[go: up one dir, main page]

JPH06287055A - Production of sintered article of ceramic - Google Patents

Production of sintered article of ceramic

Info

Publication number
JPH06287055A
JPH06287055A JP5074443A JP7444393A JPH06287055A JP H06287055 A JPH06287055 A JP H06287055A JP 5074443 A JP5074443 A JP 5074443A JP 7444393 A JP7444393 A JP 7444393A JP H06287055 A JPH06287055 A JP H06287055A
Authority
JP
Japan
Prior art keywords
raw material
molded body
thermosetting resin
ceramic
degreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5074443A
Other languages
Japanese (ja)
Inventor
Chihiro Shudo
千尋 周藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5074443A priority Critical patent/JPH06287055A/en
Publication of JPH06287055A publication Critical patent/JPH06287055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide production of a sintered article of ceramic slightly causing defects such as deformation and cracking in a production process, capable of greatly improving qualities, yield of product and mass productivity even in the case of a large-sized product of a complicate shape. CONSTITUTION:Raw material powder of ceramic is blended with an organic binder comprising 5-50wt.% of a thermosetting resin based on the whole amount of a binder and the rest of a component to be readily de-fatted at a low temperature of 100-200 deg.C to give a raw material mixture. The prepared raw material mixture is molded by injection molding to form an injection molded article of a given shape. The injection molded article is heat-treated to >= the curing temperature of the thermosetting resin, the thermosetting resin is cured, the raw material powder of ceramic is cross-linked with the thermosetting resin to form the cured molded article and the cured molded article is defatted and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス焼結体の製
造方法に係り、特に大型で複雑形状を有する場合におい
ても、変形や割れなどの欠陥の発生が少ないセラミック
ス焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramics sintered body, and more particularly to a method for manufacturing a ceramics sintered body in which defects such as deformation and cracks are less likely to occur even when the ceramics is large and has a complicated shape.

【0002】[0002]

【従来の技術】従来からセラミックス焼結体の一般的な
製造方法として、セラミックス原料粉末と有機バインダ
とから成る原料混合物を金型成形法や射出成形法によっ
て所定形状に成形し、得られた成形体を脱脂焼結して製
造する方法が広く採用されている。
2. Description of the Related Art Conventionally, as a general method for producing a ceramics sintered body, a raw material mixture consisting of a ceramic raw material powder and an organic binder is molded into a predetermined shape by a die molding method or an injection molding method, and the obtained molding is carried out. A method of manufacturing by degreasing and sintering a body is widely adopted.

【0003】従来の金型成形法においては、セラミック
ス原料粉末に対して5〜10重量%程度と比較的に少量
の有機バインダを添加して原料混合体を調製しているた
め、成形体の脱脂も比較的に容易で短時間に実施するこ
とが可能である。しかしながら、金型成形法では一軸方
向に原料混合体を加圧して成形体を形成しているため、
成形体の形状に制約が多く、複雑形状のセラミックス成
形体の製造には不適である。
In the conventional mold forming method, since the raw material mixture is prepared by adding a relatively small amount of the organic binder of about 5 to 10% by weight to the ceramic raw material powder, degreasing of the formed body is performed. Is relatively easy and can be performed in a short time. However, in the mold forming method, the raw material mixture is pressed in a uniaxial direction to form the formed body,
There are many restrictions on the shape of the molded body, and it is not suitable for manufacturing a ceramic molded body having a complicated shape.

【0004】一方、射出成形法は本来、高寸法精度のプ
ラスチック製品を量産するために開発された成形法であ
が、近年はセラミックスや金属等の粉末冶金分野にま
で、その適用範囲が拡大されている。
On the other hand, the injection molding method was originally developed to mass-produce plastic products with high dimensional accuracy, but in recent years, its application range has been expanded to the field of powder metallurgy of ceramics and metals. ing.

【0005】射出成形法によってセラミックス製品を製
造する場合は、従来、エンジニアリングプラスチックの
造形等に使用されるポリエチレン、ポリスチレン等の熱
可塑性樹脂を主成分とする有機バインダまたはパラフィ
ン等のワックスを主成分とする有機バインダを結合剤と
してセラミックス原料粉末に混合し、混練により均一化
した原料混合体を加熱して流動性の良い状態で所定形状
の金型に圧入して成形体とし、この形状付与された成形
体を脱脂工程で加熱して有機成分を除去した後に焼結し
て製造されていた。
When a ceramic product is manufactured by an injection molding method, an organic binder mainly composed of a thermoplastic resin such as polyethylene or polystyrene, which has been conventionally used for modeling an engineering plastic, or a wax such as paraffin is the main component. The organic raw material mixture is mixed with the ceramic raw material powder as a binder, and the raw material mixture homogenized by kneading is heated and pressed into a mold of a predetermined shape in a state of good fluidity to form a molded body, and this shape is given. It was manufactured by heating the molded body in a degreasing process to remove organic components and then sintering.

【0006】射出成形法によれば複雑形状品でも容易に
成形でき、成形操作も単純で成形時間も短く量産性にも
優れている。
According to the injection molding method, even a complicatedly shaped product can be easily molded, the molding operation is simple, the molding time is short, and the mass productivity is excellent.

【0007】[0007]

【発明が解決しようとする課題】しかしながら射出成形
法においては、特に成形型内における成形用原料の良好
な流動性を確保するため、セラミックス原料粉末に対す
る有機バインダの添加量が20〜60重量%と極めて多
い。
However, in the injection molding method, the amount of the organic binder added is 20 to 60% by weight with respect to the ceramic raw material powder in order to ensure good fluidity of the raw material for molding, particularly in the molding die. Extremely many.

【0008】そのため射出成形によって所定形状を付与
した後の脱脂工程において、不要になったバインダ成分
の除去が極めて困難であり、クラックや発泡等の欠陥が
生じ易く製品歩留りが低下する問題点があった。特に肉
厚の大型成形体についてはバインダ除去が著しく困難と
なっている。また脱脂時の加熱操作によって成形体がさ
らに軟化して変形を生じる傾向があり、この傾向は複雑
形状を有する成形体の場合において、より顕著になる。
したがって、特に大型で複雑形状を有するセラミックス
焼結体を射出成形法によって製造する場合には最終製品
の製造歩留りが大幅に低下してしまう問題点があった。
Therefore, it is extremely difficult to remove the unnecessary binder component in the degreasing step after the predetermined shape is formed by injection molding, and defects such as cracks and foaming are apt to occur, resulting in a problem that the product yield is lowered. It was In particular, it is extremely difficult to remove the binder from a large-sized molded body having a large wall thickness. Further, the heating operation during degreasing tends to further soften and deform the molded body, and this tendency becomes more remarkable in the case of the molded body having a complicated shape.
Therefore, there is a problem that the manufacturing yield of the final product is significantly reduced when a ceramics sintered body having a large size and a complicated shape is manufactured by an injection molding method.

【0009】従来使用されてきた有機バインダとしての
熱可塑性樹脂等を含む成形用材料においては、熱可塑性
樹脂等の加熱により流動性が付与され、かつ金型内の低
温度では固化する性質を有し、成形体を型から容易に取
り出すことが容易な有機バインダが使用されている。
A molding material containing a thermoplastic resin or the like as an organic binder which has been conventionally used has a property that fluidity is imparted by heating the thermoplastic resin or the like and solidifies at a low temperature in a mold. However, an organic binder is used that allows the molded body to be easily removed from the mold.

【0010】一般に加熱により流動性を付与する射出成
形法においては、低温度条件下で固化する一方、高温条
件下に置くと軟化し流動性を現す有機バインダが使用さ
れている。そのため脱脂時の高温条件下においてはセラ
ミックス原料粉末と有機バインダとの混練物は、ほとん
ど構造強度を持ち合せていない状態である。すなわち従
来のバインダ組成物では、高温度条件下におけるバイン
ダ強度はほとんどなく、粉体同士の絡み合いおよび粒子
間作用力のみによって、保形強度が維持されていると考
えられる。従って、この状態で急激に高温度まで加熱し
て脱脂しようとすると、バインダの分解揮発成分のガス
圧によって成形体にクラック等の欠陥が発生してしま
う。この傾向は成形体の肉厚が大きくなるほど顕著にな
り、肉厚が20mmを超えると急速に脱脂が困難になる主
な原因であるとされている。
Generally, in an injection molding method in which fluidity is imparted by heating, an organic binder is used which solidifies under low temperature conditions and softens and exhibits fluidity under high temperature conditions. Therefore, under high temperature conditions during degreasing, the kneaded product of the ceramic raw material powder and the organic binder has almost no structural strength. That is, it is considered that the conventional binder composition has almost no binder strength under high temperature conditions, and the shape retention strength is maintained only by the entanglement of powder particles and the interparticle working force. Therefore, if it is attempted to degrease by rapidly heating to a high temperature in this state, defects such as cracks will occur in the molded body due to the gas pressure of the decomposed and volatile components of the binder. It is said that this tendency becomes more remarkable as the wall thickness of the molded product increases, and that when the wall thickness exceeds 20 mm, degreasing becomes difficult rapidly.

【0011】このような状況から、通常、肉厚が20mm
以上となる大型の成形体を得るためには、ガス流および
温度パターンを高精度に制御した脱脂加熱炉内に生成形
体を配置し、150〜200時間と極めて長時間にわた
る昇温スケジュールに基づいて、緩速度で脱脂を遂行す
る必要があり、必然的にセラミックス製品の製造効率が
大幅に低下し量産性が乏しいという問題があった。しか
も、上記のように長時間にわたる慎重な脱脂操作を継続
した場合においても、脱脂後にクラック等の欠陥が発生
する割合が依然として高く、実用的な工業的製法とは成
り得ていない現状である。
Under these circumstances, the wall thickness is usually 20 mm.
In order to obtain a large-sized molded body as described above, the molded body is placed in a degreasing heating furnace in which a gas flow and a temperature pattern are controlled with high accuracy, and based on a heating schedule of 150 to 200 hours, which is extremely long. However, there is a problem in that it is necessary to perform degreasing at a slow speed, which inevitably greatly reduces the production efficiency of ceramic products and thus impairs mass productivity. Moreover, even when the careful degreasing operation is continued for a long period of time as described above, the rate of defects such as cracks occurring after degreasing is still high, and it cannot be a practical industrial method.

【0012】本発明は上記の問題点を解決するためにな
されたものであり、特に大型で複雑形状を有する場合に
おいても、製造工程において変形や割れ等の欠陥の発生
が少なく、品質、製品歩留りおよび量産性を大幅に改善
できるセラミックス焼結体の製造方法を提供することを
目的とする。
The present invention has been made to solve the above-mentioned problems, and even in the case of a large size and a complicated shape, defects such as deformation and cracks are less likely to occur in the manufacturing process, and the quality and the product yield are improved. And it aims at providing the manufacturing method of the ceramics sintered compact which can improve mass productivity sharply.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るセラミックス焼結体の製造方法は、全
バインダ量に対して5〜50重量%の熱硬化性樹脂と残
部が100〜200℃の低温度で脱脂可能な易脱脂成分
とから成る有機バインダをセラミックス原料粉末に添加
混練して原料混合体を調製し、得られた原料混合体を射
出成形法により成形して所定形状の射出成形体を形成
し、この射出成形体を熱硬化性樹脂の硬化温度以上に加
熱処理することにより熱硬化性樹脂を硬化させセラミッ
クス原料粉末間を上記熱硬化性樹脂で架橋して硬化成形
体を調製し、しかる後に硬化成形体を脱脂焼結すること
を特徴とする。
In order to achieve the above object, in the method for producing a ceramics sintered body according to the present invention, a thermosetting resin of 5 to 50% by weight with respect to the total amount of binder and a balance of 100 to 100% are used. An organic binder composed of an easily degreasing component that can be degreased at a low temperature of 200 ° C. is added and kneaded to a ceramic raw material powder to prepare a raw material mixture, and the obtained raw material mixture is molded by an injection molding method to obtain a predetermined shape. An injection-molded body is formed, and the thermosetting resin is cured by heating the injection-molded body to a temperature not lower than the curing temperature of the thermosetting resin, and the ceramic raw material powder is crosslinked with the thermosetting resin to cure the molded body. Is prepared, and then the cured molded body is degreased and sintered.

【0014】ここで、上記製造方法において使用される
セラミックス原料粉末は、主として無機質の化合物を主
体とする混合物であって、そのうちでも特に代表的なも
のを例示すれば、アルミナ、ジルコニア、チタニア、ム
ライト、ベリリア、コージェライト、ジルコン、サイア
ロン、窒化珪素、炭化珪素、窒化アルミニウム、窒化硼
素もしくはフェライトなどの酸化物系ならびに非酸化物
系の汎用セラミックス原料の一種あるいはこれらの混合
物を主体とし、さらに炭酸マグネシウム、炭酸カルシウ
ム、酸化イットリウム、酸化セリウムもしくは珪酸など
のような公知慣用の焼結助剤や、Li2 O、BaO、T
2 3 、PtもしくはPdなどの電気的性質を変化さ
せるような各種の添加剤を加えたものである。
Here, the ceramic raw material powder used in the above-mentioned manufacturing method is a mixture mainly composed of an inorganic compound. Among them, particularly typical ones are alumina, zirconia, titania and mullite. One or a mixture of oxide-based and non-oxide-based general-purpose ceramic raw materials such as beryllium, beryllia, cordierite, zircon, sialon, silicon nitride, silicon carbide, aluminum nitride, boron nitride or ferrite, and magnesium carbonate. , Known conventional sintering aids such as calcium carbonate, calcium carbonate, yttrium oxide, cerium oxide or silicic acid, Li 2 O, BaO, T
Various additives such as a 2 O 3 , Pt or Pd that change the electrical properties are added.

【0015】有機バインダ(結合剤)は、セラミックス
原料粉末を相互に結合し、成形体の形状を保持するため
に添加されるものであるが、本発明では従来汎用の熱可
塑性樹脂の他に5〜50重量%の熱硬化性樹脂を含有し
た組成物を有機バインダとして使用することが大きな特
徴である。
The organic binder (binder) is added in order to bond the ceramic raw material powders to each other and maintain the shape of the molded body. In the present invention, in addition to the conventional general-purpose thermoplastic resin, 5 A major feature is to use a composition containing ˜50 wt% of thermosetting resin as an organic binder.

【0016】すなわち本発明方法に方法において使用さ
れる有機バインダは全バインダ量に対して5〜50重量
%の熱硬化性樹脂と、残部が100〜200℃の低温度
で脱脂可能な易脱脂成分とから成る。
That is, the organic binder used in the method of the present invention is a thermosetting resin in an amount of 5 to 50% by weight based on the total amount of the binder, and the rest is an easily degreasing component which can be degreased at a low temperature of 100 to 200 ° C. It consists of and.

【0017】成形体中に含有された熱硬化性樹脂は、後
述する加熱処理によって硬化し、セラミックス原料粉末
間を架橋し、成形体の保形強度を高めるとともに、架橋
したセラミックス原料粉末間に間隙を形成する。この間
隙は脱脂加熱時において、上記易脱脂成分の揮散経路と
なり、この揮散経路を通り、易脱脂成分が効率的に成形
体から排除されるため、高品質のセラミックス焼結体が
得られる。
The thermosetting resin contained in the molded body is cured by the heat treatment described later to crosslink between the ceramic raw material powders to enhance the shape retention strength of the molded body and to form a gap between the crosslinked ceramic raw material powders. To form. This gap serves as a volatilization path of the above-mentioned easily degreasing component during degreasing heating, and the easily degreasing component is efficiently removed from the molded body through this volatilization path, so that a high quality ceramic sintered body can be obtained.

【0018】有機バインダ組成物に占める熱硬化性樹脂
の含有量が5重量%未満の場合は、上記架橋が少なく、
揮散経路の生成量が少なく、脱脂性が低下する。一方、
その含有量が50重量%を超える場合には、分解温度が
高い硬化脱脂が成形体中に残留し易く成形体の焼結時に
割れが発生し易くなる。したがって有機バインダ中の熱
硬化性樹脂の含有量は5〜50重量%の範囲に設定され
る。
When the content of the thermosetting resin in the organic binder composition is less than 5% by weight, the above-mentioned crosslinking is small,
The amount of volatilization route produced is small and the degreasing property is reduced. on the other hand,
When the content exceeds 50% by weight, curing degreasing having a high decomposition temperature tends to remain in the molded body and cracks are likely to occur during sintering of the molded body. Therefore, the content of the thermosetting resin in the organic binder is set in the range of 5 to 50% by weight.

【0019】また有機バインダを構成する熱硬化性樹脂
としては不飽和ポリエステル樹脂、フェノール樹脂、ア
ミノ系樹脂、エポキシ樹脂、ジアリルフタレート樹脂、
熱硬化型ウレタン樹脂または熱硬化型アクリル樹脂など
が代表的なものであるが、特に、ジアリルフタレート樹
脂が好ましい。
As the thermosetting resin constituting the organic binder, unsaturated polyester resin, phenol resin, amino resin, epoxy resin, diallyl phthalate resin,
A thermosetting urethane resin or a thermosetting acrylic resin is typical, but a diallyl phthalate resin is particularly preferable.

【0020】また有機バインダ成分としては、上記熱硬
化性樹脂のほかに、原料の分散性、滑性、収縮防止、離
型性、溶融粘度の調整または気孔率の調整などの物性効
果がある各種の添加剤を易脱脂成分として配合する。
In addition to the above thermosetting resin, the organic binder component has various physical properties such as dispersibility of raw materials, lubricity, prevention of shrinkage, releasability, adjustment of melt viscosity or adjustment of porosity. Is added as an easily degreasing component.

【0021】この添加剤の具体例としては、パラフィ
ン、灯油のようなワックス類、油脂類またはそれらの誘
導体、エチレングリコールやジブチルフタレートもしく
はジオクチルフタレートなどの溶剤類または可塑剤類、
ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル
共重合体、塩素化ポリエチレン、ポリシロキサン、アク
リル酸系ポリマー、ポリスチレン、ポリオキシエチレン
またはポリオキシプロピレンなどの各種の熱可塑性樹脂
類が採用される。特にこれらの添加剤は100〜200
℃の低温度で容易に分解する易脱脂成分である。
Specific examples of the additive include waxes such as paraffin and kerosene, fats and oils or their derivatives, solvents such as ethylene glycol, dibutyl phthalate or dioctyl phthalate, and plasticizers,
Various thermoplastic resins such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, chlorinated polyethylene, polysiloxane, acrylic acid-based polymer, polystyrene, polyoxyethylene or polyoxypropylene are adopted. In particular, these additives are 100 to 200
It is an easily degreasing component that decomposes easily at a low temperature of ℃.

【0022】また本発明方法において使用される有機バ
インダとしては、平均粒径が1mm以下に造粒された樹脂
組成物を使用することが望ましい。すなわち本発明者ら
は、欠陥のない均質なセラミックス焼結体を得ることが
可能な有機バインダ成分の粒径の大小について研究を重
ねた。その結果セラミックス射出成形用材料において、
有機バインダ成分がセラミックス粉末と最も良くなじむ
粒径の大きさは1mm以下であることが判明した。
As the organic binder used in the method of the present invention, it is desirable to use a resin composition having an average particle size of 1 mm or less. That is, the present inventors have conducted extensive research on the size of the particle size of the organic binder component capable of obtaining a homogeneous ceramics sintered body having no defects. As a result, in ceramic injection molding materials,
It has been found that the size of the particle size with which the organic binder component is most compatible with the ceramic powder is 1 mm or less.

【0023】本発明方法で使用するセラミックス射出成
形用材料では、有機バインダ成分を構成する樹脂、滑剤
などの各成分粒子の加熱前の粒径は1mm以下に調整さ
れ、有機バインダの成分とセラミックス粉末とが均一に
分散するように混合されて調製される。これは有機バイ
ンダの成分の粒径がこの大きさであると、セラミックス
原料粉末とのなじみが良く、このセラミックス原料粉末
に対して均一に分散して混合すると考えられる。従って
有機バインダの粉末はセラミックス粉末と良好になじむ
ために、混合過程で容易且つ均一に分散して混合され
る。
In the ceramic injection molding material used in the method of the present invention, the particle size of each component particle such as resin and lubricant constituting the organic binder component before heating is adjusted to 1 mm or less, the component of the organic binder and the ceramic powder. And are mixed so that they are uniformly dispersed. It is considered that when the particle size of the component of the organic binder is this size, it is well compatible with the ceramic raw material powder and uniformly dispersed and mixed with the ceramic raw material powder. Therefore, since the powder of the organic binder is well compatible with the ceramic powder, it is easily and uniformly dispersed and mixed in the mixing process.

【0024】本発明方法を実施するに際して、上記セラ
ミックス原料粉末と有機バインダとを混練して射出成形
用材料を調製する操作は、いかなる混合機、撹拌機によ
っても可能ではあるが、加圧式ニーダ、加熱式の真空押
出機、真空混合撹拌機、双腕式ニーダ、ロールあるいは
一軸または多軸の混合機などによるのが好適である。こ
の混練操作は材料が硬化しない80〜90℃の温度条件
で実施される。
In carrying out the method of the present invention, the operation of kneading the ceramic raw material powder and the organic binder to prepare an injection molding material can be carried out by any mixer or stirrer, but a pressure kneader, A heating type vacuum extruder, a vacuum mixing agitator, a double-arm type kneader, a roll, a single-axis or multi-axis mixer, or the like is suitable. This kneading operation is carried out at a temperature of 80 to 90 ° C. at which the material does not harden.

【0025】上記混合物を調製するにあたり、その混合
比は、上記セラミックス原料粉末100重量部に対して
上記有機バインダが8〜60重量部、好ましくは20〜
40重量部となるように設定するとよい。
In preparing the above mixture, the mixing ratio is 8 to 60 parts by weight, preferably 20 to 60 parts by weight of the organic binder with respect to 100 parts by weight of the ceramic raw material powder.
It may be set to be 40 parts by weight.

【0026】上記有機バインダの量が過少のときは混合
物の流動性が低下して、成形不良となり易く、逆に多す
ぎる場合には、脱脂工程ないしは焼成工程においてクラ
ックや収縮変形などのトラブルが生じ易くなる。
When the amount of the above organic binder is too small, the fluidity of the mixture tends to deteriorate, and molding defects tend to occur. On the contrary, when the amount is too large, problems such as cracks and shrinkage deformation occur in the degreasing process or the firing process. It will be easier.

【0027】そして混練操作によって調製された原料混
合体は、造粒され直径が5〜10mm程度のペレット状の
射出成形材料とされ、さらに射出成形機に投入されて所
定形状の射出成形体が形成される。この射出成形温度は
ペレットを充分に軟化流動せしめる温度であり、かつ熱
硬化性樹脂が硬化しない温度、具体的には80〜120
℃程度に設定される。
The raw material mixture prepared by the kneading operation is granulated and made into a pellet-shaped injection molding material having a diameter of about 5 to 10 mm, which is further charged into an injection molding machine to form an injection molding having a predetermined shape. To be done. The injection molding temperature is a temperature at which the pellets are sufficiently softened and fluidized, and the temperature at which the thermosetting resin does not cure, specifically, 80 to 120.
It is set to about ℃.

【0028】次に得られた射出成形体は、熱硬化性樹脂
の硬化温度以上に短時間で加熱処理される。この加熱処
理により射出成形体に含有される熱硬化性樹脂が硬化
し、セラミックス原料粉末間を架橋し射出成形体の保形
強度が高められる。この加熱処理により保形強度が高い
硬化成形体が形成されるとともに、硬化成形体中に含ま
れる易脱脂成分が、全バインダ量の4重量%程度除去さ
れることにより、架橋部を除く硬化成形体内部に多孔状
の揮飛経路が形成される。
Next, the obtained injection-molded body is heat-treated at a temperature not lower than the curing temperature of the thermosetting resin in a short time. This heat treatment cures the thermosetting resin contained in the injection-molded body, crosslinks between the ceramic raw material powders, and enhances the shape retention strength of the injection-molded body. By this heat treatment, a cured molded article having high shape retention strength is formed, and the easily degreased component contained in the cured molded article is removed by about 4% by weight of the total amount of the binder, so that the cured molded article excluding the crosslinked portion is formed. A porous volatilization route is formed inside the body.

【0029】また上記射出成形体の加熱処理条件は、温
度120〜200℃の範囲で1時間以内に設定される。
加熱温度が120℃未満の場合は成形体が充分に硬化せ
ず、一方加熱温度が200℃を超えると硬化が急速に進
行して硬度の調整が困難になる。
The heat treatment conditions for the injection molded article are set within a range of 120 to 200 ° C. within 1 hour.
If the heating temperature is lower than 120 ° C., the molded body will not be sufficiently cured, while if the heating temperature exceeds 200 ° C., the curing will proceed rapidly and the hardness adjustment will become difficult.

【0030】また加熱処理温度が高過ぎるとポリスチレ
ンなどの有機バインダ構成成分が互いに凝集して分散性
が悪化する。従って加熱処理温度は有機バインダの分解
温度未満に設定することが必要である。
On the other hand, if the heat treatment temperature is too high, the constituent components of the organic binder such as polystyrene aggregate with each other and the dispersibility deteriorates. Therefore, it is necessary to set the heat treatment temperature below the decomposition temperature of the organic binder.

【0031】ここで加熱処理後におけるセラミックス成
形体の硬度は、スプリング式硬度計(HD−100Nシ
リーズ、上島製作所製)にて計測してゴム硬度で50以
上、好ましくは80以上に調整するとよい。成形体の硬
度が50未満であると、成形体の構造強度が不充分であ
り、脱脂時に発生する分解ガスの圧力によって割れを生
じ易くなる。またセラミックス成形体を硬化させる時間
は1時間以内と短時間に設定することが肝要である。こ
の硬化時間が1時間を超えると、成形体に割れが発生し
易くなるからである。
Here, the hardness of the ceramic molded body after the heat treatment may be adjusted to a rubber hardness of 50 or more, preferably 80 or more as measured by a spring hardness meter (HD-100N series, manufactured by Ueshima Seisakusho). When the hardness of the molded body is less than 50, the structural strength of the molded body is insufficient and cracks are likely to occur due to the pressure of the decomposition gas generated during degreasing. Further, it is important to set the time for hardening the ceramic molded body to a short time such as within 1 hour. This is because if the curing time exceeds 1 hour, cracks are likely to occur in the molded body.

【0032】次に得られた硬化成形体は脱脂される。こ
の脱脂操作前半において硬化成形体に含まれる易脱脂成
分の分解ガスは、上記揮散経路を通って円滑に系外に排
出される。この間硬化成形体の形状は、高温度条件下に
も拘らず、架橋部における保形作用によって所定の形状
を維持し変形を起こすことはない。ここで易脱脂成分の
除去率が4重量%未満の場合には、上記揮散経路の生成
量が不充分になる。さらに脱脂操作後半において、脱脂
温度が上昇し架橋部を構成する熱硬化性樹脂の分解温度
を超える時点で架橋部を構成する樹脂成分が揮散され、
成形体はほぼ完全に脱脂される。
Next, the obtained cured molded article is degreased. In the first half of this degreasing operation, the decomposition gas of the easily degreasing component contained in the cured molded article is smoothly discharged to the outside of the system through the volatilization route. During this time, the shape of the cured molded article maintains a predetermined shape and does not deform due to the shape-retaining function in the cross-linking portion, even under high temperature conditions. Here, when the removal rate of the easily degreased component is less than 4% by weight, the amount of the vaporization route produced is insufficient. Furthermore, in the latter half of the degreasing operation, the resin component forming the crosslinked portion is volatilized when the degreasing temperature rises and exceeds the decomposition temperature of the thermosetting resin forming the crosslinked portion,
The compact is almost completely degreased.

【0033】こうして脱脂された成形体は、引き続き焼
結工程でセラミックス原料粉末の種類に応じた焼結温度
にて所定時間焼結され、各種工業用セラミックス、電子
材料用セラミックス等の製品として仕上げられる。
The degreased compact is subsequently sintered in a sintering step for a predetermined time at a sintering temperature according to the type of the ceramic raw material powder, and is finished as a product such as various industrial ceramics or electronic material ceramics. .

【0034】[0034]

【作用】上記構成に係るセラミックス焼結体の製造方法
によれば、有機バインダ成分として熱硬化性樹脂を所定
量含有しており、脱脂工程に入る前に射出成形体を加熱
処理して硬化せしめ、セラミックス原料粉末間を架橋し
ているため、成形体の構造強度が従来より高められる。
したがって射出成形体の脱脂時に分解、揮発したバイン
ダ成分のガス圧によって射出成形体にクラックが発生し
たり射出成形体が変形したり破損するおそれが少なく、
大型で複雑形状を有するセラミックス製品の製造歩留り
を大幅に改善することができる。
According to the method for manufacturing a ceramics sintered body having the above structure, a predetermined amount of thermosetting resin is contained as an organic binder component, and the injection molded body is heat-treated and cured before the degreasing step. Since the ceramic raw material powders are cross-linked with each other, the structural strength of the molded body can be increased more than before.
Therefore, it is less likely that the injection molded body is cracked or deformed or damaged by the gas pressure of the binder component that is decomposed and volatilized during degreasing of the injection molded body,
It is possible to greatly improve the manufacturing yield of large-sized and complicated ceramic products.

【0035】また上記加熱処理によって射出成形体中に
含有された熱硬化性樹脂がセラミックス原料粉末間を架
橋して保形強度が高められるとともに、架橋部の間に有
機バインダの揮散経路が多孔状に形成されるため、成形
体を高温度で脱脂した場合においても変形を生じること
がなく、また有機バインダの分解ガスは上記揮散経路を
通り効率的に成形体外部に排除され脱脂効率が良好にな
る。
By the heat treatment, the thermosetting resin contained in the injection molded body crosslinks between the ceramic raw material powders to enhance the shape retention strength, and the volatilization path of the organic binder is porous between the crosslinked portions. Therefore, even when the molded body is degreased at a high temperature, no deformation occurs, and the decomposition gas of the organic binder is efficiently removed to the outside of the molded body through the above volatilization route to improve the degreasing efficiency. Become.

【0036】[0036]

【実施例】次に本発明の一実施例について図面を参照
し、さらに比較例とともに、より具体的に説明する。
Next, one embodiment of the present invention will be described more specifically with reference to the drawings and further together with a comparative example.

【0037】実施例1〜3 平均粒径1μmの窒化けい素粉末に対して表1に示す組
成を有する各バインダ溶液を体積比で50%添加し、温
度80℃に設定した加圧ニーダにて60分間解砕混練し
て3種類の射出成形用材料を調製した。
Examples 1 to 3 50% by volume of each binder solution having the composition shown in Table 1 was added to silicon nitride powder having an average particle size of 1 μm, and the mixture was heated with a pressure kneader set to 80 ° C. Three kinds of injection molding materials were prepared by crushing and kneading for 60 minutes.

【0038】次に調製した各成形用材料を使用し、シリ
ンダ温度が100℃であり、金型温度が40℃であり、
かつ射出圧力が1000kg/cm2 なる条件で射出成形を
実施し、モデルロータ用の直径250mm×最大厚さ50
mmの円板状の大型肉厚射出成形体(グリーン体)を多数
形成した。
Next, using each of the prepared molding materials, the cylinder temperature was 100 ° C., the mold temperature was 40 ° C.,
In addition, injection molding was performed under the condition that the injection pressure was 1000 kg / cm 2 , and the diameter for model rotor was 250 mm and the maximum thickness was 50.
A large number of large-diameter disk-shaped thick-walled injection-molded bodies (green bodies) were formed.

【0039】次に得られた射出成形体を、炉内温度18
0℃に設定した電気炉(オーブン)内に1時間投入し、
加熱処理を行い硬化せしめた。加熱硬化処理後における
成形体の硬度は、前記スプリング式硬度計で測定した結
果、91〜96であった。またバインダの除去率(減量
率)は6〜9重量%であった。この時点において成形体
に割れやポア等の欠陥は観察されなかった。
Next, the obtained injection-molded body was subjected to a furnace temperature of 18
Put in an electric furnace (oven) set at 0 ° C for 1 hour,
Heat treatment was applied to cure. The hardness of the molded product after the heat curing treatment was 91 to 96 as a result of measurement with the spring hardness meter. The binder removal rate (weight reduction rate) was 6 to 9% by weight. At this time, no defects such as cracks and pores were observed in the molded body.

【0040】次に加熱処理を行った硬化成形体を、温度
180℃に設定した脱脂加熱炉に配置し、5℃/Hrの
昇温速度で温度350℃まで加熱し、さらに10℃/H
rの昇温速度で600℃まで加熱した。脱脂処理は窒素
ガス雰囲気で実施した。脱脂後の成形体中のバインダ減
量率は99.5〜99.7%であり、また外観検査を実
施したが成形体に割れやポアおよび変形はほとんど発見
されなかった。
Next, the heat-treated cured molded body is placed in a degreasing heating furnace set to a temperature of 180 ° C., heated to a temperature of 350 ° C. at a temperature rising rate of 5 ° C./Hr, and further heated to 10 ° C./H.
It was heated to 600 ° C. at a heating rate of r. The degreasing treatment was performed in a nitrogen gas atmosphere. The binder weight loss rate in the molded body after degreasing was 99.5 to 99.7%, and visual inspection was conducted, but cracks, pores and deformation were hardly found in the molded body.

【0041】次に得られた成形体を、常圧の窒素ガス雰
囲気において温度1750℃で6時間焼結して、円板状
のモデルロータ用のセラミックス焼結体を製造した。得
られた焼結体についてX線検査を実施するとともに外観
検査を行ったが、焼結体内部にポアは観察されず、外表
面部に割れ等の欠陥および変形例はほとんど認められな
かった。
Next, the obtained molded body was sintered in a nitrogen gas atmosphere at a normal pressure at a temperature of 1750 ° C. for 6 hours to manufacture a disc-shaped ceramic sintered body for a model rotor. An X-ray inspection and an appearance inspection were performed on the obtained sintered body, but no pores were observed inside the sintered body, and defects such as cracks and deformation examples on the outer surface portion were hardly recognized.

【0042】比較例1 一方比較例1として、実施例1で調製した射出成形体に
ついて、加熱処理による硬化を行わずに、直接室温の脱
脂加熱炉に配置し、5℃/Hrの昇温速度で室温から3
50℃まで加熱し、さらに10℃/Hrの昇温速度で6
00℃まで加熱するという従来の脱脂温度パターンに従
って脱脂処理を行った。しかし室温から昇温操作を開始
したため、成形体の硬化までに約20時間要した上、脱
脂中における成形体強度が低いため、全試料数の65%
に割れを生じ、また成形体の硬度が低く保形強度が小さ
いため、85%の試料に変形を生じ、最終製品歩留りが
大幅に低下してしまった。以上の結果を下記表1に示
す。
Comparative Example 1 On the other hand, as Comparative Example 1, the injection-molded article prepared in Example 1 was placed directly in a degreasing heating furnace at room temperature without being cured by heat treatment, and the temperature rising rate was 5 ° C./Hr. From room temperature to 3
Heat to 50 ° C, then 6 at a heating rate of 10 ° C / Hr.
The degreasing treatment was performed according to the conventional degreasing temperature pattern of heating to 00 ° C. However, since the temperature rising operation was started from room temperature, it took about 20 hours for the molded body to harden, and the strength of the molded body during degreasing was low.
Since the molded product had a low hardness and a low shape retention strength, 85% of the samples were deformed and the yield of the final product was significantly reduced. The above results are shown in Table 1 below.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示す結果から明らかなように実施例
1〜3における射出成形体では、有機バインダとして熱
硬化性樹脂を所定量含有するものを使用し、予め加熱硬
化処理を行っているため、成形体の構造強度が高く、変
形や割れの発生がほとんどない。特に上記加熱処理によ
って射出成形体中に含有された熱硬化性樹脂がセラミッ
クス原料粉末間を架橋して保形強度が高められるととも
に、架橋部の間に有機バインダの揮散経路が多孔状に形
成されるため、厚肉の射出成形体を高温度で脱脂した場
合においても変形を生じることがなく、また有機バイン
ダの分解ガスは上記揮散経路を通り効率的に成形体外部
に排除され脱脂効率が大幅に改善される。そのため脱脂
前の加熱硬化処理に要する時間(1時間以内)および脱
脂後の冷却時間を加えても、脱脂処理に要する全時間
を、従来の120時間程度から90時間程度まで大幅に
低減することができた。従って高品質の大型(セラミッ
クス)製品を高い歩留りで効率的に製造することができ
た。
As is clear from the results shown in Table 1, in the injection-molded articles in Examples 1 to 3, the organic binder containing a predetermined amount of the thermosetting resin was used, and the thermosetting treatment was performed in advance. The structural strength of the molded product is high, and there is almost no deformation or cracking. In particular, the thermosetting resin contained in the injection-molded body by the above heat treatment crosslinks between the ceramic raw material powders to enhance the shape retention strength, and a volatilization path of the organic binder is formed between the crosslinked portions in a porous form. Therefore, even if a thick injection molded product is degreased at high temperature, no deformation occurs, and the decomposed gas of the organic binder passes through the above volatilization path and is efficiently removed to the outside of the molded product to significantly improve the degreasing efficiency. To be improved. Therefore, the total time required for the degreasing treatment can be significantly reduced from the conventional 120 hours to about 90 hours even if the time required for the heat curing treatment before the degreasing (within 1 hour) and the cooling time after the degreasing are added. did it. Therefore, high-quality large-sized (ceramics) products could be efficiently manufactured with a high yield.

【0045】なお脱脂前に射出成形体を加熱して硬化さ
せる温度と硬化成形体の硬度との関係を調査するため
に、加熱炉の温度を110℃から170℃まで変化さ
せ、それぞれ射出生成形体を1時間処理した後の硬化成
形体の硬度を前記スプリング式硬度計を使用して測定し
たところ、加熱処理温度が120℃未満の場合には射出
成形体が充分に硬化せず、一方、温度が200℃を超え
る場合には、硬化が急速に進行して、硬度の調整が困難
となる上にふくれや割れが発生し易くなることが確認さ
れた。
In order to investigate the relationship between the temperature at which the injection molded body is heated and cured before degreasing and the hardness of the cured molded body, the temperature of the heating furnace is changed from 110 ° C. to 170 ° C. The hardness of the cured molded article after being treated for 1 hour was measured using the spring type hardness tester. When the heat treatment temperature was less than 120 ° C, the injection molded article did not cure sufficiently, while the temperature It was confirmed that when the temperature exceeds 200 ° C., the curing proceeds rapidly, which makes it difficult to adjust the hardness and causes swelling and cracking.

【0046】また上記加熱処理温度条件下における硬化
成形体中の有機バインダの除去率(減量率)を測定した
ところ、下記表2に示す結果が得られた。
Further, when the removal rate (reduction rate) of the organic binder in the cured molded article was measured under the above heat treatment temperature conditions, the results shown in Table 2 below were obtained.

【0047】[0047]

【表2】 [Table 2]

【0048】表2に示す結果から明らかなように、加熱
処理温度が150℃以上であれば有機バインダの除去率
が4重量%以上となり、硬化成形体の架橋部周辺に有機
バインダの揮散経路が充分に形成されることとなり、脱
脂が円滑に進行することが判明した。
As is clear from the results shown in Table 2, when the heat treatment temperature is 150 ° C. or higher, the removal rate of the organic binder is 4% by weight or more, and the volatilization route of the organic binder is formed around the crosslinked portion of the cured molded article. It was found that the degreasing was sufficiently performed and the degreasing proceeded smoothly.

【0049】以上の実施例においては、射出成形法を使
用した場合のセラミックス焼結体の製造方法について述
べているが、本発明方法は射出成形に限らず、押出成形
法等の他の可塑化成形法を利用したセラミックス焼結体
の製造方法にも同様に適用することができる。
In the above examples, the method for producing a ceramics sintered body using the injection molding method is described, but the method of the present invention is not limited to the injection molding but other plasticizing methods such as the extrusion molding method. It can be similarly applied to a method for producing a ceramics sintered body using a molding method.

【0050】[0050]

【発明の効果】以上説明の通り本発明に係るセラミック
ス焼結体の製造方法によれば、有機バインダ成分として
熱硬化性樹脂を所定量含有しており、脱脂工程に入る前
に射出成形体を加熱処理して硬化せしめ、セラミックス
原料粉末間を架橋しているため、成形体の構造強度が従
来より高められる。したがって射出成形体の脱脂時に分
解、揮発したバインダ成分のガス圧によって射出成形体
にクラックが発生したり射出成形体が変形したり破損す
るおそれが少なく、大型で複雑形状を有するセラミック
ス製品の製造歩留りを大幅に改善することができる。
As described above, according to the method for producing a ceramics sintered body of the present invention, a predetermined amount of a thermosetting resin is contained as an organic binder component, and an injection molded body is formed before the degreasing step. Since the ceramic raw material powders are cross-linked by heat treatment and hardening, the structural strength of the molded body can be increased more than before. Therefore, it is less likely that cracks will occur in the injection-molded product or the injection-molded product will be deformed or damaged due to the gas pressure of the binder component that has decomposed or volatilized during degreasing of the injection-molded product. Can be greatly improved.

【0051】また上記加熱処理によって射出成形体中に
含有された熱硬化性樹脂がセラミックス原料粉末間を架
橋して保形強度が高められるとともに、架橋部の間に有
機バインダの揮散経路が多孔状に形成されるため、成形
体を高温度で脱脂した場合においても変形を生じること
がなく、また有機バインダの分解ガスは上記揮散経路を
通り効率的に成形体外部に排除され脱脂効率が良好にな
る。
Further, by the above heat treatment, the thermosetting resin contained in the injection molded body crosslinks between the ceramic raw material powders to enhance the shape retention strength, and the volatilization path of the organic binder is porous between the crosslinked portions. Therefore, even when the molded body is degreased at a high temperature, no deformation occurs, and the decomposition gas of the organic binder is efficiently removed to the outside of the molded body through the above volatilization route to improve the degreasing efficiency. Become.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 全バインダ量に対して5〜50重量%の
熱硬化性樹脂と残部が100〜200℃の低温度で脱脂
可能な易脱脂成分とから成る有機バインダをセラミック
ス原料粉末に添加混練して原料混合体を調製し、得られ
た原料混合体を射出成形法により成形して所定形状の射
出成形体を形成し、この射出成形体を熱硬化性樹脂の硬
化温度以上に加熱処理することにより熱硬化性樹脂を硬
化させセラミックス原料粉末間を上記熱硬化性樹脂で架
橋して硬化成形体を調製し、しかる後に硬化成形体を脱
脂焼結することを特徴とするセラミックス焼結体の製造
方法。
1. An organic binder consisting of 5 to 50% by weight of the total amount of binder and a rest of an easily degreasing component which can be degreased at a low temperature of 100 to 200 ° C. is added and kneaded to the ceramic raw material powder. To prepare a raw material mixture, and the obtained raw material mixture is molded by an injection molding method to form an injection molded body having a predetermined shape, and the injection molded body is heat-treated at a temperature not lower than the curing temperature of the thermosetting resin. Of the ceramic sintered body characterized by curing the thermosetting resin to crosslink the ceramic raw material powder with the thermosetting resin to prepare a cured molded body, and then degreasing and sintering the cured molded body. Production method.
JP5074443A 1993-03-31 1993-03-31 Production of sintered article of ceramic Pending JPH06287055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074443A JPH06287055A (en) 1993-03-31 1993-03-31 Production of sintered article of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074443A JPH06287055A (en) 1993-03-31 1993-03-31 Production of sintered article of ceramic

Publications (1)

Publication Number Publication Date
JPH06287055A true JPH06287055A (en) 1994-10-11

Family

ID=13547386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074443A Pending JPH06287055A (en) 1993-03-31 1993-03-31 Production of sintered article of ceramic

Country Status (1)

Country Link
JP (1) JPH06287055A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015275A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Ceramic circuit board, ceramic circuit board with heat sink, and manufacturing method of ceramic circuit board
JP2016040215A (en) * 2014-08-13 2016-03-24 日本特殊陶業株式会社 Method for producing ceramic molding
CN113860870A (en) * 2020-06-30 2021-12-31 比亚迪股份有限公司 Multicolor ceramic product and injection molding method thereof
CN113967959A (en) * 2021-11-26 2022-01-25 上海陶宝陶瓷新材料开发有限公司 Zirconia ceramic tooth injection molding process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015275A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Ceramic circuit board, ceramic circuit board with heat sink, and manufacturing method of ceramic circuit board
JP2016040215A (en) * 2014-08-13 2016-03-24 日本特殊陶業株式会社 Method for producing ceramic molding
CN113860870A (en) * 2020-06-30 2021-12-31 比亚迪股份有限公司 Multicolor ceramic product and injection molding method thereof
CN113860870B (en) * 2020-06-30 2022-11-11 比亚迪股份有限公司 Multicolor ceramic product and injection molding method thereof
CN113967959A (en) * 2021-11-26 2022-01-25 上海陶宝陶瓷新材料开发有限公司 Zirconia ceramic tooth injection molding process

Similar Documents

Publication Publication Date Title
JP5735745B2 (en) Ceramic green sheet and manufacturing method thereof
Griffith et al. Ceramic stereolithography for investment casting and biomedical applications
JPH06287055A (en) Production of sintered article of ceramic
EP0560258B1 (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
JPH02290642A (en) Manufacture of ceramic core
JPH05148007A (en) Production of ceramic product
KR20030013542A (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JPS6327307B2 (en)
JPH0820803A (en) Production of sintered compact
JPH1171190A (en) Production of silicon carbide-silicon composite material
JPH10259404A (en) Calcined compact of carbonyl iron powder and powder injection molding method
JPH06227854A (en) Production of formed ceramic article
JP3783316B2 (en) Powder molding method
JPH0641601B2 (en) Molding composition
JPH0825178B2 (en) Method of manufacturing injection molded body
JPS61205674A (en) Manufacture of ceramic products
JPS60151271A (en) Manufacture of ceramic product
JPS6230654A (en) Manufacture of ceramics
JPH11278915A (en) Composition for injection molding of ceramic
JPH05163082A (en) Production of porous sintered compact
JPS6121960A (en) Ceramic injection moldings
JPH08290975A (en) Ceramic composition, core material, and method for manufacturing ceramic product
JPH01131052A (en) Production of sintered material
JPH01286975A (en) Production of porous sintered form
JPH10317005A (en) Manufacture of powder injection molded sintered body