JPH06279935A - Bearing steel with excellent delay characteristics for microstructural changes due to repeated stress loading - Google Patents
Bearing steel with excellent delay characteristics for microstructural changes due to repeated stress loadingInfo
- Publication number
- JPH06279935A JPH06279935A JP7144793A JP7144793A JPH06279935A JP H06279935 A JPH06279935 A JP H06279935A JP 7144793 A JP7144793 A JP 7144793A JP 7144793 A JP7144793 A JP 7144793A JP H06279935 A JPH06279935 A JP H06279935A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- steel
- bearing steel
- life
- repeated stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Rolling Contact Bearings (AREA)
Abstract
(57)【要約】
【目的】 過酷な使用条件下での繰り返し応力負荷によ
るミクロ組織変化が少ない軸受鋼を提供する。
【構成】 繰り返し応力負荷によるミクロ組織変化遅延
を促進するために、B50高負荷転動疲労寿命改善成分と
して、とくにSi:1.0 〜2.5 wt%, Cr:2.5 超〜8.0 wt
%およびNi:1.0 超〜3.0 wt%, Zr:0.02〜0.5 wt
%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%およ
びCo:0.05〜1.5 wt%のうちから選ばれるいずれか1種
または2種以上を含む軸受鋼。
(57) [Summary] [Purpose] To provide a bearing steel in which microstructural changes due to repeated stress loads are small under severe operating conditions. [Structure] In order to promote the delay of microstructural change due to cyclic stress loading, as a component for improving B 50 high load rolling fatigue life, especially Si: 1.0-2.5 wt%, Cr: over 2.5-8.0 wt.
% And Ni: over 1.0 to 3.0 wt%, Zr: 0.02 to 0.5 wt
%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt% A bearing steel containing one or more selected from the group consisting of 0.05 to 1.5 wt%.
Description
【0001】[0001]
【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに繰り返し応力負荷によって転動接触面
下に発生するミクロ組織変化(劣化)に対する遅延特性
に優れた軸受鋼について提案する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly to a delay for a microstructure change (deterioration) which occurs under a rolling contact surface due to repeated stress loads. We propose a bearing steel with excellent characteristics.
【0002】[0002]
【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel has one of the important properties that a long rolling contact fatigue life is important. As a factor that affects the rolling contact fatigue life, it is considered that the hard non-metallic inclusions in the steel have a large effect. Was being considered. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.
【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
There are proposals such as Japanese Patent Laid-Open Publication No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839, which are techniques for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、高価な溶製設備
の設置あるいは従来設備の大幅な改良が必要であり、経
済的な負担が大きいという問題があった。また、本発明
者らが行った最近の研究によれば、転動寿命を決めてい
る要因としては、従来から一般に論じられてきた現象;
すなわち、熱処理時に生じる“脱炭層”(低C濃度領
域)や上述した“非金属介在物”の存在以外の要因もあ
るということが判った。というのは、従来技術の下で単
に脱炭層や非金属介在物を減少させても、軸受の転動疲
労寿命, 特に高負荷あるいは高温といった過酷な条件下
での軸受寿命の向上には大きな成果が得られないという
ことを多く経験したからである。このことから、特有の
軸受寿命を律する他の要因の存在を確信したのである。However, in order to manufacture a bearing steel containing few non-metallic inclusions, it is necessary to install expensive melting equipment or to greatly improve conventional equipment, which causes a large economical burden. There was a problem. Further, according to a recent study conducted by the present inventors, as a factor that determines the rolling life, a phenomenon that has been generally discussed in the past;
That is, it has been found that there are factors other than the presence of the "decarburized layer" (low C concentration region) and the above-mentioned "non-metallic inclusions" that occur during heat treatment. The reason is that simply reducing the decarburization layer and non-metallic inclusions under the conventional technology is a major achievement in improving the rolling contact fatigue life of the bearing, especially the bearing life under severe conditions such as high load or high temperature. Because I experienced many things that I could not get. From this, we were convinced of the existence of other factors that control the bearing life.
【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体と転動体との回転接触時に発生する繰り
返し剪断応力により、図1(a) に示すような、転動接触
面下層部分(表層部)に帯状の白色生成物と棒状の析出
物からなるミクロ組織変化層が発生し、これが転動回数
を増すにつれて次第に成長し、終いにはこのミクロ組織
変化部から、図1(b)に示すような疲労剥離が生じて軸
受寿命につながることがわかった。さらに軸受使用環境
の過酷化すなわち, 高面圧化(小型化), 使用温度の上
昇は、これらミクロ組織変化が発生するまでの時間を縮
め、著しい軸受寿命の低下を招くことになるということ
をつきとめた。すなわち、過酷な状況下での軸受寿命
は、従来技術のような、単に脱炭層や非金属介在物を制
御するだけでは不十分である。例えば、単に非金属介在
物を低減させただけでは、上述した転動接触面下で発生
するミクロ組織変化が発生するまでの時間を遅延させる
ことはできない。その結果として、軸受寿命の今まで以
上の向上は図り得ないということを知見したのである。Therefore, the present inventors investigated the cause of the separation of the rolling bearing. As a result, as shown in Fig. 1 (a), the band-shaped white color on the lower layer (surface layer) of the rolling contact surface is caused by the repeated shear stress generated during the rolling contact between the inner and outer rings of the bearing and the rolling elements. A microstructured layer consisting of products and rod-shaped precipitates is generated, which gradually grows as the number of rolling increases, and at the end, fatigue delamination as shown in Fig. 1 (b) from this microstructured portion. Was found to lead to bearing life. Furthermore, the harsh bearing operating environment, that is, high surface pressure (miniaturization) and rise in operating temperature, shortens the time until these microstructural changes occur, resulting in a significant reduction in bearing life. I stopped. That is, the bearing life under severe conditions is not sufficient by merely controlling the decarburized layer and non-metallic inclusions as in the prior art. For example, simply reducing the amount of non-metallic inclusions cannot delay the time until the above-described microstructure change occurring under the rolling contact surface occurs. As a result, they have found that the bearing life cannot be further improved.
【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
での軸受使用中に発生が予想されるミクロ組織変化を遅
延させることができ、ひいては軸受寿命の著しい向上を
もたらす軸受鋼を提供することにある。Therefore, an object of the present invention is to delay the microstructural change expected to occur during the use of the bearing under high load in order to improve the rolling contact fatigue life characteristics under severe operating conditions. And to provide a bearing steel that can significantly improve the life of the bearing.
【0007】[0007]
【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、それの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立って、さらに種々の実
験と検討とを行った。その結果、Siとともに多量のCrを
適正量添加すれば、繰り返し応力負荷による転動接触面
下に生成する上述したミクロ組織変化を著しく遅延でき
ることを見い出し、本発明軸受鋼を開発した。The inventors of the present invention focused on a new "microstructure change delay characteristic" as the bearing life based on the above-mentioned knowledge, and of course, it is necessary to improve it. With the recognition that a new alloy design (composition composition) of (1) is necessary and the life of the bearing cannot be further improved without realizing this, various experiments and studies were further conducted. As a result, it was found that the addition of a proper amount of Cr together with Si can significantly delay the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading, and developed the bearing steel of the present invention.
【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Si:1.0 〜2.5 wt%,Cr:
2.5 超〜8.0 wt%, O:0.0020wt%以下を含有し、残部
がFeおよび不可避的不純物からなる、繰り返し応力負荷
によるミクロ組織変化の遅延特性に優れた軸受鋼(第1
発明)。 (2) C: 0.5〜1.5 wt%, Si:1.0 〜2.5 wt%,Cr:
2.5 超〜8.0 wt%, O:0.0020wt%以下を含有し、さら
に、Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt%,Cu:
0.05〜1.0 wt%, B:0.0005〜0.01wt%,Al:0.005
〜0.07wt%及びN:0.0005〜0.012 wt%、のうちから選
ばれるいずれか1種または2種以上を含み、残部がFeお
よび不可避的不純物からなる、繰り返し応力負荷による
ミクロ組織変化の遅延特性に優れた軸受鋼(第2発
明)。 (3) C: 0.5〜1.5 wt%, Si:1.0 〜2.5 wt%,Cr:
2.5 超〜8.0 wt%, O:0.0020wt%以下を含有し、さら
に、Ni:1.0 超〜3.0 wt%, Zr:0.02〜0.5 wt%,T
a:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%およびC
o:0.05〜1.5 wt%のうちから選ばれるいずれか1種ま
たは2種以上を含み、残部がFeおよび不可避的不純物か
らなる、繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼(第3発明)。 (4) C: 0.5〜1.5 wt%, Si:1.0 〜2.5 wt%,Cr:
2.5 超〜8.0 wt%, O:0.0020wt%以下を含有し、さら
に、Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt%,Cu:
0.05〜1.0 wt%, B:0.0005〜0.01wt%,Al:0.005
〜0.07wt%及びN:0.0005〜0.012 wt%、のうちから選
ばれるいずれか1種または2種以上を含み、さらにま
た、Ni:1.0 超〜3.0 wt%, Zr:0.02〜0.5 wt%,T
a:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%およびC
o:0.05〜1.5 wt%のうちから選ばれるいずれか1種ま
たは2種以上を含み、残部がFeおよび不可避的不純物か
らなる、繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼(第4発明)。That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr:
Bearing steel containing more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, the balance being Fe and inevitable impurities, and having excellent delay characteristics for microstructural change due to repeated stress loading (No. 1
invention). (2) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr:
It contains more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, and further contains Mn: 0.05 to 2.0 wt%, Ni: 0.05 to 1.0 wt%, Cu:
0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005
To 0.07 wt% and N: 0.0005 to 0.012 wt%, and one or more selected from the group consisting of Fe and unavoidable impurities, and the balance consisting of Fe and inevitable impurities. Excellent bearing steel (2nd invention). (3) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr:
More than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, Ni: more than 1.0 to 3.0 wt%, Zr: 0.02 to 0.5 wt%, T
a: 0.02-0.5 wt%, Hf: 0.02-0.5 wt% and C
o: A bearing steel containing one or more selected from 0.05 to 1.5 wt% and the balance being Fe and inevitable impurities and having excellent delay characteristics for microstructural change due to repeated stress loading (No. 3 invention). (4) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr:
It contains more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, and further contains Mn: 0.05 to 2.0 wt%, Ni: 0.05 to 1.0 wt%, Cu:
0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005
To 0.07 wt% and N: 0.0005 to 0.012 wt%, one or more selected from the group consisting of Ni: more than 1.0 to 3.0 wt%, Zr: 0.02 to 0.5 wt%, T
a: 0.02-0.5 wt%, Hf: 0.02-0.5 wt% and C
o: A bearing steel that contains one or more selected from 0.05 to 1.5 wt% and the balance is Fe and unavoidable impurities and that has excellent delay characteristics for microstructural change due to repeated stress loading (No. 4 invention).
【0009】[0009]
【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, Ni:0.0040wt%, O:0.0012wt%)
と、Siと多量のCrとを複合添加した2種の材料 (C:1.00wt%, , Si:1.28wt%, Mn:0.46wt%,
Cr:3.51wt%, O:0.0009wt%, N:0.0046wt%) (C:1.00wt%, , Si:1.32wt%, Mn:0.48wt%,
Cr:7.23wt%, O:0.0008wt%, N:0.0052wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35wt%, Ni: 0.0040wt%, O: 0.0012wt%)
And two kinds of materials in which Si and a large amount of Cr are added in combination (C: 1.00 wt%, Si: 1.28 wt%, Mn: 0.46 wt%,
Cr: 3.51 wt%, O: 0.0009 wt%, N: 0.0046 wt%) (C: 1.00 wt%, Si: 1.32 wt%, Mn: 0.48 wt%,
Cr: 7.23 wt%, O: 0.0008 wt%, N: 0.0052 wt%) was prepared. Then, these test materials were subjected to normalizing treatment, spheroidizing normalizing treatment, quenching and tempering treatment, and 12 mmφ × 22 mm cylindrical test pieces were produced from the respective test materials.
【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
0kgf/mm2, 繰り返し応力数 46500 cpmの負荷条件の下で
転動疲労寿命の試験を行った。試験結果は、ワイブル分
布確立紙上にプロットし, 材料強度の上昇による転動疲
労寿命の向上を示す数値と見られるB10(10%累積破損
確率) と高負荷転動時の繰り返し応力負荷によるミクロ
組織変化発生を遅延させることによる転動疲労寿命の向
上を示す数値と見られるB50(50%累積破損確率)とを
求めた。Next, these test pieces were subjected to a Hertz maximum contact stress: 60 using a radial type rolling fatigue life tester.
A rolling fatigue life test was carried out under a load condition of 0 kgf / mm 2 and a cyclic stress number of 46500 cpm. The test results are plotted on Weibull distribution establishment paper, and are considered to be the numerical values showing the improvement of rolling contact fatigue life due to the increase of material strength. B 10 (10% cumulative failure probability) and micro stress due to repeated stress loading during high load rolling. B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructural change, was determined.
【0011】その結果、表1に示すように、Si−Cr複合
添加材については、前記B10値についての改善はそれほ
ど大きくないが、B50値については著しく高い数値を示
し、軸受平均寿命はSUJ 2 に比べてB10値で約2倍、B
50値で約30倍もの改善を示すことが認められた。とく
に、Siと多量のCrの複合添加は、高負荷転動中に生成す
るミクロ組織変化の遅延特性に対して顕著な効果を示
し、その分破損(寿命)を遅延させることが期待でき
る。As a result, as shown in Table 1, with respect to the Si-Cr composite additive, the B 10 value is not so much improved, but the B 50 value is remarkably high, and the average bearing life is About 10 times B 10 value compared to SUJ 2, B
It was confirmed that the 50 value showed an improvement of about 30 times. In particular, the combined addition of Si and a large amount of Cr has a remarkable effect on the delay property of the microstructure change generated during high load rolling, and it can be expected that the damage (life) is delayed by that amount.
【0012】[0012]
【表1】 [Table 1]
【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物に起因する軸受寿命とミクロ組織変
化に起因する寿命の変化との関係を示す模式図である。
この図に明らかなように、従来のように累積破損確率10
%のB10値で示される軸受寿命(以下、これを「B10転
動疲労寿命」という)によれば、Siとともに多量のCrを
複合添加してもその効果は期待した程には顕れない。し
かし、これをB 50値でみると、このSi, Crの複合添加の
効果は極めて顕著なものとなり、ミクロ組織変化生成環
境の下での軸受寿命(累積破損確率50%のB50転動疲労
寿命) を意識する限り、かかるB50転動疲労寿命に優れ
ているということが明らかとなった。FIG. 2 is a summary of the above experimental results.
The bearing life and microstructural changes due to non-metallic inclusions.
It is a schematic diagram which shows the relationship with the change of the life resulting from aging.
As is clear from this figure, the cumulative damage probability 10
% BTenBearing life indicated by the value (hereinafter referred to as "BTenTurning
According to "dynamic fatigue life"), a large amount of Cr along with Si
The effect does not appear as expected even with multiple additions. Shi
Okay, this is B 50In terms of values, the combined addition of Si and Cr
The effect becomes extremely remarkable and the microstructure change generation ring
Bearing life under the boundary (B with cumulative damage probability of 50%50Rolling fatigue
As long as you are conscious of the50Excellent rolling fatigue life
It has become clear.
【0014】そこで、本発明においては、繰り返し応力
負荷によるミクロ組織変化遅延特性の改善を図るという
観点から、以下に説明するような成分組成の範囲を決定
した。Therefore, in the present invention, the range of the composition of components as described below is determined from the viewpoint of improving the microstructure change delaying property due to repeated stress loading.
【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定した。C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen the martensite, and in order to secure the strength after quenching and tempering and to improve the rolling fatigue life by it. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the machinability and forgeability deteriorate, so the range was limited to 0.5 to 1.5 wt%.
【0016】Si: 1.0〜2.5 wt%以下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。しかしながら、本発明においてこのSi
は、上記の作用に加え、とくに1.0 wt%以上添加した場
合には、繰り返し応力負荷の下での上述したミクロ組織
変化の遅延をもたらして転動疲労寿命を著しく向上させ
る効果がある。しかし、その含有量が 2.5wt%を超える
と、その効果が飽和する一方で加工性や靱性を低下させ
るので、ミクロ組織変化遅延特性のより一層の向上のた
めには、 1.0〜2.5 wt%を添加することが有効である。Si: 1.0 to 2.5 wt% or less Si is used as a deoxidizing agent when steel is melted, and is solid-dissolved in the matrix to increase tempering and softening resistance to enhance the strength after quenching and tempering. It is effective as an element to improve rolling fatigue life. However, in the present invention, this Si
In addition to the above-mentioned effects, the addition of 1.0 wt% or more has the effect of delaying the above-mentioned microstructural change under repeated stress loading and significantly improving the rolling fatigue life. However, if its content exceeds 2.5 wt%, its effect saturates, but the workability and toughness decrease, so 1.0-2.5 wt% is required to further improve the microstructural change retardation property. It is effective to add.
【0017】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。しかし、こ
の添加量が0.05wt%に満たないと効果が顕れないし、2.
0 wt%を超えると被削性と鍛造性が低下するので、0.05
〜2.0 wt%の範囲に限定する。Mn: 0.05 to 2.0 wt% Mn is an element that acts as a deoxidizer during the melting of steel and is effective in reducing the oxygen content of steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite, and effectively acts to improve the rolling fatigue life. However, if this addition amount is less than 0.05 wt%, the effect will not be realized, and 2.
If it exceeds 0 wt%, machinability and forgeability will decrease, so 0.05
Limit to ~ 2.0 wt%.
【0018】Cr:2.5 超〜8.0 wt% Crは、一般的には、焼入れ性の向上と安定な炭化物の形
成を通じて、強度の向上ならびに耐摩耗性を向上させ、
ひいては転動疲労寿命を向上させる成分である。しかし
ながら、本発明においてこのCrは重要な役割を担う元素
であり、とくに、このCrを、 2.5wt%を超えて多量に添
加した場合には、Siとの複合添加によって上述した繰返
し応力負荷によるミクロ組織変化を遅延せしめて、この
面での転動疲労寿命を向上させるのに有効である。そし
て、この目的のため添加したCrの効果は、 8.0wt%を超
えると飽和するのみならず、却って焼入れ時の固溶C量
の低下を招いて強度が低下する。従って、Crは、 2.5超
〜8.0 wt%の範囲内で添加する。Cr: over 2.5 to 8.0 wt% Cr generally improves strength and wear resistance by improving hardenability and forming stable carbides.
As a result, it is a component that improves rolling fatigue life. However, in the present invention, this Cr is an element that plays an important role, and especially when this Cr is added in a large amount exceeding 2.5 wt%, the micro addition due to the repeated stress loading described above due to the complex addition with Si is caused. It is effective in delaying the microstructure change and improving the rolling fatigue life in this aspect. The effect of Cr added for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, Cr is added within the range of more than 2.5 to 8.0 wt%.
【0019】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安性を害することになる他、コ
ストアップになるため、この作用効果を期待する場合に
は、1.0 超〜3.0 wt%の範囲内で添加することが必要で
ある。Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability to increase the strength after quenching and tempering, improve toughness, and improve rolling contact fatigue life. Is added in the range of 0.05 to 1.0 wt%. Further, this Ni, when added in excess of 1.0 wt%, delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be precipitated, resulting in reduced strength and impaired dimensional stability, as well as cost increase. , Addition of more than 1.0 to 3.0 wt% is necessary.
【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、転動疲労寿命を向上させるために添加する。この目
的のために添加するときは、0.05〜1.0 wt%の範囲で十
分である。Cu: 0.05 to 1.0 wt% Cu is added in order to enhance the strength after quenching and tempering due to the increase in quenching and to improve the rolling contact fatigue life. When added for this purpose, a range of 0.05-1.0 wt% is sufficient.
【0021】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.
【0022】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶を微細化して鋼の靱性向上に寄与
する。また、焼入れ焼もどし後の強度を高めることによ
る転動疲労寿命の向上にも有効に作用する。このような
作用のためにAlは、0.005 〜0.07wt%添加することが有
効である。Al: 0.005 to 0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal and contribute to the improvement of the toughness of the steel. Further, it effectively acts to improve the rolling contact fatigue life by increasing the strength after quenching and tempering. For such an effect, it is effective to add 0.005 to 0.07 wt% of Al.
【0023】N:0.0005〜0.012 wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。N: 0.0005 to 0.012 wt% N combines with the nitride-forming element to refine the crystal grains, and forms a solid solution in the matrix to increase the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%.
【0024】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。P ≦ 0.025 wt% P is desirable because it lowers the toughness and rolling contact fatigue life of the steel, so it is desirable to be as low as possible.
It is 0.025 wt%.
【0025】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.
【0026】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。O: 0.0020 wt% or less O forms a hard non-metallic inclusion, so even if a delay in microstructure change due to repeated stress loading is obtained by controlling other components, rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.
【0027】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(Si, CrおよびMn, Ni, Cu, B, Al, N,
O)およびC,P,Sの限定理由について説明したが、
本発明ではさらに、Zr, Ta, HfおよびCoのうちから選ば
れるいずれか1種または2種以上を添加することによ
り、高負荷時の転動疲労寿命を改善させるようにしても
よい。As described above, main components (Si, Cr and Mn, Ni, for improving rolling fatigue life by delaying microstructure change due to repeated stress loading and improving rolling fatigue life by increasing strength) Cu, B, Al, N,
O) and the reason for limiting C, P, S is explained,
In the present invention, one or more selected from Zr, Ta, Hf and Co may be added to improve the rolling fatigue life under high load.
【0028】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.
【表2】 [Table 2]
【0029】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.
【0030】[0030]
【実施例】表3, 表4に示す成分組成の鋼を常法にて溶
製し、得られた鋼材につき1240℃で30h の拡散焼鈍の後
に65mmφの棒鋼に圧延した。次いで、焼ならし−球状化
焼なまし−焼入れ−焼もどしの順で熱処理を行い、ラッ
ピング仕上げにより12mmφ×22mmの円筒型転動疲労寿命
試験片を作製した。そして、上記各試験片について、軸
受平均寿命であるB50転動疲労寿命の試験を行った。こ
のB50転動疲労寿命試験は、ラジアルタイプの転動疲労
寿命試験機を用いて、ヘルツ最大接触応力:600 kgf/mm
2 , 繰り返し応力数約46500 cpm の条件で行ったもので
ある。試験結果は、ワイブル分布に従うものとして確率
紙上にまとめ、鋼材No.1 (従来鋼である SUJ2) の平均
寿命 (累積破損確率:50%における、剥離発生までの総
負荷回数) を1として、その他の鋼種のものを対比して
評価した。その評価結果も、表3、表4にそれぞれ示し
た。[Examples] Steels having the compositions shown in Tables 3 and 4 were melted by a conventional method, and the obtained steel materials were diffusion annealed at 1240 ° C for 30 hours and then rolled into steel bars of 65 mmφ. Then, heat treatment was performed in the order of normalizing-spheroidizing annealing-quenching-tempering, and a 12 mmφ x 22 mm cylindrical rolling fatigue life test piece was prepared by lapping finish. Then, a B 50 rolling contact fatigue life, which is an average bearing life, was tested for each of the above test pieces. This B 50 rolling contact fatigue life test uses a radial type rolling contact fatigue life tester and the maximum contact stress of Hertz: 600 kgf / mm.
2. The test was performed under the condition of cyclic stress number of about 46,500 cpm. The test results are summarized on the probability paper according to the Weibull distribution, and the average life of steel material No. 1 (conventional steel SUJ2) (cumulative failure rate: 50% total load until peeling) is set to 1 and others The steel grades were evaluated in comparison. The evaluation results are also shown in Tables 3 and 4, respectively.
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【表4】 [Table 4]
【0033】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.3, 鋼中Cr量が本
発明範囲外である鋼材No.4, ならびに鋼中O量が本発明
範囲外である鋼材No.5の平均寿命は、いずれも従来鋼
(鋼材No.1)に比べて低い。ただし、Siについては、Cr
を含有する限り、条件外れの場合でもB50値が優れた値
を示している。これに対し、第1発明鋼である鋼材No.
6, 7 の平均寿命は、従来鋼(鋼材No.1) に比較して24
〜32倍も優れている。すなわち、軸受鋼へのSi, Crの複
合添加がミクロ組織変化を著しく遅延し、その結果、転
動疲労寿命の向上に有効に作用したことが窺える。As is clear from the results shown in Tables 3 and 4,
Average of steel material No. 3 having a C content outside the scope of the present invention, steel material No. 4 having a Cr content outside the scope of the present invention, and steel material No. 5 having an O content outside the scope of the present invention The service life is lower than that of conventional steel (No. 1 steel material). However, for Si, Cr
As long as the content of B is included, the B 50 value shows an excellent value even if the conditions are not met. On the other hand, the steel material No. which is the first invention steel.
The average life of 6 and 7 is 24 compared with the conventional steel (steel material No. 1).
~ 32 times better. That is, it can be seen that the combined addition of Si and Cr to the bearing steel significantly retarded the microstructure change, and as a result, effectively acted to improve the rolling fatigue life.
【0034】なかでも、SiとCrに加えてMn, Mo, Zr, T
a, Hf, Ni, Cu, Co, O, Nなどの転動寿命改善成分の
いずれか1種以上を所定量を積極的に加えた鋼No.8〜34
の場合には、上記平均寿命(B50転動疲労寿命)は、よ
り一層向上することが確かめられた。Among them, in addition to Si and Cr, Mn, Mo, Zr, T
Steel No.8 to 34 with positive addition of at least one of the rolling life improvement components such as a, Hf, Ni, Cu, Co, O and N
In the case of, it was confirmed that the average life (B 50 rolling contact fatigue life) was further improved.
【0035】[0035]
【発明の効果】以上説明したとおり、本発明によれば、
基本的には2.5 超〜8.0 wt%の高Crと1.0 〜2.5 wt%の
Siを複合添加した軸受鋼とすることにより、繰り返し応
力負荷に伴うミクロ組織変化の遅延をもたらすことによ
る転動疲労寿命の向上を達成して、高寿命の軸受用の鋼
を提供することができる。従って、従来技術の下では不
可欠とされていた、より一層の鋼中酸素量の低減あるい
は鋼中に存在する酸化物系非金属介在物の組成, 形状,
ならびにその分布状態をコントロールするために必要と
なる製鋼設備の改良あるいは建設が不必要である。ま
た、本発明にかかる軸受鋼の開発によって、転がり軸受
の小型化ならびに軸受使用温度のより以上の上昇が可能
となる。As described above, according to the present invention,
Basically, high Cr of over 2.5 ~ 8.0 wt% and 1.0 ~ 2.5 wt%
By using Si-added bearing steel, it is possible to improve rolling fatigue life by delaying the microstructural change due to repeated stress loading, and provide a bearing steel with a long life. . Therefore, further reduction of oxygen content in steel or composition, shape, and shape of oxide-based non-metallic inclusions present in steel, which was indispensable under the conventional technology,
In addition, improvement or construction of steelmaking equipment necessary for controlling the distribution state is unnecessary. Further, the development of the bearing steel according to the present invention enables downsizing of the rolling bearing and further increase of the bearing operating temperature.
【図1】(a),(b)は、繰り返し応力負荷の下に、
発生するミクロ組織変化のようすを示す金属組織の顕微
鏡写真。1 (a) and 1 (b) are under cyclic stress loading,
A micrograph of the metal structure showing the appearance of the microstructure change that occurs.
【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすSi−Crの影響を示す説明
図。FIG. 2 is an explanatory diagram showing the influence of Si—Cr on the bearing life due to inclusions and the bearing life due to microstructural changes.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akihiro Matsuzaki, 1st Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba Address: Kawasaki Steel Corporation Technical Research Division
Claims (4)
%,Cr:2.5 超〜8.0 wt%, O:0.0020wt%以下を含有
し、残部がFeおよび不可避的不純物からなる、繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼。1. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt
%, Cr: more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities, and a bearing steel excellent in delay characteristics of microstructure change due to repeated stress load.
%,Cr:2.5 超〜8.0 wt%, O:0.0020wt%以下を含有
し、さらに、Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt
%,Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%,Al:
0.005 〜0.07wt%及びN:0.0005〜0.012 wt%、のうち
から選ばれるいずれか1種または2種以上を含み、残部
がFeおよび不可避的不純物からなる、繰り返し応力負荷
によるミクロ組織変化の遅延特性に優れた軸受鋼。2. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%
%, Cr: more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, Mn: 0.05 to 2.0 wt%, Ni: 0.05 to 1.0 wt%
%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al:
Delay property of microstructure change due to repeated stress loading, containing one or more selected from 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%, with the balance being Fe and unavoidable impurities Excellent bearing steel.
%,Cr:2.5 超〜8.0 wt%, O:0.0020wt%以下を含有
し、さらに、Ni:1.0 超〜3.0 wt%, Zr:0.02〜0.5
wt%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%お
よびCo:0.05〜1.5 wt%のうちから選ばれるいずれか1
種または2種以上を含み、残部がFeおよび不可避的不純
物からなる、繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼。3. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%
%, Cr: more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, and Ni: more than 1.0 to 3.0 wt%, Zr: 0.02 to 0.5
Any one selected from wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt%
A bearing steel that contains one or more kinds, and the balance is Fe and unavoidable impurities, and that has excellent delay characteristics for microstructural changes due to repeated stress loading.
%,Cr:2.5 超〜8.0 wt%, O:0.0020wt%以下を含有
し、さらに、Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt
%,Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%,Al:
0.005 〜0.07wt%及びN:0.0005〜0.012 wt%、のうち
から選ばれるいずれか1種または2種以上を含み、さら
にまた、Ni:1.0 超〜3.0 wt%, Zr:0.02〜0.5 wt
%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%およ
びCo:0.05〜1.5 wt%のうちから選ばれるいずれか1種
または2種以上を含み、残部がFeおよび不可避的不純物
からなる、繰り返し応力負荷によるミクロ組織変化の遅
延特性に優れた軸受鋼。4. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt
%, Cr: more than 2.5 to 8.0 wt%, O: 0.0020 wt% or less, Mn: 0.05 to 2.0 wt%, Ni: 0.05 to 1.0 wt%
%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al:
0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%, one or more selected from the group, and further Ni: more than 1.0 to 3.0 wt%, Zr: 0.02 to 0.5 wt%
%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt%, and one or more selected from the rest, with the balance being Fe and inevitable impurities. , Bearing steel with excellent characteristics of delaying microstructural changes due to repeated stress loading.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07144793A JP3379784B2 (en) | 1993-03-30 | 1993-03-30 | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07144793A JP3379784B2 (en) | 1993-03-30 | 1993-03-30 | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06279935A true JPH06279935A (en) | 1994-10-04 |
JP3379784B2 JP3379784B2 (en) | 2003-02-24 |
Family
ID=13460823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07144793A Expired - Fee Related JP3379784B2 (en) | 1993-03-30 | 1993-03-30 | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3379784B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018103080A1 (en) * | 2016-12-09 | 2018-06-14 | 张康 | High-carbon chromium bearing steel heat treatment process |
WO2018107316A1 (en) * | 2016-12-12 | 2018-06-21 | 马飞 | Heat treatment method for ultra-high-carbon bearing steel |
-
1993
- 1993-03-30 JP JP07144793A patent/JP3379784B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018103080A1 (en) * | 2016-12-09 | 2018-06-14 | 张康 | High-carbon chromium bearing steel heat treatment process |
WO2018107316A1 (en) * | 2016-12-12 | 2018-06-21 | 马飞 | Heat treatment method for ultra-high-carbon bearing steel |
Also Published As
Publication number | Publication date |
---|---|
JP3379784B2 (en) | 2003-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3379789B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JPH06279935A (en) | Bearing steel with excellent delay characteristics for microstructural changes due to repeated stress loading | |
JP3383348B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3379788B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3379781B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3379783B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3379780B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383350B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383352B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383349B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JPH06271982A (en) | Bearing steel excellent in property of retarding change in microstructure due to repeated stress load | |
JP3243326B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383353B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3233719B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383351B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383345B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3233726B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading | |
JP3233718B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3233727B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JPH06287693A (en) | Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load | |
JPH06287710A (en) | Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load | |
JP3379782B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3243322B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3379787B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JPH06279932A (en) | Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20071213 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081213 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091213 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091213 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101213 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101213 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111213 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121213 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |