[go: up one dir, main page]

JP2762610B2 - Squarylium derivative and method for producing the same - Google Patents

Squarylium derivative and method for producing the same

Info

Publication number
JP2762610B2
JP2762610B2 JP24810989A JP24810989A JP2762610B2 JP 2762610 B2 JP2762610 B2 JP 2762610B2 JP 24810989 A JP24810989 A JP 24810989A JP 24810989 A JP24810989 A JP 24810989A JP 2762610 B2 JP2762610 B2 JP 2762610B2
Authority
JP
Japan
Prior art keywords
general formula
squarylium derivative
nonlinear optical
group
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24810989A
Other languages
Japanese (ja)
Other versions
JPH03112950A (en
Inventor
龍淳 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP24810989A priority Critical patent/JP2762610B2/en
Priority to US07/586,980 priority patent/US5106997A/en
Publication of JPH03112950A publication Critical patent/JPH03112950A/en
Application granted granted Critical
Publication of JP2762610B2 publication Critical patent/JP2762610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非線形光学材料として有用な新規なスクエ
アリリウム誘導体及びその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a novel squarylium derivative useful as a nonlinear optical material and a method for producing the same.

従来の技術 光通信や光情報処理の分野では、非線形光学素子が重
要な役割を果たす。非線形光学素子に使用する非線形光
学材料は、周波数の異なる2種の入射光の和の周波数を
発生する光混合、周波数の異なる2種の光となる光パラ
メトリック、また、光媒体の屈折率を変化させるポッケ
ルス効果やカー効果、或いは入射光の二次高調波(SH
G)又は三次高調波(THG)への変換など、光信号処理の
上で極めて重要な作用を行う物質であるが、従来、この
様な非線形光学材料としては、無機系のものと有機系の
ものとが見出だされている。
2. Description of the Related Art In the fields of optical communication and optical information processing, nonlinear optical elements play an important role. The nonlinear optical material used for the nonlinear optical element is a light mixing that generates a sum frequency of two kinds of incident light having different frequencies, an optical parametric that becomes two kinds of light having different frequencies, and a change in refractive index of an optical medium. Pockels effect or Kerr effect, or the second harmonic of incident light (SH
G) or a substance that performs a very important function in optical signal processing such as conversion to the third harmonic (THG). Conventionally, such nonlinear optical materials include inorganic materials and organic materials. Things have been found.

無機系の非線形光学材料については、KDP(KH2PO4
およびニオブ酸リチウム(LiNbO3)などの無機化合物の
結晶が知られているが、要求を十分に満足するに足るも
のではなかった。
For inorganic nonlinear optical materials, KDP (KH 2 PO 4 )
Crystals of inorganic compounds such as lithium niobate and lithium niobate (LiNbO 3 ) are known, but have not been sufficient to satisfy the requirements.

一方、有機系の非線形光学材料については、近年、オ
プトエレクトロニクス分野における新光学素子用材料と
して注目され、年々研究が盛んになってきている。特
に、π電子共役系を有する有機化合物は、その分子単体
の性能の大きさと高速の応答性から、材料探索のための
研究が数多くなされている。
On the other hand, organic nonlinear optical materials have recently attracted attention as materials for new optical elements in the field of optoelectronics, and have been actively studied year by year. In particular, organic compounds having a π-electron conjugate system have been extensively studied for material search because of the high performance and high-speed response of the molecule itself.

一般に、有機非線形光学材料の結晶は、無機非線形光
学材料の結晶に比べて、SHGの係数が10〜100倍大きく、
光応答速度も1000倍程度速く、また、光損傷に対する閾
値も大きいことが知られている。
Generally, a crystal of an organic nonlinear optical material has a SHG coefficient 10 to 100 times larger than a crystal of an inorganic nonlinear optical material,
It is known that the light response speed is about 1000 times faster and the threshold value for light damage is large.

従来知られている有機非線形光学材料としては、2−
メチル−4−ニトロアニリン、m−ニトロアニリン、N
−(4−ニトロフェニル)−L−プロリノール、2−ア
セチルアミノ−4−ニトロ−N,N−ジメチルアニリン、
4−ジメチルアミノ−4′−ニトロスチルベン、4′−
ジメチルアミノ−N−メチル−4−スチルバゾリウムメ
チルスルフェート及び4′−メチルベンジリデン−4−
ニトロアニリンなどの有機化合物があげられる。これら
π電子共役系を有する有機化合物の非線形性は、電磁波
としてのレーザー光と有機化合物のπ電子との相互作用
に起因するものであって、この相互作用は、π電子共役
系に電子吸引性、電子供与性の置換基を導入することに
より、更に大きくすることができる。
Conventionally known organic nonlinear optical materials include 2-
Methyl-4-nitroaniline, m-nitroaniline, N
-(4-nitrophenyl) -L-prolinol, 2-acetylamino-4-nitro-N, N-dimethylaniline,
4-dimethylamino-4'-nitrostilbene, 4'-
Dimethylamino-N-methyl-4-stilbazolium methyl sulfate and 4'-methylbenzylidene-4-
Organic compounds such as nitroaniline are exemplified. The nonlinearity of these organic compounds having a π-electron conjugate system is due to the interaction between laser light as an electromagnetic wave and the π-electrons of the organic compound. The size can be further increased by introducing an electron donating substituent.

ところが、この様な有機化合物においては、一般に双
極子モーメントが大きくなり、結晶時の双極子−双極子
相互作用が強くなって、2分子の双極子が互いに打ち消
し合う構造である中心対称性の結晶を形成し易くなる。
応用面で重要な2次の非線形光学効果については、この
様な中心対称性結晶では発現しないという問題がある。
結晶状態で非線形性を発現させる上で問題となる中心対
称性を崩すために、水素結合能を有する置換基や不斉炭
素を有する光学活性な置換基を、π電子共役系を有する
有機化合物に分子設計時に導入するという工夫がなされ
ている。
However, such organic compounds generally have a large dipole moment, a strong dipole-dipole interaction during crystallization, and a centrally symmetric crystal having a structure in which two dipoles cancel each other. Is easy to form.
There is a problem that the second-order nonlinear optical effect which is important in application is not exhibited in such a centrosymmetric crystal.
In order to break the central symmetry, which is a problem in expressing nonlinearity in the crystalline state, a substituent having hydrogen bonding ability or an optically active substituent having an asymmetric carbon is converted to an organic compound having a π-electron conjugated system. The idea is to introduce it at the time of molecular design.

発明が解決しようとする課題 一般に非線形光学素子用材料として必要とされる特性
は、光非線形性の大きさ、光の透過性、耐レーザ損傷強
度、結晶性、位相整合性、加工性、機械的強度、吸湿性
等があげられる。
Generally, the properties required as a material for a nonlinear optical element include the magnitude of optical nonlinearity, light transmission, laser damage resistance, crystallinity, phase matching, workability, and mechanical properties. Strength, hygroscopicity and the like.

従来から知られている有機非線形光学素子用材料の中
から、以上のような実用上必要とされる諸特性を満足す
るものを選択することは極めて困難であった。
It has been extremely difficult to select a material that satisfies the above-mentioned various properties required for practical use from conventionally known materials for organic nonlinear optical elements.

本発明は、従来の技術における上記のような実状に鑑
みてなされたものである。
The present invention has been made in view of the above situation in the related art.

したがって、本発明の目的は、従来より知られている
非線形光学素子用材料における問題点を改善し、大きな
非線形光学効果を有し、保存安定性及び加工性の改良さ
れた実用的な有機非線形光学材料を提供することにあ
る。
Accordingly, an object of the present invention is to improve the problems in the conventionally known nonlinear optical element materials, to have a large nonlinear optical effect, and to improve the storage stability and workability of a practical organic nonlinear optical element. It is to provide materials.

課題を解決するための手段 本発明者は、分子の双極子モーメントが大きく、結晶
時に中心対称性を形成しやすい化合物系であっても、分
子に適切な置換基を導入することにより、特に2次の非
線形光学効果の大きい有機非線形光学材料が得られるこ
とを見出し、本発明を完成した。
Means for Solving the Problems The present inventor has found that, even in a compound system in which the dipole moment of a molecule is large and which tends to form central symmetry during crystallization, by introducing an appropriate substituent into the molecule, it is possible to obtain particularly 2 The inventors have found that the following organic nonlinear optical material having a large nonlinear optical effect can be obtained, and have completed the present invention.

本発明の上記目的は、下記一般式(I)で示される新
規なスクエアリリウム誘導体によって達成される。
The above object of the present invention is achieved by a novel squarylium derivative represented by the following general formula (I).

(式中、Xは水素原子、メチル基、エチル基又はメトキ
シ基を表わし、Rは、 を表わす。なお、C*は不斉炭素原子を意味する。) 本発明の上記一般式(I)で示されるスクエアリリウ
ム誘導体中に含まれるシクロブテンジオン環は、後記実
施例中で示す極大吸収波長からも分かるように、ニトロ
基並の強い電子吸引性を有すると共に、長いπ電子共役
系を持つ。そのため、分子全体が電子的に大きく分極し
た構造を取り易くなり、高い非線形性発現の原因となっ
ている。また、上記一般式(I)で示されるスクエアリ
リウム誘導体においては、不斉炭素原子を有する置換基
が導入されている場合には、分子自体の双極子モーメン
トが大きい場合であっても、バルク構造における分子の
配向を制御し、中心対称性を崩すことにより、大きな光
非線形性を発現させることになる。
(Wherein, X represents a hydrogen atom, a methyl group, an ethyl group or a methoxy group, and R is Represents C * means an asymmetric carbon atom. The cyclobutenedione ring contained in the squarylium derivative represented by the above general formula (I) of the present invention has a strong electron-withdrawing property comparable to a nitro group, as can be seen from the maximum absorption wavelength shown in Examples described later. And a long π-electron conjugated system. For this reason, the entire molecule can easily take a structure that is electronically greatly polarized, which causes high nonlinearity. In addition, in the squarylium derivative represented by the above general formula (I), when a substituent having an asymmetric carbon atom is introduced, even if the dipole moment of the molecule itself is large, the bulk structure can be reduced. By controlling the orientation of the molecules in and by breaking the central symmetry, a large optical non-linearity will be developed.

本発明の上記一般式(I)で示されるスクエアリリウ
ム誘導体は、次に示す反応式によって容易に、かつ収率
よく合成することができる。
The squarylium derivative represented by the above general formula (I) of the present invention can be easily synthesized with high yield by the following reaction formula.

(式中、Yは塩素原子、臭素原子、メトキシ基又はエト
キシ基を表わし、X及びRはそれぞれ上記した定義と同
じものを意味する) すなわち、一般式(II)で示されるスクエアリリルム
誘導体をアセトン、テトラヒドロフラン、メタノール、
エタノール等の溶媒に懸濁或いは溶解させ、次いで、得
られた懸濁液又は溶液中に、上記スクエアリリウム誘導
体に対して当量以上の一般式(III)で示されるアミノ
化合物を、撹拌しながら徐々に加えて反応させる。反応
は、通常、速やかに進行するが、必要に応じて加熱する
ことも可能である。反応の進行に伴い、生成物が析出し
てくる場合は、濾過し、また、生成物が析出してこない
場合は、濃縮するか、或いは適当な貧溶媒を加えて析出
させればよい。得られた結晶は、必要によりアルコー
ル、アセトン等の溶媒により再結晶させ、或いは昇華に
より精製する。
(Wherein, Y represents a chlorine atom, a bromine atom, a methoxy group or an ethoxy group, and X and R have the same meanings as defined above, respectively.) That is, the square rillyl derivative represented by the general formula (II) Acetone, tetrahydrofuran, methanol,
Suspended or dissolved in a solvent such as ethanol, and then, in the obtained suspension or solution, an amino compound represented by the general formula (III) in an amount equal to or more than the equivalent of the squarylium derivative was gradually added with stirring. And react. The reaction usually proceeds promptly, but can be heated if necessary. If the product precipitates with the progress of the reaction, the product may be filtered, and if the product does not precipitate, it may be concentrated or precipitated by adding an appropriate poor solvent. The obtained crystals are recrystallized with a solvent such as alcohol or acetone, if necessary, or purified by sublimation.

上記一般式(III)で示されるアミノ化合物の代わり
に、その酸付加塩、例えば、塩酸塩、臭素酸塩、p−ト
ルエンスルホン酸塩等を原料として使用し、トリエチル
アミン、N−メチルモルホリン等の塩基性化合物の共存
下に、一般式(II)で示されるスクエアリリウム誘導体
と上記した方法と同様にして反応させることもできる。
Instead of the amino compound represented by the general formula (III), an acid addition salt thereof, for example, a hydrochloride, a bromate, a p-toluenesulfonate, or the like is used as a raw material, and triethylamine, N-methylmorpholine, or the like is used. In the presence of a basic compound, the squarylium derivative represented by the general formula (II) can be reacted in the same manner as described above.

なお、上記一般式(II)で示されるスクエアリリウム
誘導体は、例えばジメチルアニリン化合物とジクロロシ
クロブテンジオンを、塩化アルミニウムの存在下にフリ
ーデルクラフツ溶剤(例えば2硫化炭素、ニトロベンゼ
ン、塩化メチレン等)中で混合し、撹拌することによっ
て、クロロシクロブテンジオン誘導体を得る方法、或い
は、ジアルコキシシクロブテンジオンを、トリアルキル
オキソニウム塩及びハロゲン化溶剤と共に、ジメチルア
ニリン化合物と反応させてアルコキシシクロブテンジオ
ン誘導体を得る方法、等によって製造することができ
る。
The squarylium derivative represented by the general formula (II) can be obtained, for example, by adding a dimethylaniline compound and dichlorocyclobutenedione to a Friedel-Crafts solvent (eg, carbon disulfide, nitrobenzene, methylene chloride, etc.) in the presence of aluminum chloride. By mixing and stirring to obtain a chlorocyclobutenedione derivative, or by reacting a dialkoxycyclobutenedione with a dimethylaniline compound together with a trialkyloxonium salt and a halogenated solvent to obtain an alkoxycyclobutenedione derivative. And the like.

実施例 以下、本発明を実施例によって説明する。Examples Hereinafter, the present invention will be described with reference to examples.

実施例1 4−(4′−ジメチルアミノフェニル)−3−(2′−
ヒドロキシプロピルアミノ)−シクロブテン−1,2−ジ
オンの合成 下記構造式(II−1)で示される化合物2g(8.4mmo
l)のアセトン溶液100mlに、 S−(+)−1−アミノ−2−プロパノール2gを添加
し、約2時間加熱攪拌を続けた。反応液中に黄色結晶が
析出した。反応液を静置した後、黄色結晶を捕集するこ
とにより、下記構造式(I−1)で示される4−(4′
−ジメチルアミノフェニル)−3−(2′−ヒドロキシ
プロピルアミノ)−シクロブテン−1,2−ジオン2.1g
(7.7mmol)を黄色の結晶として得た。収率92%。
Example 1 4- (4'-dimethylaminophenyl) -3- (2'-
Synthesis of hydroxypropylamino) -cyclobutene-1,2-dione 2 g (8.4 mmol) of a compound represented by the following structural formula (II-1)
l) To 100 ml of acetone solution, 2 g of S-(+)-1-amino-2-propanol was added, and the mixture was heated and stirred for about 2 hours. Yellow crystals precipitated in the reaction solution. After allowing the reaction solution to stand, yellow crystals are collected to give 4- (4 ′) represented by the following structural formula (I-1).
-Dimethylaminophenyl) -3- (2'-hydroxypropylamino) -cyclobutene-1,2-dione 2.1 g
(7.7 mmol) were obtained as yellow crystals. Yield 92%.

融点:245℃ 極大吸収波長λmax:400nm(CH2Cl2中) 元素分析 C H N 計算値 65.67 6.61 10.21 測定値 65.56 6.72 10.16 実施例2 4−(4′−ジメチルアミノフェニル)−3−(2′−
ヒドロキシエチルアミノ)−シクロブテン−1,2−ジオ
ンの合成 下記構造式(II−2)で示される化合物0.5g(2.0mmo
l)に エタノールアミン21mlを加え、約2時間加熱しながら攪
拌した。反応終了後、約60mlの水中に注ぎ、反応生成物
を黄色結晶として析出させた。黄色結晶を捕集すること
により、下記構造式(I−2)で示される4−(4′−
ジメチルアミノフェニル)−3−(2′−ヒドロキシエ
チルアミノ)−シクロブテン−1,2−ジオン0.32g(1.2m
mol)を黄色の結晶として得た。収率60%。
Melting point: 245 ° C Maximum absorption wavelength λmax: 400 nm (in CH 2 Cl 2 ) Elemental analysis C H N Calculated value 65.67 6.61 10.21 Measured value 65.56 6.72 10.16 Example 2 4- (4'-dimethylaminophenyl) -3- (2'-
Synthesis of hydroxyethylamino) -cyclobutene-1,2-dione 0.5 g (2.0 mmol) of a compound represented by the following structural formula (II-2)
l) 21 ml of ethanolamine was added, and the mixture was stirred with heating for about 2 hours. After the completion of the reaction, the reaction product was poured into about 60 ml of water to precipitate a reaction product as yellow crystals. By collecting the yellow crystals, 4- (4′-) represented by the following structural formula (I-2) is obtained.
Dimethylaminophenyl) -3- (2'-hydroxyethylamino) -cyclobutene-1,2-dione 0.32 g (1.2 m
mol) were obtained as yellow crystals. Yield 60%.

融点240℃ 極大吸収波長λmax:401nm(CHCl3中) 元素分析 C H N 計算値 64.61 6.20 10.76 測定値 64.58 6.12 10.58 実施例3 4−(4′−ジメチルアミノフェニル)−3−(1′−
メトキシカルボニルエチルアミノ)−シクロブテン−1,
2−ジオンの合成 L−アラニンメチルエステルの塩酸塩0.7g(5mmol)
とトリエチルアミン0.6g(5.6mmol)を含むアセトン溶
液20mlに、上記構造式(II−1)で示される化合物1.0g
(4.2mmol)のアセトン溶液20mlを徐々に加え、反応さ
せた。約2時間反応させた後、水を添加した。析出した
黄色の微結晶を捕集することにより、下記構造式(I−
3)で示される4−(4′−ジメチルアミノフェニル)
−3−(1′−メトキシカルボニルエチルアミノ)−シ
クロブテン−1,2−ジオン0.66g(2.2mmol)を得た。収
率52%。
Melting point 240 ° C Maximum absorption wavelength λmax: 401 nm (in CHCl 3 ) Elemental analysis C H N Calculated value 64.61 6.20 10.76 Measured value 64.58 6.12 10.58 Example 3 4- (4'-dimethylaminophenyl) -3- (1'-
Methoxycarbonylethylamino) -cyclobutene-1,
Synthesis of 2-dione 0.7 g (5 mmol) of L-alanine methyl ester hydrochloride
And 20 g of an acetone solution containing 0.6 g (5.6 mmol) of triethylamine and 1.0 g of the compound represented by the above structural formula (II-1)
20 ml of an acetone solution of (4.2 mmol) was gradually added and reacted. After reacting for about 2 hours, water was added. By collecting the precipitated yellow microcrystals, the following structural formula (I-
4- (4'-dimethylaminophenyl) represented by 3)
0.66 g (2.2 mmol) of -3- (1'-methoxycarbonylethylamino) -cyclobutene-1,2-dione was obtained. Yield 52%.

融点:217℃ 極大吸収波長λmax:401nm(CH2Cl2中) 元素分析 C H N 計算値 63.56 6.00 9.27 測定値 63.32 5.82 9.35 実施例4〜33 原料物質として、第1表の一般式(II)の欄に記載の
スクエアリリウム誘導体と一般式(III)の欄に記載の
アミノ化合物とを使用する以外は、実施例1に記載の場
合と同様にして第1表の一般式(I)の欄に記載の目的
生成物を合成した。
Melting point: 217 ° C Maximum absorption wavelength λmax: 401 nm (in CH 2 Cl 2 ) Elemental analysis C N calculated 63.56 6.00 9.27 measured 63.32 5.82 9.35 Examples 4 to 33 Example 1 was repeated except that the squarylium derivative described in the column of the general formula (II) in Table 1 and the amino compound described in the column of the general formula (III) were used as raw materials. The target product described in the column of general formula (I) in Table 1 was synthesized in the same manner as described.

得られた生成物について、元素分析値、極大吸収波長
λmax及び融点を測定した。その結果を第2表に示す。
About the obtained product, the elemental analysis value, the maximum absorption wavelength λmax, and the melting point were measured. Table 2 shows the results.

応用例 実施例1に記載の上記構造式(I−1)で示される化
合物を、ガラスセル中に充填した粉末のサンプルに、N
d:YAGレーザ(波長1.064μm、出力180mJ/パルス)を照
射すると、SHGに起因する532nmの緑色散乱光が発生し
た。その強度を測定したところ、尿素の粉末を同様の条
件で測定した値の約70倍であった。
Application Example The compound represented by the structural formula (I-1) described in Example 1 was charged into a sample of powder filled in a glass cell with N.
When irradiated with a d: YAG laser (wavelength 1.064 μm, output 180 mJ / pulse), 532 nm green scattered light due to SHG was generated. The strength was measured to be about 70 times the value measured for the urea powder under the same conditions.

発明の効果 本発明の上記一般式で示されるスクエアリリウム誘導
体は、新規な化合物であって、高い非線形性を示し、ま
た、耐熱性、耐光性、保存安定性及び加工性に優れた物
質であるので、非線形光学素子、例えば、光波長変換素
子、光シャッター、高速光スイッチング素子、光論理ゲ
ート、光トランジスター等の作製に使用することができ
る。
Effect of the Invention The squarylium derivative represented by the above general formula of the present invention is a novel compound, exhibits high nonlinearity, and is a substance excellent in heat resistance, light resistance, storage stability and workability. Therefore, it can be used for manufacturing a nonlinear optical element, for example, an optical wavelength conversion element, an optical shutter, a high-speed optical switching element, an optical logic gate, an optical transistor, and the like.

フロントページの続き (51)Int.Cl.6 識別記号 FI G02F 1/35 504 G02F 1/35 504 C07M 7:00 (58)調査した分野(Int.Cl.6,DB名) C07C 225/22 C07C 229/10 C07C 221/00 C07C 227/18 REGISTRY(STN) CA(STN) CAOLD(STN)Continuation of the front page (51) Int.Cl. 6 identification code FI G02F 1/35 504 G02F 1/35 504 C07M 7:00 (58) Field surveyed (Int.Cl. 6 , DB name) C07C 225/22 C07C 229/10 C07C 221/00 C07C 227/18 REGISTRY (STN) CA (STN) CAOLD (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式(I)で示されるスクエアリリ
ウム誘導体。 (式中、Xは、水素原子、メチル基、エチル基又はメト
キシ基を表わし、Rは、 を表わす。なお、C*は不斉炭素原子を意味する。)
1. A squarylium derivative represented by the following general formula (I). (Wherein, X represents a hydrogen atom, a methyl group, an ethyl group or a methoxy group, and R is Represents C * means an asymmetric carbon atom. )
【請求項2】下記一般式(II) (式中、Xは、水素原子、メチル基、エチル基又はメト
キシ基を表わし、Yは塩素原子、臭素原子、メトキシ基
又はエトキシ基を表わす) で示されるスクエアリリウム誘導体と、下記一般式(II
I) NH2R (III) (式中、Rは、−CH2CH2OH、 を表わす。なお、C*は不斉炭素原子を意味する。) で示されるアミノ化合物を反応させることを特徴とする
特許請求の範囲第1項に記載のスクエアリリウム誘導体
の製造方法。
2. The following general formula (II) (Wherein X represents a hydrogen atom, a methyl group, an ethyl group or a methoxy group, and Y represents a chlorine atom, a bromine atom, a methoxy group or an ethoxy group) and a squarylium derivative represented by the following general formula (II)
I) NH 2 R (III) (where R is —CH 2 CH 2 OH, Represents C * means an asymmetric carbon atom. The method for producing a squarylium derivative according to claim 1, wherein an amino compound represented by the following formula is reacted.
【請求項3】前記一般式(II)で示されるスクエアリリ
ウム誘導体と、前記一般式(III)で示されるアミノ化
合物の酸付加塩を、塩基性化合物の存在下で反応させる
ことを特徴とする特許請求の範囲第1項に記載のスクエ
アリリウム誘導体の製造方法。
3. The method according to claim 1, wherein the squarylium derivative represented by the general formula (II) is reacted with an acid addition salt of an amino compound represented by the general formula (III) in the presence of a basic compound. The method for producing a squarylium derivative according to claim 1.
JP24810989A 1989-09-26 1989-09-26 Squarylium derivative and method for producing the same Expired - Fee Related JP2762610B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24810989A JP2762610B2 (en) 1989-09-26 1989-09-26 Squarylium derivative and method for producing the same
US07/586,980 US5106997A (en) 1989-09-26 1990-09-24 Squarylium derivatives and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24810989A JP2762610B2 (en) 1989-09-26 1989-09-26 Squarylium derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03112950A JPH03112950A (en) 1991-05-14
JP2762610B2 true JP2762610B2 (en) 1998-06-04

Family

ID=17173365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24810989A Expired - Fee Related JP2762610B2 (en) 1989-09-26 1989-09-26 Squarylium derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP2762610B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210302A (en) * 1990-11-29 1993-05-11 Fuji Xerox Co., Ltd. Cyclobutenedione derivative and process for preparing the same
JP2836485B2 (en) * 1994-05-20 1998-12-14 富士ゼロックス株式会社 Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JP2887833B2 (en) * 1994-05-20 1999-05-10 富士ゼロックス株式会社 Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH08119914A (en) * 1994-10-19 1996-05-14 Fuji Xerox Co Ltd Cyclobutendione derivative, its production and nonlinear optical element using the same
US5726317A (en) * 1995-09-05 1998-03-10 Fuji Xerox Co., Ltd. Cyclobutenedione compounds
KR100752036B1 (en) * 2001-07-27 2007-08-28 주식회사유한양행 4-amino-3-cyclobutene-1,2-dione derivatives and preparation method thereof

Also Published As

Publication number Publication date
JPH03112950A (en) 1991-05-14

Similar Documents

Publication Publication Date Title
JP2762610B2 (en) Squarylium derivative and method for producing the same
JP2819826B2 (en) Cyclobutenedione derivative and method for producing the same
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JPS63113429A (en) Organic nonlinear optical material
JP2819827B2 (en) Cyclobutenedione derivative and method for producing the same
US5106997A (en) Squarylium derivatives and preparation thereof
JP2887833B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH0678282B2 (en) Cyclobutenedione derivative and method for producing the same
JP2836485B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JP2896604B2 (en) Materials for nonlinear optical elements
JP2799101B2 (en) Organic nonlinear optical material
US5210302A (en) Cyclobutenedione derivative and process for preparing the same
EP0761643B1 (en) Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same
JPH0618946A (en) Organic nonlinear optical material
US5110988A (en) Nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JPH08119914A (en) Cyclobutendione derivative, its production and nonlinear optical element using the same
JPH06130434A (en) Organic nonlinear optical material
JP2783869B2 (en) Nonlinear optical element
JP2737429B2 (en) Organic nonlinear optical material
JP2980298B2 (en) Organic nonlinear optical material
JPH01273020A (en) Organic nonlinear optical material
JPH0643508A (en) Organic nonlinear optical material
JPH06294981A (en) Organic polymer nonlinear optical material
JPH0667229A (en) Nonlinear optical material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees