[go: up one dir, main page]

JPH06292826A - Production of composite super fine particles - Google Patents

Production of composite super fine particles

Info

Publication number
JPH06292826A
JPH06292826A JP8423693A JP8423693A JPH06292826A JP H06292826 A JPH06292826 A JP H06292826A JP 8423693 A JP8423693 A JP 8423693A JP 8423693 A JP8423693 A JP 8423693A JP H06292826 A JPH06292826 A JP H06292826A
Authority
JP
Japan
Prior art keywords
fine particles
super fine
ultrafine particles
composite
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8423693A
Other languages
Japanese (ja)
Inventor
Tadashi Koyama
正 小山
Shunsuke Otsuka
俊介 大塚
Keiji Tsunetomo
啓司 常友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP8423693A priority Critical patent/JPH06292826A/en
Publication of JPH06292826A publication Critical patent/JPH06292826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the degree of freedom of the selection for making the composite material of super fine particles and to enable its use in a stable form by forming the super fine particles in vapor phase, sticking the obtained super fine particles on a substrate and depositing the material different from the super fine particles. CONSTITUTION:Gaseous argon is introduced into a vacuum chamber 8 from a gaseous argon introducing pipe 6, and YAG laser 5 is irradiated to a cadmium telluride single crystal target 2 under a prescribed pressure to evaporate the target material to form semiconductor super fine particles of the first material, and to stick the super fine particles 12 on a quartz glass substrate 1. Then, using gold powder as the second material, gold vapor is evaporated from a gold depositing gun 4 under the prescribed pressure in the vacuum chamber 8, and composite super fine particles 13 are formed on the super fine particles 12. Then, the gaseous argon is evacuated and gaseous oxygen is introduced, the SiO2 of a SiO2 target 3 evaporated by a laser evaporation to form a SiO2 thin film, and the composite super fine particles 13 are covered with a SiO2 glass 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合超微粒子の製造方
法に関するものであり、特に気相中で形成した超微粒子
にさらに異なる物質の材料を蒸着させ複合化を行い、新
しい特性を発揮する複合超微粒子を製造するための方法
に関する。このような複合超微粒子の応用分野としては
非線形光学材料、触媒材料の分野がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing composite ultrafine particles, and in particular, ultrafine particles formed in a gas phase are vapor-deposited with materials of different substances to be composited to exhibit new characteristics. A method for producing composite ultrafine particles. The fields of application of such composite ultrafine particles include fields of nonlinear optical materials and catalyst materials.

【0002】[0002]

【従来の技術】超微粒子はバルクの持つ性質とは異なっ
た性質を持つことが知られており、機能性材料としての
応用が期待されている。例えば硫化カドミウム(Cd
S)等の化合物半導体超微粒子は、粒径が小さくなるに
したがってバンド構造が離散化し、吸収端が高エネルギ
側へシフトする等いわゆる量子サイズ効果が生じる(例
えば、A. J. Nozic et al., J. Phys. Chem., 89, 397
(1987))。またこのような量子サイズ効果を有する材料
は、大きな非線形光学効果を持つことも知られており、
超高速の光スイッチや光論理素子等の非線形光学効果を
用いた光制御素子への応用が期待されている。
2. Description of the Related Art Ultrafine particles are known to have properties different from those of bulk, and are expected to be applied as functional materials. For example, cadmium sulfide (Cd
Compound semiconductor ultrafine particles such as (S) have a so-called quantum size effect in which the band structure becomes discrete as the particle size decreases, and the absorption edge shifts to the high energy side (for example, AJ Nozic et al., J. Phys. Chem., 89, 397
(1987)). It is also known that such a material having a quantum size effect has a large nonlinear optical effect,
It is expected to be applied to optical control elements using nonlinear optical effects such as ultrafast optical switches and optical logic elements.

【0003】超微粒子の製造方法としては以下のような
方法が知られている。溶液中での超微粒子製造方法とし
て、酸化還元反応を用いたコロイド生成がある。例えば
金(Au)コロイドは塩化金酸カリウム溶液に、過酸化
水素やクエン酸等の適当な還元剤を加えることで容易に
生成できる。また化合物コロイドの例としてCdSの場
合には、過塩素酸カドミウム(Cd(ClO4 2 )溶
液に硫化ナトリウム(Na2 S)溶液を加えると酸化還
元反応が生じてCdSコロイドが得られる(例えば、R.
Rossetti et al., J. Chem. Phys. 82, 552 (1985)
)。いずれも製造条件によって得られる微粒子の粒径
は異なるが、直径5nm以下でかつ粒径分布の分散が小
さなコロイド粒子を容易に製造することができる。
The following methods are known as methods for producing ultrafine particles. As a method for producing ultrafine particles in a solution, there is colloid generation using a redox reaction. For example, gold (Au) colloid can be easily produced by adding an appropriate reducing agent such as hydrogen peroxide or citric acid to a potassium chloroaurate solution. In the case of CdS as an example of the compound colloid, when a sodium sulfide (Na 2 S) solution is added to a cadmium perchlorate (Cd (ClO 4 ) 2 ) solution, a redox reaction occurs to obtain a CdS colloid (for example, , R.
Rossetti et al., J. Chem. Phys. 82, 552 (1985)
). Although the particle size of the obtained fine particles varies depending on the manufacturing conditions, colloidal particles having a diameter of 5 nm or less and a small particle size distribution dispersion can be easily manufactured.

【0004】超微粒子の製造方法として上記の液相中で
の酸化還元・沈澱反応を利用した方法以外に、ガス中蒸
発法が知られている。これはアルゴン(Ar)等の不活
性ガス雰囲気中で物質を加熱蒸発させると、その蒸気が
雰囲気ガス分子と衝突して運動エネルギを失い、かつ急
冷されるために超微粒子を形成する。粒子の大きさは不
活性ガスの圧力に主に依存する。また生成した粒子を例
えば酸素(O2 )ガスと反応させることにより、酸化物
超微粒子が製造できる。
As a method for producing ultrafine particles, an evaporation method in a gas is known in addition to the above method utilizing the oxidation-reduction / precipitation reaction in a liquid phase. This is because when a substance is heated and evaporated in an atmosphere of an inert gas such as argon (Ar), the vapor collides with atmosphere gas molecules, loses kinetic energy, and is rapidly cooled to form ultrafine particles. The size of the particles depends mainly on the pressure of the inert gas. Further, ultrafine oxide particles can be produced by reacting the produced particles with, for example, oxygen (O 2 ) gas.

【0005】以上の方法は1つの材料に関する超微粒子
製造方法であるが、複合化した超微粒子の製造方法とし
ては、溶液中で製造したCdS超微粒子上に硫化亜鉛
(ZnS)を析出させる方法が知られている(例えば、
Hyeong-Chan Youn, et al., J.Phys. Chem. 92 (1988)
6320.)。これはカドミウムイオン(Cd2+)を含む溶
液に硫化水素(H2 S)ガスを吹き込むことによりCd
Sを生成させ、さらに亜鉛イオン(Zn2+)を添加し
て、再びH2 Sガスを吹き込みZnSをCdS上に析出
させるものである。またCdSにロジウム(Rh)等の
金属を析出させる方法が知られている(例えば、Yves-M
Tricot, et al., J. Phys. Chem. 84 (1980) 7359
)。この場合も同様に溶液中でCdSコロイドを製造
しておき、その微粒子表面にRhを析出させるものであ
る。このような複合超微粒子は、水の光分解における触
媒作用が著しく向上することが報告されている。一方非
線形光学材料としては、このような複合超微粒子におい
てはその効果が増大することが理論的に予測されている
(例えば、M. H. Birnboim et al., Mat. Res. Soc. Sy
mp.Proc. Vol. 164 (1990) 277 )。
The above method is a method for producing ultrafine particles relating to one material. As a method for producing composite ultrafine particles, a method of precipitating zinc sulfide (ZnS) on CdS ultrafine particles produced in a solution is used. Known (eg,
Hyeong-Chan Youn, et al., J. Phys. Chem. 92 (1988)
6320.). This is Cd by blowing hydrogen sulfide (H 2 S) gas into a solution containing cadmium ions (Cd 2+ ).
S is generated, zinc ions (Zn 2+ ) are further added, and H 2 S gas is blown again to precipitate ZnS on CdS. A method of depositing a metal such as rhodium (Rh) on CdS is known (for example, Yves-M
Tricot, et al., J. Phys. Chem. 84 (1980) 7359
). Also in this case, a CdS colloid is similarly prepared in a solution and Rh is deposited on the surface of the fine particles. It has been reported that such composite ultrafine particles have a significantly improved catalytic action in photolysis of water. On the other hand, as a nonlinear optical material, it is theoretically predicted that the effect will increase in such composite ultrafine particles (for example, MH Birnboim et al., Mat. Res. Soc. Sy.
mp.Proc. Vol. 164 (1990) 277).

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の方
法での複合超微粒子の製造方法は、溶液中での反応を利
用しているため、その取扱いおよび安定性に問題があ
り、特性を十分に利用することがむずかしかった。また
溶液中反応に用いることができる材料は限られており、
幅広く一般に用いられる方法ではない。以上の重大な欠
点が従来報告されてきた方法には存在する。
However, since the conventional method for producing composite ultrafine particles uses a reaction in a solution, there is a problem in handling and stability, and the characteristics are sufficiently utilized. It was difficult to do. In addition, the materials that can be used for reaction in solution are limited,
It is not a widely used method. The above-mentioned serious drawbacks exist in the previously reported methods.

【0007】本発明は、上記従来の問題点を解決し、超
微粒子の複合材料化を選択の自由度を飛躍的に増大さ
せ、さらに安定した形で利用することができる、複合超
微粒子の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, dramatically increases the degree of freedom in selecting ultrafine particles as a composite material, and can be used in a more stable form. The purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は次の
構成により達成される。
The above object of the present invention can be achieved by the following constitutions.

【0009】すなわち、気相中で超微粒子を形成し、形
成した超微粒子を基板に付着させ、その後該超微粒子と
は異なる物質の材料を該超微粒子上に蒸着させる複合超
微粒子の製造方法である。
That is, in the method for producing composite ultrafine particles, ultrafine particles are formed in a gas phase, the formed ultrafine particles are attached to a substrate, and then a material of a substance different from the ultrafine particles is vapor-deposited on the ultrafine particles. is there.

【0010】超微粒子形成法として幅広い材料に応用で
きる気相中での微粒子形成法を用いて第1の材料の超微
粒子を製造し、得られた微粒子を基板上に付着させる。
さらにその上に第2の材料を第1の材料の超微粒子の表
面に蒸着もしくは、第1の材料の超微粒子を覆うことに
より、第1の材料と第2の材料の複合超微粒子を製造す
る。
Ultrafine particles of the first material are produced by using a fine particle forming method in a gas phase which can be applied to a wide variety of materials as an ultrafine particle forming method, and the obtained fine particles are attached to a substrate.
Further, the second material is vapor-deposited on the surface of the ultrafine particles of the first material, or the ultrafine particles of the first material are covered therewith to produce composite ultrafine particles of the first material and the second material. .

【0011】[0011]

【作用】本発明によれば、第1の材料の超微粒子形成
と、第2の材料の複合化が基板上で気相を介して行われ
るため、ほとんどの材料に対して適用が可能であり、そ
の組み合わせの自由度が飛躍的に増大する作用をする。
また第1の材料の超微粒子が第2の材料の析出点として
働くため、第2の材料のみの超微粒子はできにくく、複
合超微粒子のみが得られやすくなるという作用をする。
さらに第3の材料あるいは第1の材料を再び第2の材料
の上に複合化する事も可能であり、従来得ることができ
なかった超微粒子を得ることを可能にする作用をする。
According to the present invention, the formation of the ultrafine particles of the first material and the formation of the composite of the second material are carried out on the substrate via the gas phase, so that the present invention can be applied to most materials. , The degree of freedom of the combination increases dramatically.
In addition, since the ultrafine particles of the first material act as a precipitation point of the second material, it is difficult to form ultrafine particles of the second material alone, and it is easy to obtain only composite ultrafine particles.
Further, the third material or the first material can be composited again on the second material, and it has an effect of making it possible to obtain ultrafine particles which could not be obtained conventionally.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は複合超微粒子を製造するために用いた製造
装置の模式図を示す。本装置は超微粒子をガス中で製造
する装置であり、この場合第1の超微粒子原料の蒸発の
方法として高出力パルスレーザーを用いた。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic view of a manufacturing apparatus used for manufacturing composite ultrafine particles. This apparatus is an apparatus for producing ultrafine particles in a gas. In this case, a high-power pulse laser was used as the first method for vaporizing the ultrafine particle raw material.

【0013】真空チャンバー8内にアルゴンガス導入管
6よりアルゴンガスを導入しチャンバー内の圧力を0.
5Torrとして、波長532nm、パルス幅10n
s、パルスパワー50J/cm2 のNd:YAGレーザ
5をテルル化カドミウム(CdTe)単結晶ターゲット
2に照射し、材料を蒸発させ第1の材料となる半導体超
微粒子を形成した。CdTeターゲット2から50mm
離れたところに、石英ガラス基板1を置き、形成したC
dTe超微粒子12を付着させた。このときCdTe超
微粒子12同士が付着しない程度の超微粒子密度となる
ようにパルスのエネルギー、照射回数を考慮して行っ
た。この条件で行った超微粒子形成におけるCdTe超
微粒子の粒径は、電子顕微鏡で分析したところ粒径が約
6nmで粒径分布の分散が非常に小さいことがわかっ
た。
Argon gas is introduced into the vacuum chamber 8 through the argon gas introduction pipe 6 to reduce the pressure in the chamber to 0.
5 Torr, wavelength 532 nm, pulse width 10 n
A cadmium telluride (CdTe) single crystal target 2 was irradiated with an Nd: YAG laser 5 having a pulse power of 50 J / cm 2 for s, and the material was evaporated to form semiconductor ultrafine particles as a first material. 50 mm from CdTe target 2
The quartz glass substrate 1 was placed at a distance and formed C
The dTe ultrafine particles 12 were attached. At this time, the pulse energy and the number of irradiations were taken into consideration so that the ultrafine particle density was such that the CdTe ultrafine particles 12 did not adhere to each other. The particle size of the CdTe ultrafine particles in forming the ultrafine particles under these conditions was analyzed by an electron microscope, and it was found that the particle size was about 6 nm and the dispersion of the particle size distribution was very small.

【0014】次に第2の原料として金(Au)粉末を用
い、チャンバー内に取り付けられた電子ビーム金蒸着ガ
ン4の坩堝に上記粉末を入れた後、真空チャンバー8の
真空度を1×10-6Torrまで到達させた。真空度が
所定の値に達したのち金蒸着ガン4より金蒸気を石英ガ
ラス基板1めがけて蒸発させた。1分間蒸発させたの
ち、シャッターを閉じてCdTe超微粒子12上への蒸
着を終了させ、複合超微粒子13を形成した。
Next, using gold (Au) powder as the second raw material, after putting the above powder into the crucible of the electron beam gold vapor deposition gun 4 installed in the chamber, the vacuum degree of the vacuum chamber 8 was set to 1 × 10. -Reached to -6 Torr. After the degree of vacuum reached a predetermined value, gold vapor was evaporated from the gold vapor deposition gun 4 toward the quartz glass substrate 1. After evaporating for 1 minute, the shutter was closed and the vapor deposition on the CdTe ultrafine particles 12 was completed to form composite ultrafine particles 13.

【0015】さらに、アルゴンガスを排気し、酸素ガス
導入管7より酸素ガスを5×10-4Torrの圧力で導
入した。そして、レーザー蒸発によりSiOターゲット
3のSiOを蒸発させ、SiO2 薄膜を形成し、上記複
合超微粒子13をSiO2 ガラス14で覆うことを行っ
た。このような層を100層積み重ねることにより図3
に示すように、複合超微粒子を分散させたガラス薄膜1
5が得られた。この薄膜の非線形光学特性を評価したと
ころ、複合化しない場合すなわち金超微粒子あるいはC
dTe超微粒子のみが分散されている場合と比較して、
その非線形光学効果は2から3倍の増大が観測された。
一方、得られた薄膜を電子顕微鏡観察した結果、図2に
示すようにCdTe超微粒子12の表面に別の超微粒子
11もしくは層が観察され、分析電子顕微鏡により同定
したところ、別の微粒子11もしくは層は金であること
が確認できた。したがって、上記製造方法でCdTe超
微粒子12に金超微粒子11が蒸着された複合超微粒子
13が得られたことがわかった。
Further, the argon gas was exhausted, and the oxygen gas was introduced through the oxygen gas introducing pipe 7 at a pressure of 5 × 10 −4 Torr. Then, the SiO of the SiO target 3 was evaporated by laser evaporation to form a SiO 2 thin film, and the composite ultrafine particles 13 were covered with the SiO 2 glass 14. By stacking 100 such layers,
As shown in, a glass thin film 1 in which composite ultrafine particles are dispersed
5 was obtained. When the non-linear optical characteristics of this thin film were evaluated, when it was not composited, that is, ultrafine gold particles or C
Compared with the case where only dTe ultrafine particles are dispersed,
The nonlinear optical effect was observed to increase 2 to 3 times.
On the other hand, as a result of observing the obtained thin film with an electron microscope, as shown in FIG. 2, another ultrafine particle 11 or layer was observed on the surface of the CdTe ultrafine particle 12 and was identified by an analytical electron microscope. It was confirmed that the layer was gold. Therefore, it was found that the composite ultrafine particles 13 in which the gold ultrafine particles 11 were vapor-deposited on the CdTe ultrafine particles 12 were obtained by the above manufacturing method.

【0016】今回、CdTe超微粒子と金の場合につい
て述べたが、これに限ることなく、例えばセレン化カド
ミウム(CdSe)、セレン化亜鉛(ZnSe)、Cd
Sをはじめとする2−6族化合物半導体、GaAs、I
nP、InGaAsP等の3−5族化合物半導体、貴金
属の銀(Ag)、白金(Pt)、Rh等、あるいは磁気
記録材料として鉄(Fe)、コバルト(Co)、ニッケ
ル(Ni)等、また銅(Cu)、バナジウム(V)、ニ
オブ(Nb)等の金属およびそれらの合金や他の元素と
の化合物、酸素ガス中での種々の金属の蒸発で得られる
酸化物等、気相中で超微粒子化が可能ないかなる材料に
ついても第1の超微粒子材料として適用できる。またそ
れらの材料は当然ながら第2の材料としても使用でき、
これらの組み合わせにより、多種の複合超微粒子が得ら
れる。
This time, the case of using CdTe ultrafine particles and gold has been described, but the present invention is not limited to this. For example, cadmium selenide (CdSe), zinc selenide (ZnSe), Cd.
2-6 group compound semiconductors such as S, GaAs, I
A Group 3-5 compound semiconductor such as nP or InGaAsP, a noble metal such as silver (Ag), platinum (Pt), Rh, or the like, or iron (Fe), cobalt (Co), nickel (Ni), or the like as a magnetic recording material, or copper. (Cu), vanadium (V), niobium (Nb) and other metals and their alloys, compounds with other elements, oxides obtained by evaporation of various metals in oxygen gas, etc. Any material that can be made into fine particles can be applied as the first ultrafine particle material. Of course, those materials can also be used as the second material,
By combining these, various types of composite ultrafine particles can be obtained.

【0017】本実施例では第1の原料の加熱蒸発にレー
ザ加熱蒸発を、第2の原料の蒸発には電子ビーム加熱を
用いたが、これ以外にも超微粒子形成および蒸着のため
に、スパッタリング法、誘導加熱法、抵抗加熱法、CV
D法等も応用できる。もちろん、第1の原料の蒸発と第
2の原料の蒸発を同一の方式で行うことも可能であり、
また種々の方法を組み合わせることも可能である。
In this embodiment, laser heating evaporation was used for heating evaporation of the first raw material, and electron beam heating was used for evaporation of the second raw material. However, in addition to this, sputtering for forming ultrafine particles and vapor deposition. Method, induction heating method, resistance heating method, CV
D method etc. can be applied. Of course, it is also possible to evaporate the first raw material and the second raw material in the same manner,
It is also possible to combine various methods.

【0018】製造した複合超微粒子の捕集に石英ガラス
基板を用いたが、これに限ることなく基板として種々の
単結晶、ガラス基板が使用できる。
A quartz glass substrate was used for collecting the produced composite ultrafine particles, but the present invention is not limited to this, and various single crystal and glass substrates can be used as the substrate.

【0019】[0019]

【発明の効果】本発明によれば、従来選択制限のあった
超微粒子の複合材料化を、気相を介して基板上で行うこ
とにより、その自由度を飛躍的に増大させ、さらに安定
した形で利用することができる。このような複合超微粒
子を製造する事により、従来の単体の超微粒子では得ら
れなかった非線形光学特性を得ることができた。
EFFECTS OF THE INVENTION According to the present invention, the composite material of ultrafine particles, which has been conventionally limited by selection, is formed on the substrate through the gas phase, thereby dramatically increasing the degree of freedom and further stabilizing the stability. Available in shape. By producing such composite ultrafine particles, it was possible to obtain a non-linear optical characteristic that could not be obtained by conventional single ultrafine particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた複合超微粒子の製造装
置の模式図である。
FIG. 1 is a schematic view of an apparatus for producing composite ultrafine particles used in an example of the present invention.

【図2】本発明の実施例で得られた複合超微粒子の模式
図である。
FIG. 2 is a schematic view of composite ultrafine particles obtained in an example of the present invention.

【図3】本発明の実施例で得られた複合超微粒子を分散
したガラスの模式図である。
FIG. 3 is a schematic view of glass in which composite ultrafine particles obtained in an example of the present invention are dispersed.

【符号の説明】[Explanation of symbols]

1…石英ガラス基板、2…CdTeターゲット、3…S
iOターゲット、4…金蒸着ガン、 5…レーザ光線、
6…アルゴンガス導入管、7…酸素ガス導入管、8…真
空チャンバー、9…ゲートバルブ、10…レーザー光導
入窓、11…金超微粒子、12…CdTe超微粒子、1
3…複合超微粒子、14…SiO2 ガラス、15…複合
超微粒子を分散させたガラス薄膜。
1 ... Quartz glass substrate, 2 ... CdTe target, 3 ... S
iO target, 4 ... gold vapor deposition gun, 5 ... laser beam,
6 ... Argon gas introduction pipe, 7 ... Oxygen gas introduction pipe, 8 ... Vacuum chamber, 9 ... Gate valve, 10 ... Laser light introduction window, 11 ... Gold ultrafine particles, 12 ... CdTe ultrafine particles, 1
3 ... Composite ultrafine particles, 14 ... SiO 2 glass, 15 ... Glass thin film in which composite ultrafine particles are dispersed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項】 気相中で超微粒子を形成し、形成した超微
粒子を基板に付着させ、その後該超微粒子とは異なる物
質の材料を該超微粒子上に蒸着させることを特徴とする
複合超微粒子の製造方法。
A composite ultrafine particle characterized by forming ultrafine particles in a gas phase, adhering the formed ultrafine particles to a substrate, and then depositing a material of a substance different from the ultrafine particles on the ultrafine particles. Manufacturing method.
JP8423693A 1993-04-12 1993-04-12 Production of composite super fine particles Pending JPH06292826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8423693A JPH06292826A (en) 1993-04-12 1993-04-12 Production of composite super fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8423693A JPH06292826A (en) 1993-04-12 1993-04-12 Production of composite super fine particles

Publications (1)

Publication Number Publication Date
JPH06292826A true JPH06292826A (en) 1994-10-21

Family

ID=13824842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8423693A Pending JPH06292826A (en) 1993-04-12 1993-04-12 Production of composite super fine particles

Country Status (1)

Country Link
JP (1) JPH06292826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027828A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
JP2014180611A (en) * 2013-03-19 2014-09-29 Hitachi Zosen Corp Particulate manufacturing apparatus
JP2015525286A (en) * 2012-05-22 2015-09-03 コリア インスティテュート オブ インダストリアル テクノロジー High-functional composite nanoparticles and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027828A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
US6869721B2 (en) 2000-09-29 2005-03-22 Sony Corporation Process for producing gas diffusion electrode and electrochemical device
JP2015525286A (en) * 2012-05-22 2015-09-03 コリア インスティテュート オブ インダストリアル テクノロジー High-functional composite nanoparticles and method for producing the same
JP2014180611A (en) * 2013-03-19 2014-09-29 Hitachi Zosen Corp Particulate manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3302108B2 (en) Oriented polycrystalline thin films of transition metal chalcogenides
JPWO2006129413A1 (en) Electrochemical electrode in which nickel-containing nanostructure having dendritic structure is applied to the active layer and method for producing the same
Urban Iii et al. Nanophase films deposited from a high-rate, nanoparticle beam
Gafner et al. Estimation of the structure of binary Ag–Cu nanoparticles during their crystallization by computer simulation
JPH06292826A (en) Production of composite super fine particles
JPS58190815A (en) Amorphous film of silicide of transition element
Saxena et al. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS: Ag (1%)/SiO2 nanocomposite thin films with enhanced luminescent properties
KR100488896B1 (en) Method for synthesizing quantum dot using the metal thin film
JPH0596154A (en) Production of material dispersed with hyper-fine particles
De Toro et al. Types of cluster sources
JPH03294829A (en) Nonlinear optical thin film and production thereof
JPH05275331A (en) Manufacture of chalocopyrite thin film and solar cell
JPH06287745A (en) Production of composite superfine particle
JPH07278618A (en) Production of composite superfine particle
CN100383275C (en) A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film
JP3411497B2 (en) W ultrafine particles, method for producing the same, and W nanocrystal thin film
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material
KR101230062B1 (en) Process for preparing nanostructure of metal oxide and nanostructuring metal oxide thin film
JP3099430B2 (en) Manufacturing method of glass capsule enclosing ultrafine particles
Alexeeva et al. Preparation of hydride-forming intermetallic films
JPS5836908A (en) Manufacture of magnetic body of thin nitride film
Batková Depozice funkčních tenkovrstvých materiálů pomocí pokročilých naprašovacích technik
Okpechi et al. THE EFFECT OF Mg, Mn, Co DOPING ON THE OPTICAL PROPERTIES OF FeO THIN FILMS
Shafeev Laser synthesis of gold nanoparticles and the control over their properties
JPH07114048A (en) Nonlinear optical material