JPH0629462A - Formation of dielectric thin film - Google Patents
Formation of dielectric thin filmInfo
- Publication number
- JPH0629462A JPH0629462A JP17992092A JP17992092A JPH0629462A JP H0629462 A JPH0629462 A JP H0629462A JP 17992092 A JP17992092 A JP 17992092A JP 17992092 A JP17992092 A JP 17992092A JP H0629462 A JPH0629462 A JP H0629462A
- Authority
- JP
- Japan
- Prior art keywords
- film
- growth
- thin film
- interruption
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 31
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000010408 film Substances 0.000 abstract description 45
- 230000015654 memory Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】
【目的】 高誘電率の薄膜の形成方法に関し、形成した
誘電体膜の膜厚が薄い場合でもより高い誘電率を実現で
きる方法を提供する。
【構成】 単一の誘電体結晶の成長と成長の中断とを所
定回数繰り返して所定の膜厚の薄膜を形成する。(57) [Summary] [Object] To provide a method for forming a high dielectric constant thin film, which can realize a higher dielectric constant even when the formed dielectric film is thin. [Structure] The growth of a single dielectric crystal and the interruption of the growth are repeated a predetermined number of times to form a thin film having a predetermined thickness.
Description
【0001】[0001]
【産業上の利用分野】本発明は、誘電体薄膜の形成方法
に関する。より詳しく言えば、本発明は、例えば高密度
のメモリ素子のキャパシタとして使用されるような、高
誘電率の薄膜の形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a dielectric thin film. More specifically, the present invention relates to a method of forming a thin film having a high dielectric constant such as used as a capacitor of a high density memory device.
【0002】[0002]
【従来の技術】現在、様々な電子デバイスの分野におい
て高密度化が推進されているが、ダイナミックメモリ素
子(DRAM)では、α線によるソフトエラーを防止す
るため、メモリセル当りの信号電荷量はセル面積が微細
化しても大幅に減少させることはできない。また、現在
開発が進められている64Mビットメモリでは、一つの
メモリセル面積が約1.5μm2 と微小になる上に、消
費電力の増大を抑制するため低電圧動作も必要となる。
信号電荷量は静電容量と動作電圧との積となるので、電
源電圧の低下は静電容量の増加で補う必要が生じる。2. Description of the Related Art At present, the densification is being promoted in the field of various electronic devices, but in a dynamic memory device (DRAM), in order to prevent soft error due to α rays, the signal charge amount per memory cell is Even if the cell area is miniaturized, it cannot be significantly reduced. Further, in the 64 Mbit memory currently under development, one memory cell area is as small as about 1.5 μm 2 and, in addition, low voltage operation is required to suppress an increase in power consumption.
Since the signal charge amount is the product of the electrostatic capacity and the operating voltage, it is necessary to compensate for the decrease in the power supply voltage by the increase in the electrostatic capacity.
【0003】メモリ素子のキャパシタの静電容量を増加
させるために通常とられる方策の一つは、容量絶縁膜の
薄膜化である。ところが、容量絶縁膜の薄膜化は物理的
限界に直面しつつある。One of the measures usually taken to increase the capacitance of the capacitor of a memory device is to reduce the thickness of the capacitive insulating film. However, the thinning of the capacitance insulating film is facing a physical limit.
【0004】容量絶縁膜として従来用いられてきたSi3N
4 /SiO2積層膜では、SiO2膜換算で5nm以下に薄膜化す
るとリーク電流が増大してしまう。そこで、64Mビッ
トの高密度メモリを実現するためには、容量絶縁膜とし
てSiO2膜換算で4nm以下の薄膜化が可能な新しい容量絶
縁膜が必要とされ、そしてこの要請に対応すべく、各研
究機関により、PZT,STO,PbTiO3,BaTiO3などの
酸化物系の高誘電率薄膜の開発が進められている。これ
らの薄膜は都合のよい種々の方法により作製することが
可能であるが、いずれの方法においても、膜の成長は所
定の膜厚に達するまで連続式に行われており、成長と成
長の中断とを繰り返して成膜する技術は知られていな
い。Si 3 N which has been conventionally used as a capacitive insulating film
In the 4 / SiO 2 laminated film, if the thickness is reduced to 5 nm or less in terms of SiO 2 film, the leak current will increase. Therefore, in order to realize a high density memory of 64 Mbits, a new capacitive insulating film that can be thinned to 4 nm or less in terms of SiO 2 film is required as a capacitive insulating film. Research institutions are developing oxide-based high dielectric constant thin films such as PZT, STO, PbTiO 3 , and BaTiO 3 . These thin films can be produced by various methods that are convenient, but in all of these methods, the growth of the film is carried out continuously until a predetermined film thickness is reached. There is no known technique for repeatedly forming a film.
【0005】[0005]
【発明が解決しようとする課題】このような誘電体薄膜
を作製する場合の一般的傾向として、膜厚が薄くなるに
従って結晶粒径が小さくなり、更にこの関係に伴って、
薄膜の比誘電率も減少することが知られている。一例と
して、rfマグネトロン・スパッタ法によりPZT薄膜
を作製した時の、膜厚と結晶粒径との関係、及び膜厚と
比誘電率との関係をそれぞれ図4と図5に示す。これら
の図から明らかなように、膜厚が1μm以下になると、
結晶粒径と比誘電率が共に著しく小さくなることが分か
る。As a general tendency in producing such a dielectric thin film, the crystal grain size becomes smaller as the film thickness becomes thinner.
It is known that the relative permittivity of thin films also decreases. As an example, FIG. 4 and FIG. 5 show the relationship between the film thickness and the crystal grain size and the relationship between the film thickness and the relative dielectric constant when a PZT thin film was formed by the rf magnetron sputtering method. As is clear from these figures, when the film thickness becomes 1 μm or less,
It can be seen that both the crystal grain size and the relative dielectric constant are significantly reduced.
【0006】薄膜になるほどその比誘電率が減少すると
いうこの現象は、高密度メモリ素子の容量絶縁膜として
の利用が考えられているPZT,STO,PbTiO3,BaTi
O3等の誘電体の薄膜にとって不都合なものである。This phenomenon that the relative dielectric constant decreases as the film becomes thinner, this phenomenon is considered to be used as a capacitive insulating film of a high density memory device. PZT, STO, PbTiO 3 , BaTi
It is inconvenient for thin films of dielectrics such as O 3 .
【0007】本発明は、形成した誘電体膜の膜厚が薄い
場合でもより高い誘電率を実現することができる誘電体
薄膜の形成方法を提供することを目的とする。An object of the present invention is to provide a method for forming a dielectric thin film which can realize a higher dielectric constant even when the formed dielectric film is thin.
【0008】[0008]
【課題を解決するための手段】本発明の誘電体薄膜の形
成方法は、単一の誘電体結晶の成長と成長の中断とを所
定回数繰り返して所定の膜厚の薄膜を形成することを特
徴とする。The method of forming a dielectric thin film according to the present invention is characterized in that the growth of a single dielectric crystal and the interruption of the growth are repeated a predetermined number of times to form a thin film of a predetermined thickness. And
【0009】本発明の方法で薄膜を形成することが可能
な誘電体は、主として酸化物系のもの、例えばPZT
(Pb(Ti,Zr)O3 )、STO(SrTiO3),PbTiO3,Ba
TiO3等である。The dielectric material capable of forming a thin film by the method of the present invention is mainly of an oxide type, such as PZT.
(Pb (Ti, Zr) O 3 ), STO (SrTiO 3 ), PbTiO 3 , Ba
TiO 3 and the like.
【0010】本発明の方法で誘電体薄膜を成長させるた
めの成膜法は、成長させようとする誘電体に応じて適宜
選択することができる。また、結晶成長の中断は、成長
雰囲気をそのままにして原料の供給を停止するというや
り方で簡単に行うことができる。例えば、PZT薄膜を
形成する場合について言えば、スパッタ法を利用して薄
膜を成長させ、そしてシャッタを閉じることにより成長
を中断することができる。The film forming method for growing the dielectric thin film by the method of the present invention can be appropriately selected according to the dielectric to be grown. Further, the crystal growth can be interrupted easily by keeping the growth atmosphere and stopping the supply of the raw material. For example, when forming a PZT thin film, the growth can be interrupted by growing the thin film using a sputtering method and closing the shutter.
【0011】結晶の成長を中断する回数は、成長させる
べき膜の厚さと、1回の成長操作で得られる膜の厚さと
に依存する。一般には、中断回数が多くなるほど良好な
結果が得られるけれども、ある程度の回数以上になると
それほど目覚ましい効果は見られなくなる。従って、成
長の条件や装置の条件に応じて、都合のよい中断回数を
決めるようにするのが好ましい。The number of times the crystal growth is interrupted depends on the thickness of the film to be grown and the thickness of the film obtained in one growth operation. In general, the better the number of interruptions, the better the results obtained, but if the number of interruptions is more than a certain number, the remarkable effect is not seen. Therefore, it is preferable to determine a convenient number of interruptions according to the growth conditions and the conditions of the apparatus.
【0012】1回の成長時間と中断時間との比も、膜の
比誘電率に影響を及ぼすことが分っている。一般に、成
長時間よりも中断時間を長くすると、すなわち中断時間
と成長時間との比を1以上とすると、比誘電率がより大
きな膜が得られる。中断時間と成長時間との比は、より
好ましくは1.2以上である。中断の回数が2回以上の
場合には、中断時間と成長時間との比を一律にしないで
変えることも可能である。It has been found that the ratio of the growth time to the interruption time also affects the relative dielectric constant of the film. Generally, when the interruption time is longer than the growth time, that is, when the ratio of the interruption time and the growth time is 1 or more, a film having a larger relative dielectric constant can be obtained. The ratio of the suspension time to the growth time is more preferably 1.2 or more. When the number of interruptions is two or more, it is possible to change the ratio between the interruption time and the growth time without uniformly setting it.
【0013】[0013]
【作用】本発明の高誘電率薄膜の形成方法における結晶
成長の中断は、膜成長の過程、特に膜成長の初期に、基
板上に形成された結晶粒が基板表面上を移動して、結晶
粒同志が合体し、より大きな結晶粒になるのを可能にす
る。こうして個々の結晶粒がより大きくなることは、膜
厚が薄い場合でも、比誘電率の低下を抑制して、より高
い誘電率の薄膜の実現を可能にする。In the method for forming a high dielectric constant thin film of the present invention, the crystal growth is interrupted because the crystal grains formed on the substrate move on the surface of the substrate during the film growth process, particularly in the initial stage of film growth. Allows the grains to coalesce into larger grains. The larger individual crystal grains suppress the decrease in the relative permittivity even when the film thickness is thin, thus making it possible to realize a thin film having a higher permittivity.
【0014】膜成長の中断時間と成長時間との比を大き
くすることは、得られる結晶粒をより大きくし、従って
膜の比誘電率をより大きくする。この比がおおよそ1に
達するまでは、結晶粒の大きさはこの比にほぼ比例して
増大するが、結晶粒の大きさの増加はこの比が1を超え
ると鈍化し、ほぼ1.2を超えるとほとんど横ばいにな
る。それゆえに、本発明における中断時間と成長時間と
の比は、好ましくは1以上であり、より好ましくは1.
2以上である。Increasing the ratio of the film growth interruption time to the growth time makes the obtained crystal grains larger and thus the film relative permittivity larger. Until this ratio reaches approximately 1, the crystal grain size increases almost in proportion to this ratio, but the increase in the crystal grain size slows down when this ratio exceeds 1, and becomes approximately 1.2. Almost leveled off when exceeded. Therefore, the ratio of the interruption time to the growth time in the present invention is preferably 1 or more, more preferably 1.
It is 2 or more.
【0015】[0015]
【実施例】次に、実施例により本発明を更に説明する。The present invention will be further described with reference to the following examples.
【0016】シリコン基板を熱酸化することにより、基
板表面に1000ÅのSiO2膜を形成した。この上に、D
Cスパッタ法により3000ÅのPt膜を形成した。A 1000 Å SiO 2 film was formed on the surface of the substrate by thermally oxidizing the silicon substrate. On top of this, D
A 3000 Å Pt film was formed by the C sputtering method.
【0017】次に、Pt膜の上にrfマグネトロン・ス
パッタ法によりPZT薄膜を成長させた。焼結成形した
PZT粉末をターゲットとして使用し、またスパッタガ
スとしては100%酸素を用いた。rf出力は250
W、ガス圧は50mTorr 、そして基板温度は650℃
とした。Next, a PZT thin film was grown on the Pt film by the rf magnetron sputtering method. Sinter-molded PZT powder was used as a target, and 100% oxygen was used as a sputtering gas. rf output is 250
W, gas pressure is 50 mTorr, and substrate temperature is 650 ° C.
And
【0018】膜の1回の成長厚さを50〜250Åと
し、成長時間以上の中断を挾んで、0.1〜2.5μm
のいろいろな厚さの膜を成長させた。成長の中断は、r
fマグネトロン・スパッタ装置のシャッタを閉じて行っ
た。The thickness of one growth of the film is 50 to 250 Å, and there is a break of more than the growth time, 0.1 to 2.5 μm.
Of various thicknesses were grown. Growth interruption is r
f The shutter of the magnetron sputtering device was closed.
【0019】膜厚2.5μmのPZT薄膜について、中
断時間と成長時間の比と、得られた結晶粒の大きさとの
関係を図1のグラフに示す。この図から明らかなよう
に、中断時間と成長時間の比が大きくなるほど結晶粒径
が大きくなり、この比が1を超えると結晶粒径増加傾向
は鈍くなり、そして1.2以上ではほとんど変化が認め
られなくなる。他の膜厚のPZT薄膜についても、これ
と同様の結果が得られた。A graph of FIG. 1 shows the relationship between the ratio of the interruption time to the growth time and the size of the obtained crystal grains for the PZT thin film having a film thickness of 2.5 μm. As is clear from this figure, the larger the ratio of the suspending time to the growing time, the larger the crystal grain size. Will not be recognized. Similar results were obtained for PZT thin films having other thicknesses.
【0020】中断時間と成長時間との比を1.2とした
場合の膜厚と結晶粒径との関係、及び膜厚と比誘電率と
の関係を、それぞれ図2及び図3のグラフに示す。これ
らの図において、破線は、成膜を中断なしに連続して行
った従来技術の例を示している。これらの図から明らか
なように、成膜の過程で中断を入れない場合に比べて、
成長と中断とを繰り返した場合には結晶粒径が増大して
おり、それに応じて比誘電率も大きくなっていて、膜厚
0.5μmで比誘電率530を実現している。The relationship between the film thickness and the crystal grain size and the relationship between the film thickness and the relative permittivity are shown in the graphs of FIGS. 2 and 3, respectively, when the ratio of the interruption time to the growth time is 1.2. Show. In these figures, the broken line shows an example of the prior art in which film formation was continuously performed without interruption. As is clear from these figures, compared to the case without interruption during the film formation,
When the growth and the interruption are repeated, the crystal grain size increases, and the relative permittivity also increases accordingly, and the relative permittivity 530 is realized with the film thickness of 0.5 μm.
【0021】[0021]
【発明の効果】以上説明したように、本発明によれば、
成長結晶粒の粒径をより大きくすることができるので、
形成した膜の比誘電率をより大きくすることができる。
従って、形成した膜が薄い場合でもより高い誘電率を実
現することができ、そのため本発明の方法は将来の高密
度メモリのキャパシタの作製のために応用することが可
能と思われる。As described above, according to the present invention,
Since the grain size of grown crystal grains can be made larger,
The relative dielectric constant of the formed film can be increased.
Therefore, even if the formed film is thin, a higher dielectric constant can be realized, so that it is considered that the method of the present invention can be applied to the fabrication of capacitors for future high density memories.
【図1】PZT薄膜成長の中断時間と成長時間の比と結
晶粒径との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the grain size and the ratio of the PZT thin film growth interruption time to the growth time.
【図2】本発明によるPZT薄膜の膜厚と結晶粒径との
関係を従来例と比較して示すグラフである。FIG. 2 is a graph showing the relationship between the film thickness and the crystal grain size of the PZT thin film according to the present invention in comparison with the conventional example.
【図3】本発明によるPZT薄膜の膜厚と比誘電率との
関係を従来例と比較して示すグラフである。FIG. 3 is a graph showing the relationship between the film thickness of the PZT thin film according to the present invention and the relative dielectric constant in comparison with the conventional example.
【図4】従来の方法により形成したPZT薄膜の膜厚と
結晶粒径との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the film thickness and the crystal grain size of a PZT thin film formed by a conventional method.
【図5】従来の方法により形成したPZT薄膜の膜厚と
比誘電率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the film thickness and the relative dielectric constant of a PZT thin film formed by a conventional method.
Claims (3)
を所定回数繰り返して所定の膜厚の薄膜を形成すること
を特徴とする誘電体薄膜の形成方法。1. A method of forming a dielectric thin film, which comprises repeating the growth of a single dielectric crystal and the interruption of the growth a predetermined number of times to form a thin film having a predetermined thickness.
間との比を1以上とすることを特徴とする、請求項1記
載の方法。2. The method according to claim 1, wherein the ratio of the time for stopping the growth of the thin film to the growth time is 1 or more.
により実施することを特徴とする、請求項1記載の方
法。3. The method according to claim 1, wherein the interruption of the growth is performed by stopping the supply of the growth gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17992092A JPH0629462A (en) | 1992-07-07 | 1992-07-07 | Formation of dielectric thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17992092A JPH0629462A (en) | 1992-07-07 | 1992-07-07 | Formation of dielectric thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0629462A true JPH0629462A (en) | 1994-02-04 |
Family
ID=16074236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17992092A Pending JPH0629462A (en) | 1992-07-07 | 1992-07-07 | Formation of dielectric thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629462A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828098A (en) * | 1995-06-22 | 1998-10-27 | Matsushita Electronics Corporation | Semiconductor capacitor dielectric having various grain sizes |
CN111063672A (en) * | 2018-10-17 | 2020-04-24 | 三星电子株式会社 | Capacitor and semiconductor device having the same |
-
1992
- 1992-07-07 JP JP17992092A patent/JPH0629462A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828098A (en) * | 1995-06-22 | 1998-10-27 | Matsushita Electronics Corporation | Semiconductor capacitor dielectric having various grain sizes |
CN111063672A (en) * | 2018-10-17 | 2020-04-24 | 三星电子株式会社 | Capacitor and semiconductor device having the same |
CN111063672B (en) * | 2018-10-17 | 2024-05-14 | 三星电子株式会社 | Capacitor and semiconductor device having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5731220A (en) | Method of making barium strontium titanate (BST) thin film by erbium donor doping | |
KR101123433B1 (en) | Method of forming a structure having a high dielectric constant and a structure having a high dielectric constant | |
US5397446A (en) | Method of forming a ferroelectric film | |
EP0849780A2 (en) | Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor | |
JPH10313097A (en) | Ferroelectric thin film, manufacturing method and device comprising ferroelectric thin film | |
KR100190558B1 (en) | Ferroelectric and Capacitors in Semiconductor Devices Employing the Same | |
TW543138B (en) | High dielectric constant material deposition to achieve high capacitance | |
WO1998053506A1 (en) | Ferroelectric memory element and method of producing the same | |
KR19990083104A (en) | Semiconductor memory device and manufacturing method thereof | |
JP2011155271A (en) | Stratified structure with ferroelectric layer and process for producing the same | |
JPH0629462A (en) | Formation of dielectric thin film | |
JP2000156470A (en) | Ferroelectric memory element, storage device and manufacture of them | |
JPH06204404A (en) | Semiconductor device and capacitative element, and manufacture thereof | |
US5721043A (en) | Method of forming improved thin film dielectrics by Pb doping | |
JP3123448B2 (en) | Thin film capacitors | |
JP2658819B2 (en) | Thin film capacitors | |
JP2000286396A (en) | Ferroelectric memory and manufacture thereof | |
JPH07176803A (en) | Dielectric thin film structure | |
JPH05343617A (en) | Semiconductor storage device | |
JPH05259389A (en) | Semiconductor memory device | |
JPH1093029A (en) | Thin-film dielectric element | |
JPH07183165A (en) | Thin-film capacitor | |
KR100538074B1 (en) | Capacitor Manufacturing Method of Semiconductor Device | |
JPH0741944A (en) | Method for manufacturing ferroelectric thin film and method for manufacturing dielectric thin film | |
KR0151241B1 (en) | Semiconductor device with ferroelectric film |