CN100383275C - A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film - Google Patents
A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film Download PDFInfo
- Publication number
- CN100383275C CN100383275C CNB2005100115542A CN200510011554A CN100383275C CN 100383275 C CN100383275 C CN 100383275C CN B2005100115542 A CNB2005100115542 A CN B2005100115542A CN 200510011554 A CN200510011554 A CN 200510011554A CN 100383275 C CN100383275 C CN 100383275C
- Authority
- CN
- China
- Prior art keywords
- film
- oxide
- gold
- silver
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 239000012788 optical film Substances 0.000 title claims abstract description 9
- 239000002105 nanoparticle Substances 0.000 title claims description 29
- 238000002360 preparation method Methods 0.000 title claims description 9
- 239000010408 film Substances 0.000 claims abstract description 54
- 229910052737 gold Inorganic materials 0.000 claims abstract description 53
- 229910052709 silver Inorganic materials 0.000 claims abstract description 45
- 239000010410 layer Substances 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000005477 sputtering target Methods 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 238000000151 deposition Methods 0.000 claims abstract description 12
- 230000008021 deposition Effects 0.000 claims abstract description 12
- 238000004544 sputter deposition Methods 0.000 claims abstract description 9
- 239000002356 single layer Substances 0.000 claims abstract description 8
- 239000010931 gold Substances 0.000 claims description 61
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 28
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 20
- 239000004332 silver Substances 0.000 claims description 20
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 6
- 239000002082 metal nanoparticle Substances 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 claims description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000002052 molecular layer Substances 0.000 claims description 2
- -1 BaTiO 3 Inorganic materials 0.000 claims 1
- 230000006698 induction Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 11
- 239000007769 metal material Substances 0.000 abstract description 2
- 229910052755 nonmetal Inorganic materials 0.000 abstract 1
- 239000002923 metal particle Substances 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域 technical field
本发明属于金属纳米颗粒与无机非金属材料复合材料技术领域,特别是提供了一种金银纯金属纳米颗粒分散氧化物多层非线性光学薄膜的设计与制备工艺。The invention belongs to the technical field of composite materials of metal nanoparticles and inorganic non-metallic materials, and in particular provides a design and preparation process of gold and silver pure metal nanoparticles dispersed oxide multilayer nonlinear optical film.
背景技术 Background technique
纳米金属颗粒分散氧化物薄膜,由于金属纳米颗粒的表面效应和量子尺寸效应十分显著,在纳米金属颗粒表面附近的电子和光的相互作用下发生表面等离子共振现象,对入射光波产生选择性吸收和透过。具有这种非线性光学特性的功能薄膜作为光波分离器、光开关等在光通信领域具有广阔的应用前景。Nano-metal particles dispersed oxide film, due to the surface effect and quantum size effect of metal nanoparticles are very significant, surface plasmon resonance occurs under the interaction of electrons and light near the surface of nano-metal particles, and selectively absorbs and transmits incident light waves. Pass. Functional thin films with such nonlinear optical properties have broad application prospects in the field of optical communications as optical wave splitters and optical switches.
为获得较强的非线性光学效应,一般通过改变金属粒子的尺寸、形状、分散浓度以及其微观结构等方法来实现。目前研究的大部分体系是一种纯金属颗粒分散氧化物薄膜,比如报道较多的有(Au、Ag、Cu)/(SiO2,TiO2,Al2O3,MgF2,BaTiO3,Nd2O3,BaO,LiNbO3,La2O3)等,被采用的制备技术有熔融急冷法、离子注入法、溶胶-凝胶法、溅射法等。利用熔融急冷法、离子注入法、溶胶-凝胶法很难提高和控制金属分散颗粒的体积分数;利用单靶溅射法,由于金属和氧化物的沉积速度相差很大,提高金属颗粒的体积分数亦有难度。最近,申请者利用多靶磁控溅射法,在提高金属颗粒的体积分数研究方面取得进展,通过在复合薄膜中引入层状结构,实现了对金属相含量的宽范围调控,相关制备工艺已申请国家专利[专利申请号:03156142.X]。结合后期热处理工艺,可以将具有纳米层状特征的前驱体薄膜的金属相含量在高达85%的情况下仍然具有良好的分散结构和表面等离子共振吸收峰,目前还未见有关金属相分散含量高于这个结果的报道。但是,我们的申请专利及研究也只是局限于一种金纳米颗粒或银纳米颗粒分散氧化物体系,而有关金银复合金属颗粒分散氧化物薄膜的报道比较少见。目前查阅到的有关金银复合纳米颗粒分散氧化物薄膜的报道有:Huazhong Shi,Lide Zhang andWeiping Cai:JOURNAL OF APPLIED PHYSICS,87[3](2002)1572-1574,他们用溶胶凝胶法制备了AgxAu1-x/SiO2(0.2<x<0.8)分散薄膜,经973K,2h退火处理后,Ag和Au形成合金颗粒,在光吸收谱上观察到一个表面等离子共振吸收峰,随Ag含量的增加吸收峰位置由524nm向400nm发生红移;B.Prevel,J.Lerme,M.Gaudry,E.Cottancin,M.Pellarin,M.Treilleux,P.Melinon,A.Perez,J.L.Vialle and M.Broyer:Scripta mater.44(2001)1235-1238,他们用低能粒子光束沉积技术制备了(Au0.5Ag0.5)N/Al2O3薄膜,Ag和Au形成合金颗粒,吸收光谱上在420nm和500nm之间观察到一个独立的等离子共振吸收峰;谢子斌,王取泉,周正国,熊贵光:武汉大学学报,45[1](1999)84-86,他们用射频磁控溅射的方法制备了AgxAu1-x/SiO2复合金属颗粒膜,退火后得到Au和Ag的合金颗粒,发现只有一个吸收峰出现在410nm和537nm之间;陈海波,蒋昌忠,石瑛,付强:功能材料,34[6]714-718,他们把Ag,Au离子先后注入到SiO2玻璃中,得到合金的Au和Ag纳米颗粒,光吸收谱中只有一个吸收峰,发现通过调节注入金属的比例和适宜的退火条件能够对等离子共振吸收峰的位置进行调节;在以上这几篇文献中,分散在氧化物薄膜中的金属多元颗粒均为合金颗粒,虽然等离子共振吸收峰的位置会有所变化,都是一个独立的等离子共振吸收峰。除此之外,Moskovits,Srnova-Sloufova and Vlckova:Journal ofChemical Physics,116(2002)10435,利用溶胶-凝胶包覆技术制备了核壳结构的Ag(Au)或Au(Ag)颗粒,等离子共振吸收峰的特征仍为一个独立的等离子共振吸收峰。In order to obtain strong nonlinear optical effects, it is generally achieved by changing the size, shape, dispersion concentration and microstructure of metal particles. Most of the systems currently studied are pure metal particles dispersed oxide films, such as (Au, Ag, Cu)/(SiO 2 , TiO 2 , Al 2 O 3 , MgF 2 , BaTiO 3 , Nd 2 O 3 , BaO, LiNbO 3 , La 2 O 3 ), etc., the preparation techniques used include melt quenching method, ion implantation method, sol-gel method, sputtering method, etc. It is difficult to increase and control the volume fraction of metal dispersed particles by melting quenching method, ion implantation method, and sol-gel method; by using single target sputtering method, due to the large difference in the deposition rate of metal and oxide, it is difficult to increase the volume of metal particles Scores are also difficult. Recently, the applicant has made progress in the study of increasing the volume fraction of metal particles by using the multi-target magnetron sputtering method. By introducing a layered structure into the composite film, a wide range of control of the metal phase content has been achieved. The related preparation process has been Apply for a national patent [patent application number: 03156142.X]. Combined with the post-heat treatment process, the metal phase content of the precursor film with nano-layered characteristics can still have a good dispersion structure and surface plasmon resonance absorption peak when the metal phase content is as high as 85%. report on this result. However, our patent applications and research are limited to a gold nanoparticle or silver nanoparticle dispersed oxide system, and reports on gold-silver composite metal particle dispersed oxide films are relatively rare. The currently available reports on gold-silver composite nanoparticle dispersed oxide films include: Huazhong Shi, Lide Zhang and Weiping Cai: JOURNAL OF APPLIED PHYSICS, 87 [3] (2002) 1572-1574, they prepared by sol-gel method Ag x Au 1-x /SiO 2 (0.2<x<0.8) dispersed film, after 973K, 2h annealing treatment, Ag and Au form alloy particles, and a surface plasmon resonance absorption peak is observed in the optical absorption spectrum, with the Ag The position of the absorption peak red shifted from 524nm to 400nm with the increase of content; B.Prevel, J.Lerme, M.Gaudry, E.Cottancin, M.Pellarin, M.Treilleux, P.Melinon, A.Perez, JLVialle and M. Broyer: Scripta mater.44 (2001) 1235-1238, they prepared (Au 0.5 Ag 0.5 ) N /Al 2 O 3 thin films by low-energy particle beam deposition technology, Ag and Au form alloy particles, and the absorption spectrum is at 420nm and 500nm An independent plasmon resonance absorption peak was observed; Xie Zibin, Wang Ququan, Zhou Zhengguo, Xiong Guiguang: Journal of Wuhan University, 45 [1] (1999) 84-86, they prepared Ag by radio frequency magnetron sputtering x Au 1-x /SiO 2 composite metal particle film, Au and Ag alloy particles were obtained after annealing, only one absorption peak appeared between 410nm and 537nm; Chen Haibo, Jiang Changzhong, Shi Ying, Fu Qiang: Functional Materials, 34 [6] 714-718, they implanted Ag and Au ions into SiO 2 glass successively to obtain alloyed Au and Ag nanoparticles, and there was only one absorption peak in the light absorption spectrum. Conditions can adjust the position of the plasmon resonance absorption peak; in the above documents, the metal multi-element particles dispersed in the oxide film are all alloy particles, although the position of the plasmon resonance absorption peak will change, they are all one Independent plasmon resonance absorption peaks. In addition, Moskovits, Srnova-Sloufova and Vlckova: Journal of Chemical Physics, 116 (2002) 10435, using sol-gel coating technology to prepare Ag(Au) or Au(Ag) particles with core-shell structure, plasmon resonance The absorption peak is still characterized by an independent plasmon resonance absorption peak.
发明内容 Contents of the invention
本发明的目的在于:提供一种金银纳米颗粒分散氧化物光学薄膜制备方法。利用溅射技术进行金银纳米颗粒分散氧化物光学薄膜的制备。实现了工作气体气压较低,对薄膜的污染少,成膜质量稳定,可精密控制成膜速度,适合于制备纳米尺度的颗粒及纳米薄膜。The object of the present invention is to provide a method for preparing an oxide optical film dispersed with gold and silver nanoparticles. Preparation of gold and silver nanoparticles dispersed oxide optical thin films by sputtering technique. The working gas pressure is low, the pollution to the film is less, the film forming quality is stable, the film forming speed can be precisely controlled, and it is suitable for the preparation of nanoscale particles and nano film.
在目前关于金银复合纳米颗粒分散氧化物光学薄膜研究领域中,研究者只能得到金银的合金颗粒,在光吸收谱中只存在一个吸收峰。我们设计的一种多层的分散工艺,可以使金和银颗粒不以合金形式,而分别以纯金属的形式单独分散在氧化物中,制备的薄膜在光吸收谱上出现两个等离子共振吸收峰。In the current field of research on gold-silver composite nanoparticles dispersed oxide optical films, researchers can only obtain gold-silver alloy particles, and there is only one absorption peak in the light absorption spectrum. A multi-layer dispersion process designed by us can make gold and silver particles not in the form of alloy, but separately dispersed in the oxide in the form of pure metal, and the prepared film has two plasmon resonance absorption peaks in the optical absorption spectrum .
本发明是在溅射室内同时安装金、银和氧化物三个靶溅射,在每个溅射靶和基板前分别设置遮板,通过对金、银以及氧化物的沉积速度的单独控制,从而实现对金银颗粒的粒度、分散状态、膜层厚度等参数的精密控制,制备出具有纳米层状特征的金银纳米颗粒分散氧化物复合光学薄膜。具体工艺流程:In the present invention, three sputtering targets of gold, silver and oxide are installed in the sputtering chamber at the same time, and shutters are respectively set in front of each sputtering target and substrate, and through the separate control of the deposition speed of gold, silver and oxide, In this way, the precise control of parameters such as the particle size, dispersion state, and film thickness of gold and silver particles can be realized, and a gold-silver nano-particle dispersed oxide composite optical film with nano-layered characteristics can be prepared. Specific process flow:
先制备Au或Ag纳米颗粒单层膜,再沉积氧化物膜,然后沉积Au或Ag纳米颗粒单层膜,之后再沉积一层氧化物膜。按上述顺序交替沉积,制成层状结构薄膜;使Au或Ag纳米颗粒单层膜之间用一层氧化物薄膜隔开。这样就可以使金和银以纯金属的状态存在而不会形成合金。Au or Ag nano particle monolayer film is firstly prepared, then oxide film is deposited, then Au or Ag nano particle monolayer film is deposited, and then an oxide film is deposited. Alternate deposition according to the above sequence to form a layered structure film; Au or Ag nano particle monolayer films are separated by a layer of oxide film. This allows gold and silver to exist as pure metals without forming alloys.
本发明所述的分散氧化物为SiO2,TiO2,Al2O3,BaTiO3等;金银纳米金属颗粒直径在2~50nm,并且分散均匀;氧化物层厚度在5~500纳米之间;金银成分按化学式AuxAg1-x/SiO2描述,x表示金颗粒体积百分比,在5%~85%之间;薄膜结构为金纳米颗粒层、银纳米颗粒层以及氧化物层组成的交替层状结构。The dispersed oxides described in the present invention are SiO 2 , TiO 2 , Al 2 O 3 , BaTiO 3 , etc.; the diameter of gold and silver nano metal particles is 2-50 nm, and the dispersion is uniform; the thickness of the oxide layer is between 5-500 nm The composition of gold and silver is described by the chemical formula Au x Ag 1-x /SiO 2 , x represents the volume percentage of gold particles, which is between 5% and 85%; the film structure is composed of gold nanoparticle layer, silver nanoparticle layer and oxide layer alternating layered structure.
上述纳米金属颗粒材料多层非线性光学薄膜的制备工艺参数具体为:成膜基体压力为1×10-5~5×10-4Pa,成膜压力为0.1~1Pa;金纳米颗粒层成膜工艺参数为氩气流量为5~30立方厘米/分钟,氧气流量为5~10立方厘米/分钟,溅射靶的功率为50~300W,高周波电感线圈功率为50~300W,成膜时间为50~300秒;银纳米颗粒层成膜工艺参数为氩气流量为5~30立方厘米/分钟,氧气流量为5~10立方厘米/分钟,溅射靶的功率为50~300W,高周波电感线圈功率为50~300W,成膜时间为50~300秒;氧化物纳米层成膜工艺参数:为氩气流量为5~30立方厘米/分钟,氧气流量为5~10立方厘米/分钟,溅射靶的功率为50~300W,高周波电感线圈功率为50~300W,成膜时间为5~60分钟。The preparation process parameters of the above-mentioned multilayer nonlinear optical film made of nano-metal particle materials are as follows: the film-forming substrate pressure is 1×10 -5 ~5×10 -4 Pa, the film-forming pressure is 0.1-1 Pa; the gold nanoparticle layer film-forming The process parameters are argon flow rate of 5-30 cubic centimeters per minute, oxygen flow rate of 5-10 cubic centimeters per minute, sputtering target power of 50-300W, high-frequency inductor coil power of 50-300W, and film-forming time of 50 ~300 seconds; silver nanoparticle layer film forming process parameters are argon flow rate of 5-30 cubic centimeters per minute, oxygen flow rate of 5-10 cubic centimeters per minute, sputtering target power of 50-300W, high-frequency inductor coil power 50-300W, film-forming time is 50-300 seconds; oxide nano-layer film-forming process parameters: argon flow rate is 5-30 cubic centimeters/minute, oxygen flow rate is 5-10 cubic centimeters/minute, sputtering target The power of the coil is 50-300W, the power of the high-frequency inductance coil is 50-300W, and the film-forming time is 5-60 minutes.
本发明的处理工艺旨在通过对金银纳米金属颗粒和氧化物的沉积速度的单独控制,不经过热处理工艺直接在成膜过程中实现对金属颗粒的粒度、分散状态、体积百分比、膜层厚度等参数的精密控制,并且在上述基础上制备出具有纳米层状特征的金银纳米颗粒分散氧化物光学复合薄膜。The treatment process of the present invention aims to directly realize the particle size, dispersion state, volume percentage and film thickness of the metal particles in the film-forming process without a heat treatment process through the separate control of the deposition speed of gold and silver nano-metal particles and oxides. Precise control of such parameters, and on the basis of the above, a gold-silver nanoparticle-dispersed oxide optical composite film with nano-layered characteristics was prepared.
本发明的优点在于:采用本发明制备的金银纳米颗粒分散氧化物光学复合薄膜,具有纳米层状结构,金银两种金属颗粒以纯金属状态而不是以合金的状态存在,金银两种颗粒直径均在2~50nm范围,并且分散均匀,所制薄膜在吸收光谱中可观察到两个吸收峰,具有优良的非线形特性。The advantage of the present invention is that: the gold and silver nanoparticles dispersed oxide optical composite film prepared by the present invention has a nano-layered structure, and the two kinds of metal particles of gold and silver exist in the state of pure metal instead of the state of alloy, and the two kinds of particles of gold and silver exist in the state of alloy. The diameters are all in the range of 2-50nm, and the dispersion is uniform. Two absorption peaks can be observed in the absorption spectrum of the prepared thin film, which has excellent nonlinear characteristics.
附图说明 Description of drawings
图1为本发明设计的纳米金属颗粒分散氧化物多层薄膜的模式图。楔1是基板,楔2和楔3分别是Au或Ag纳米颗粒层,楔4是氧化物层。Fig. 1 is a schematic diagram of the nanometer metal particle dispersed oxide multilayer film designed in the present invention. Wedge 1 is the substrate,
图2为金银纳米颗粒分散氧化物多层薄膜的断面透射电子显微照片。楔1是纳米Au颗粒层,楔2是纳米Ag颗粒层,颗粒直径为6-8nm,楔3为SiO2层的厚度约为10nm,楔4是基板。Fig. 2 is a cross-sectional transmission electron micrograph of gold and silver nanoparticles dispersed oxide multilayer film. Wedge 1 is a nano-Au particle layer,
具体实施方式 Detailed ways
本发明的AuxAg1-x/SiO2体系的金银纳米颗粒分散氧化物多层薄膜,由几层甚至几百层金银纳米金属颗粒层和氧化物组成,金银纳米颗粒直径在2~50nm,氧化物层厚度在几个纳米至几十纳米。图2表示金银多层薄膜的纳米层状形貌(其中Au纳米颗粒层为3层,Ag纳米颗粒层为3层,SiO2层为7层)的断面透射电子显微照片。如图2所示,在大面积范围内纳米金属颗粒层完全平行,间隔均匀,整个薄膜的厚度为70nm。其中SiO2层的厚度为10nm,金银纳米颗粒的直径为6-8nm。此薄膜采用溅射技术制备。The AuxAg1 -x / SiO2 system gold-silver nanoparticle dispersed oxide multilayer film of the present invention is composed of several layers or even hundreds of layers of gold-silver nano-metal particle layers and oxides, and the diameter of the gold-silver nanoparticle is 2 ~50nm, the thickness of the oxide layer is several nanometers to tens of nanometers. Fig. 2 represents the cross-sectional transmission electron micrograph of the nano-layered morphology of the gold-silver multilayer film (wherein the Au nanoparticle layer is 3 layers, the Ag nanoparticle layer is 3 layers, and the SiO 2 layer is 7 layers). As shown in Fig. 2, the nano metal particle layer is completely parallel and evenly spaced in a large area, and the thickness of the entire film is 70nm. The thickness of the SiO2 layer is 10nm, and the diameter of the gold and silver nanoparticles is 6-8nm. The thin film is prepared by sputtering technique.
其具体工艺流程为:Its specific technological process is:
1、Au、Ag和SiO2溅射靶材的直径为50mm,纯度为99.99%。1. Au, Ag and SiO 2 sputtering targets have a diameter of 50mm and a purity of 99.99%.
2、将石英基板在丙酮中超声波清洗5-10分钟后,装入溅射室内。2. Clean the quartz substrate ultrasonically in acetone for 5-10 minutes, and then put it into the sputtering chamber.
3、待溅射室内基体压力小于1×10-6~5×10-4Pa后,导入氧气和氩气,其流量分别为5~10立方厘米/分钟,以及5~30立方厘米/分钟,成膜压力保持在0.1~1Pa之间,Au和Ag的溅射靶和高周波电感线圈的功率定在50-300W。SiO2溅射靶和高周波电感线圈的功率定在50-300W。待等离子体稳定3~10分钟。3. After the substrate pressure in the sputtering chamber is less than 1×10 -6 ~ 5×10 -4 Pa, introduce oxygen and argon, and the flow rates are 5-10 cubic centimeters/minute and 5-30 cubic centimeters/minute, respectively. The film forming pressure is kept between 0.1-1Pa, and the power of the Au and Ag sputtering targets and the high-frequency inductance coil is set at 50-300W. The power of SiO 2 sputtering target and high frequency inductance coil is set at 50-300W. Wait for the plasma to stabilize for 3 to 10 minutes.
4、打开Au或Ag溅射靶和基板前的遮板,沉积Au或Ag膜,沉积时间为5~300秒。然后,关闭Au或Ag溅射靶和基板前的遮板。4. Open the shutter in front of the Au or Ag sputtering target and the substrate, deposit the Au or Ag film, and the deposition time is 5-300 seconds. Then, close the shutter in front of the Au or Ag sputtering target and the substrate.
5、打开SiO2溅射靶和基板前的遮板,沉积SiO2膜,沉积时间为5~60分钟。然后,关闭SiO2溅射靶和基板前的遮板。5. Open the shutter in front of the SiO 2 sputtering target and the substrate, and deposit the SiO 2 film, and the deposition time is 5 to 60 minutes. Then, close the shutter in front of the SiO2 sputtering target and substrate.
6、打开Au或Ag溅射靶和基板前的遮板,沉积Au或Ag膜,沉积时间为5~300秒。然后,关闭Au或Ag溅射靶和基板前的遮板。6. Open the shutter in front of the Au or Ag sputtering target and the substrate, and deposit the Au or Ag film. The deposition time is 5-300 seconds. Then, close the shutter in front of the Au or Ag sputtering target and the substrate.
7、重复步骤5。7. Repeat step 5.
8、重复步骤(4)(5)(6)(7),交替沉积Au或Ag膜以及SiO2膜,制备多层AuxAg1-x/SiO2薄膜。8. Repeat steps (4) (5) (6) (7) to alternately deposit Au or Ag films and SiO 2 films to prepare multilayer Au x Ag 1-x /SiO 2 films.
表1给出了本发明的几个优选实施例:Table 1 has provided several preferred embodiments of the present invention:
表1优选实施例Table 1 preferred embodiment
续上表continued
综上所述,本发明设计的制备工艺方法能够制备具有纳米层状结构的金银纯金属纳米颗粒分散氧化物多层非线性光学薄膜。In summary, the preparation process designed in the present invention can prepare gold and silver pure metal nanoparticles dispersed oxide multilayer nonlinear optical film with nano-layered structure.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100115542A CN100383275C (en) | 2005-04-11 | 2005-04-11 | A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100115542A CN100383275C (en) | 2005-04-11 | 2005-04-11 | A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1670239A CN1670239A (en) | 2005-09-21 |
CN100383275C true CN100383275C (en) | 2008-04-23 |
Family
ID=35041672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100115542A Expired - Fee Related CN100383275C (en) | 2005-04-11 | 2005-04-11 | A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100383275C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091692B (en) * | 2013-01-10 | 2015-08-19 | 同济大学 | Based on the impedance type nickel film calorimeter and preparation method thereof of laser etching method |
CN106092861B (en) * | 2016-05-26 | 2019-02-26 | 国家纳米科学中心 | Spectral Ellipsometry Fitting Methods for Nanoparticles |
CN107916407A (en) * | 2017-11-14 | 2018-04-17 | 辽宁大学 | A kind of preparation method of the uniform SERS substrate of surface particles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533272A (en) * | 1991-07-22 | 1993-02-09 | Mitsui Eng & Shipbuild Co Ltd | Metallic leather |
JP2000117871A (en) * | 1998-10-09 | 2000-04-25 | Suzutora:Kk | Selective light transmitting film |
CN1485459A (en) * | 2003-09-01 | 2004-03-31 | 北京科技大学 | A kind of preparation method of nanometer metal particle dispersed oxide optical film |
-
2005
- 2005-04-11 CN CNB2005100115542A patent/CN100383275C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533272A (en) * | 1991-07-22 | 1993-02-09 | Mitsui Eng & Shipbuild Co Ltd | Metallic leather |
JP2000117871A (en) * | 1998-10-09 | 2000-04-25 | Suzutora:Kk | Selective light transmitting film |
CN1485459A (en) * | 2003-09-01 | 2004-03-31 | 北京科技大学 | A kind of preparation method of nanometer metal particle dispersed oxide optical film |
Non-Patent Citations (1)
Title |
---|
(Au,Ag)-SiO_2和(Au,Ag)-TiO_2纳米金属颗粒膜的制备及其光学共振吸收特性. 王取泉,石兢,杨柏峰,刘海林,于国萍,周正国,熊贵光,田德诚.纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷). 2001 * |
Also Published As
Publication number | Publication date |
---|---|
CN1670239A (en) | 2005-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abid et al. | Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review | |
Mostafa et al. | Au@ CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution | |
Darwish et al. | Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment | |
Darwish et al. | Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment | |
Axelevitch et al. | Investigation of optical transmission in thin metal films | |
CN104656170B (en) | Broadband light full absorber and preparation method thereof | |
Mathpal et al. | Opacity and plasmonic properties of Ag embedded glass based metamaterials | |
CN100554484C (en) | Fe based amorphous nano dusty spray and argon gas atomization production thereof | |
CN101429644A (en) | Production method of metal or metal oxide nano particle | |
JP5799362B2 (en) | Production method of hollow nanoparticles | |
Kayed | The optical properties of individual silver nanoparticles in Ag/Ag2O composites synthesized by oxygen plasma treatment of silver thin films | |
Peter et al. | High rate deposition system for metal-cluster/SiO x C y H z–polymer nanocomposite thin films | |
Haider et al. | Preparation and characterization of gold coated super paramagnetic iron nanoparticle using pulsed laser ablation in liquid method | |
Ran et al. | Freeze-drying induced nanocrystallization of VO2 (M) with improved mid-infrared switching properties | |
CN100379891C (en) | A kind of preparation method of copper-silver nanoparticle dispersed oxide optical film | |
CN100383275C (en) | A kind of preparation method of gold-silver nanoparticle dispersed oxide optical film | |
CN112147724A (en) | Mxene-based broadband and wide-angle perfect absorber and preparation method thereof | |
CN113249700B (en) | A metamaterial with infrared high refractive index and low dispersion and its preparation method | |
CN110656306A (en) | Metal @ GST medium heterogeneous nano core-shell structure and preparation method thereof | |
CN1208497C (en) | Process for preparing nanometer metallic particles dispersion oxide optical thin film | |
JP5057457B2 (en) | Magneto-optical material and manufacturing method thereof | |
CN100379892C (en) | Preparation method of copper-gold nanoparticle dispersed oxide optical film | |
TWI429492B (en) | Preparation of inorganic nano-particles and application of the preparation of the system | |
CN109972090B (en) | A kind of perfect absorber coating and preparation method thereof | |
CN110849864A (en) | A patterned core-shell structure nanoparticle SERS active substrate and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080423 Termination date: 20110411 |