いので、強い電子受容性置換基(ニトロ基等)及び供
与性置換基(ジメチルアミノ基、アミノ基等)を共役系
分子の端に導入すると可視光領域に光吸収を示すと予測
される。従って、電子受容性または供与性の置換基の強
さを弱め、スチルベン骨格における置換基の導入位置を
選び、結晶として中心対称性を持たない分子素材を見い
だすことが課題である。このことは、今回検討したスチ
レン系材料においても同様にいえる。
Considering use as a wavelength conversion element, translucency in a molecular state or a crystalline state is an important factor. For example, stilbene-based materials often exhibit a peak of light absorption spectrum in the visible light region. Since the stilbene skeleton has a long conjugated system, if strong electron-accepting substituents (nitro group, etc.) and donating substituents (dimethylamino group, amino group, etc.) are introduced at the end of the conjugated molecule, light absorption in the visible light region will occur. Expected to show. Therefore, it is a subject to weaken the strength of the electron-accepting or donating substituent, to select the introduction position of the substituent in the stilbene skeleton, and to find a molecular material having no central symmetry as a crystal. The same can be said for the styrene-based material studied this time.

【0008】また、従来の無機非線形光学材料の融点
は、1000℃程度で素子としても熱的に安定である。
しかし、高温成長のため不純物拡散が生じ、光損傷強度
が低い状況がある。他方、有機材料の融点は、一般的に
100℃程度であり、位相整合条件をきめる屈折率の温
度係数が大きく、波長変換素子としての使用温度許容性
が低い傾向がある。
Further, the conventional inorganic nonlinear optical material has a melting point of about 1000 ° C. and is thermally stable even as an element.
However, there is a situation in which impurity diffusion occurs due to the high temperature growth and the optical damage intensity is low. On the other hand, the melting point of the organic material is generally about 100 ° C., the temperature coefficient of the refractive index that determines the phase matching condition is large, and the temperature tolerance of the wavelength conversion element tends to be low.

【0009】そこで、本発明では、高いSHG活性を持
ち、熱安定性の優れた有機非線形光学材料を提供するこ
とを目的とする。
Therefore, it is an object of the present invention to provide an organic nonlinear optical material having high SHG activity and excellent thermal stability.

【0010】[0010]

【課題を解決するための手段】上記目的は、2,5位に
メトキシ基、及びβ位にシアノ基及びチエニル基を導入
したスチレン誘導体からなることを特徴とする有機非線
形光学材料により達成することができる。
The above object is achieved by an organic nonlinear optical material comprising a styrene derivative having a methoxy group at the 2,5 position and a cyano group and a thienyl group at the β position. You can

【0011】スチレン系化合物は、ベンゼン系、ピリジ
ン系非線形光学材料より長いπ電子共役系を特徴として
有している。従って、公知である非線形定数と透光性の
トレードオフの関係を考慮すると、非常に大きな電子受
容性(ニトロ基)及び電子供与性(ジメチルアミノ基、
アミノ基)の置換基を共役系の端に同時に導入すること
を避けることが重要である。電子受容性の置換基として
ニトロ基又はチエニル基をスチレン共役系の中央部付近
に導入した下記構造式(II)で表される(β−シア
ノ)(β′−ニトロ)スチレン、及び(III)で表わ
される(β−シアノ)(β′−2−チエニル)スチレン
の各分子種について、分子軌道計算(PPP法)により
分子一個の光非線形性と極大吸収波長を見積ったとこ
ろ、チエニル基を導入した分子種(III)の方が超分
子分極率βが3倍と大きいため、電子受容性置換基とし
てチエニル基で検討した。電子供与性置換基としては、
メトキシ基を選び、導入する置換基の位置を検討した。
なお、置換基のサイズ、回転的自由度、剛性を考慮し、
置換基の選定理由とした。
Styrene-based compounds are characterized by a π-electron conjugated system longer than benzene-based and pyridine-based nonlinear optical materials. Therefore, in consideration of the known trade-off relationship between the nonlinear constant and the translucency, a very large electron accepting property (nitro group) and electron donating property (dimethylamino group,
It is important to avoid introducing substituents (amino groups) simultaneously at the end of the conjugated system. (Β-Cyano) (β′-nitro) styrene represented by the following structural formula (II), in which a nitro group or a thienyl group as an electron-accepting substituent is introduced near the center of a styrene conjugated system, and (III) For each molecular species of (β-cyano) (β′-2-thienyl) styrene represented by, the optical non-linearity of one molecule and the maximum absorption wavelength were estimated by molecular orbital calculation (PPP method), and a thienyl group was introduced. Since the supramolecular polarizability β of the above-mentioned molecular species (III) was as large as 3 times, it was examined using a thienyl group as an electron-accepting substituent. As the electron-donating substituent,
A methoxy group was selected and the position of the substituent to be introduced was examined.
In addition, considering the size of the substituent, rotational freedom, and rigidity,
The reason for selecting the substituents was used.

【0012】これによって、結晶状態で光学的非線形を
示す上記素材を見いだすに至った。また、上記スチレン
誘導体は、高いSHG活性を持つことから、第2次高調
波発生用材料としても有用である。
This led to the discovery of the above-mentioned material that exhibits optical nonlinearity in the crystalline state. Further, since the styrene derivative has a high SHG activity, it is also useful as a material for second harmonic generation.

【0013】[0013]

【化1】 [Chemical 1]

【0014】[0014]

【化2】 [Chemical 2]

【0015】[0015]

【作用】 下記構造式(I)で表わされる2,5−ジメ
トキシ−(β−シアノ)(β′−2−チエニル)スチレ
ンは、極大吸収波長λmax が382nm(1,4−ジオ
キサン中)である。これは、青色光の波長領域に大きな
吸収を持たず、また、粉末法によるSHG強度は尿素比
で2倍であり、課題解決のための充分な非線形光学特性
を有している。
The 2,5-dimethoxy- (β-cyano) (β′-2-thienyl) styrene represented by the following structural formula (I) has a maximum absorption wavelength λ max of 382 nm (in 1,4-dioxane). is there. This does not have a large absorption in the wavelength region of blue light, and the SHG intensity by the powder method is twice the urea ratio, and it has sufficient non-linear optical characteristics for solving the problem.

【0016】[0016]

【化3】 [Chemical 3]

【0017】[0017]

【実施例】本発明を実施例により更に詳細に説明する。EXAMPLES The present invention will be described in more detail by way of examples.

【0018】本発明に係る、2,5−ジメトキシ−(β
−シアノ)(β′−2−チエニル)スチレンを次のよう
に合成した。
According to the present invention, 2,5-dimethoxy- (β
-Cyano) (β'-2-thienyl) styrene was synthesized as follows.

【0019】2,5−ジメトキシベンズアルデヒド2.
7g(0.016mol)をエタノール150mlに溶
解した後、チオフェン−2−アセトニトリル2.0g
(0.016mol)を加えた。その中に、ナトリウム
エチラート0.7gを溶かしたエタノール溶液10ml
を滴下した。
2,5-dimethoxybenzaldehyde 2.
After dissolving 7 g (0.016 mol) in 150 ml of ethanol, 2.0 g of thiophene-2-acetonitrile
(0.016 mol) was added. 10 ml of ethanol solution in which 0.7 g of sodium ethylate was dissolved
Was dripped.

【0020】この溶液を室温で6時間撹拌した後、生成
した沈澱物をろ過し、メタノール洗浄して、目的とする
前記構造式(I)で表わされる化合物、2,5−ジメト
キシ(β−シアノ)(β′−2−チエニル)スチレンを
得た。
After stirring this solution at room temperature for 6 hours, the formed precipitate was filtered and washed with methanol to obtain the desired compound represented by the structural formula (I), 2,5-dimethoxy (β-cyano). ) (Β'-2-thienyl) styrene was obtained.

【0021】収率は、68%であった。また、極大吸収
波長は、382nm(1,4−ジオキサン中)であり、
融点は、DSCの測定より88℃であった。
The yield was 68%. The maximum absorption wavelength is 382 nm (in 1,4-dioxane),
The melting point was 88 ° C. as measured by DSC.

【0022】これは、MAP(文献;J.L.Ouda
r and R.Hierle,J.Appl.Phy
s.,48(1977)2699)の融点69℃よりも
高い。 次に、得られた微粉末結晶にNd:YAGレー
ザ(波長=1.064μm)を照射すると第2高調波
(SHG)が発生し、入射光の1/2の波長(532n
m)の緑色光が観測された。このSHG強度は尿素比で
2倍と、SHG効率は尿素よりも強いことが確認でき
た。
This is based on MAP (reference: JL Ouda).
r and R. Hierle, J.M. Appl. Phy
s. , 48 (1977) 2699), which is higher than 69 ° C. Next, when the obtained fine powder crystal is irradiated with an Nd: YAG laser (wavelength = 1.064 μm), a second harmonic (SHG) is generated, and the wavelength of half the incident light (532 n) is generated.
m) green light was observed. It was confirmed that this SHG intensity was twice as high as that of urea, and that the SHG efficiency was stronger than that of urea.

【0023】また、ノーマルヘキサンからの再結晶操作
により容易に板状の結晶が得られ、これを種結晶として
単結晶もつくることができた。
Further, a plate crystal was easily obtained by a recrystallization operation from normal hexane, and a single crystal could be obtained by using this as a seed crystal.

【0024】[0024]

【比較例】本発明者らは、チエニル基を持ち、α位のフ
ェニル基の2位又は4位にメトキシ基を導入した下記構
造式(IV)で表わされる2−メトキシ−(β−シア
ノ)(β′−2−チエニル)スチレン、又は下記構造式
(V)で表わされる4−メトキシ−(β−シアノ)
(β′−2−チエニル)スチレン及びなにも導入しない
下記構造式(III)で表わされる(β−シアノ)
(β′−2−チエニル)スチレンを持つ各分子種を合成
し結晶を得た。
COMPARATIVE EXAMPLE The present inventors have a 2-methoxy- (β-cyano) represented by the following structural formula (IV) having a thienyl group and introducing a methoxy group at the 2-position or 4-position of the α-phenyl group. (Β′-2-thienyl) styrene, or 4-methoxy- (β-cyano) represented by the following structural formula (V)
(Β′-2-thienyl) styrene and (β-cyano) represented by the following structural formula (III) in which nothing is introduced.
Crystals were obtained by synthesizing each molecular species having (β'-2-thienyl) styrene.

【0025】[0025]

【化4】 [Chemical 4]

【0026】[0026]

【化5】 [Chemical 5]

【0027】[0027]

【化6】 [Chemical 6]

【0028】しかしながら、これらの化合物について粉
末法による評価を行なった結果、SHG不活性であっ
た。
However, as a result of evaluating these compounds by the powder method, SHG was inactive.

【0029】[0029]

【発明の効果】本発明に係る、2,5−ジメトキシ−
(β−シアノ)(β′−2−チエニル)スチレンからな
る有機非線形光学材料は、融点が88℃と高く熱的に安
定である。さらに、吸収端が短波長側にあり高いSHG
活性を示すことから、非線形光学素子として広範な分野
で用いることができる。
According to the present invention, 2,5-dimethoxy-
The organic nonlinear optical material composed of (β-cyano) (β′-2-thienyl) styrene has a high melting point of 88 ° C. and is thermally stable. Furthermore, the absorption edge is on the short wavelength side and high SHG
Since it exhibits activity, it can be used in a wide range of fields as a nonlinear optical element.

【0030】また、このような光非線形性、透光性、位
相整合条件の温度許容性に優れた有機材料を用いること
により、高価な無機非線形光学材料に代えて、これと同
等の特性を持つ有機非線形光学材料を低価格で提供でき
る。
Further, by using an organic material having excellent optical non-linearity, translucency, and temperature tolerance of phase matching conditions, it is possible to replace it with an expensive inorganic non-linear optical material and have characteristics equivalent thereto. An organic nonlinear optical material can be provided at a low price.

【図面の簡単な説明】[Brief description of drawings]

【図1】2,5−ジメトキシ−(β−シアノ)(β′−
2−チエニル)スチレンの1,4−ジオキサン中におけ
る、波長と吸光度の関係を示したものである。
FIG. 1 2,5-dimethoxy- (β-cyano) (β′-
2 is a graph showing the relationship between wavelength and absorbance of 2-thienyl) styrene in 1,4-dioxane.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2,5位にメトキシ基、及びβ位にシア
ノ基及びチエニル基を導入したスチレン誘導体からなる
ことを特徴とする有機非線形光学材料。
1. An organic nonlinear optical material comprising a styrene derivative having a methoxy group at the 2,5 position and a cyano group and a thienyl group at the β position.
【請求項2】 2,5位にメトキシ基、及びβ位にシア
ノ基及びチエニル基を導入したスチレン誘導体からなる
ことを特徴とする第2次高調波発生用材料。
2. A second harmonic generation material comprising a styrene derivative having a methoxy group at the 2,5 position and a cyano group and a thienyl group at the β position.
JP8303693A 1993-04-09 1993-04-09 Organic nonlinear optical material Expired - Lifetime JP2862455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8303693A JP2862455B2 (en) 1993-04-09 1993-04-09 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8303693A JP2862455B2 (en) 1993-04-09 1993-04-09 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH06294981A true JPH06294981A (en) 1994-10-21
JP2862455B2 JP2862455B2 (en) 1999-03-03

Family

ID=13790997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8303693A Expired - Lifetime JP2862455B2 (en) 1993-04-09 1993-04-09 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2862455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240163362A (en) 2023-05-10 2024-11-19 (주)이림전자 Vapor chamber type heat transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240163362A (en) 2023-05-10 2024-11-19 (주)이림전자 Vapor chamber type heat transfer device

Also Published As

Publication number Publication date
JP2862455B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP2862455B2 (en) Organic nonlinear optical material
JP2799101B2 (en) Organic nonlinear optical material
JP2762610B2 (en) Squarylium derivative and method for producing the same
JP2776694B2 (en) Organic nonlinear optical material
JP2980801B2 (en) Organic nonlinear optical material
US5872256A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JPH05204005A (en) Organic nonlinear optical material
JPH0678301B2 (en) Square lilium derivative and method for producing the same
EP0761643B1 (en) Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same
JPH0678282B2 (en) Cyclobutenedione derivative and method for producing the same
US5616802A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JPH07117672B2 (en) Nonlinear optical organic material
JPH06118462A (en) Organic nonlinear optical material
JPH04202165A (en) Cyclobutenedione derivative and its production
JP2685380B2 (en) Organic nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JP2533660B2 (en) Organic nonlinear optical material
JPH06130434A (en) Organic nonlinear optical material
JP2763224B2 (en) Organic nonlinear optical material
JP2725929B2 (en) Organic nonlinear optical material
JPH03287138A (en) Organic nonlinear optical material
JPH0786093B2 (en) Novel organic compound
JPH03287139A (en) Organic nonlinear optical material
JPH07107012B2 (en) Novel organic compound
JPH02833A (en) Organic nonlinear optical material and nonlinear optical device