[go: up one dir, main page]

JP3379788B2 - Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading - Google Patents

Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Info

Publication number
JP3379788B2
JP3379788B2 JP09564893A JP9564893A JP3379788B2 JP 3379788 B2 JP3379788 B2 JP 3379788B2 JP 09564893 A JP09564893 A JP 09564893A JP 9564893 A JP9564893 A JP 9564893A JP 3379788 B2 JP3379788 B2 JP 3379788B2
Authority
JP
Japan
Prior art keywords
steel
bearing
repeated stress
rolling
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09564893A
Other languages
Japanese (ja)
Other versions
JPH06287706A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09564893A priority Critical patent/JP3379788B2/en
Publication of JPH06287706A publication Critical patent/JPH06287706A/en
Application granted granted Critical
Publication of JP3379788B2 publication Critical patent/JP3379788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに繰り返し応力負荷によって転動接触面
下に発生するミクロ組織変化(劣化)に対する遅延特性
に優れた軸受鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly to a delay for a microstructure change (deterioration) which occurs under a rolling contact surface due to repeated stress loads. We propose a bearing steel with excellent characteristics.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel has one of the important properties that a long rolling contact fatigue life is important. As a factor that affects the rolling contact fatigue life, it is considered that the hard non-metallic inclusions in the steel have a large effect. Was being considered. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
There are proposals such as Japanese Patent Laid-Open Publication No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839, which are techniques for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、高価な溶製設備
の設置あるいは従来設備の大幅な改良が必要であり、経
済的な負担が大きいという問題があった。また、本発明
者らが行った最近の研究によれば、転動寿命を決めてい
る要因としては、従来から一般に論じられてきた現象;
すなわち、熱処理時に生じる“脱炭層”(低C濃度領
域)や上述した“非金属介在物”の存在以外の要因もあ
るということが判った。というのは、従来技術の下で単
に脱炭層や非金属介在物を減少させても、軸受の転動疲
労寿命、特に、高負荷あるいは高温といった過酷な条件
下での軸受寿命の向上には大きな成果が得られないとい
うことを多く経験したからである。このことから、特有
の軸受寿命を律する他の要因の存在を確信したのであ
る。
However, in order to manufacture a bearing steel containing few non-metallic inclusions, it is necessary to install expensive melting equipment or to greatly improve conventional equipment, which causes a large economical burden. There was a problem. Further, according to a recent study conducted by the present inventors, as a factor that determines the rolling life, a phenomenon that has been generally discussed in the past;
That is, it has been found that there are factors other than the presence of the "decarburized layer" (low C concentration region) and the above-mentioned "non-metallic inclusions" that occur during heat treatment. This is because simply reducing the decarburized layer and non-metallic inclusions under the conventional technique is not enough to improve the rolling contact fatigue life of the bearing, especially the bearing life under severe conditions such as high load or high temperature. This is because I experienced many things that I could not get results. From this, we were convinced of the existence of other factors that control the bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体との回転接触時に発生する繰り返し剪断
応力により、図1(a)に示すような、転動接触面下層部
分(表層部)に、帯状の白色生成物と棒状の析出物から
なるミクロ組織変化層が発生し、これが転動回数を増す
につれて次第に成長し、終いにはこのミクロ組織変化部
から、図1(b)に示すような疲労剥離が生じて軸受寿命
につながることがわかった。さらに軸受使用環境の苛
酷化すなわち,高面圧化(小型化),使用温度の上昇
は、これらミクロ組織変化が発生するまでの転動回数を
短縮し、著しい軸受寿命の低下につながるということを
つきとめた。すなわち、過酷な状況下での軸受寿命は、
従来技術のような、単に脱炭層や非金属介在物を制御す
るだけでは不十分である。例えば、単に非金属介在物を
低減させただけでは、上述した転動接触面下で発生する
ミクロ組織変化が発生するまでの時間を遅延させること
はできない。その結果として、軸受寿命の今まで以上の
向上は図り得ないということを知見したのである。
Therefore, the present inventors investigated the cause of the separation of the rolling bearing. As a result, due to the repeated shearing stress generated during the rolling contact between the inner and outer races of the bearing and the rolling element, a band-shaped white product was formed on the lower layer (surface layer) of the rolling contact surface as shown in Fig. 1 (a). A microstructure-changed layer consisting of rod-shaped precipitates and rod-shaped precipitates gradually grows as the number of rolling increases. At the end, fatigue delamination occurs from the microstructure-changed part as shown in Fig. 1 (b). It has been found that this will lead to bearing life. Furthermore , the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the number of rolling cycles until these microstructural changes occur, leading to a marked reduction in bearing life. I found him. That is, the bearing life under severe conditions is
It is not enough to simply control the decarburized layer and the non-metallic inclusions as in the prior art. For example, simply reducing the amount of non-metallic inclusions cannot delay the time until the above-described microstructure change occurring under the rolling contact surface occurs. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での軸受使用中に生成が予想されるミクロ組織変化
を遅延させることができ、ひいては軸受寿命の著しい向
上をもたらす軸受鋼を提供することにある。
Therefore, an object of the present invention is to provide a bearing steel capable of delaying a microstructural change expected to be produced during the use of the bearing under severe operating conditions, and thus providing a significant improvement in bearing life. To do.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、それの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立って、さらに種々の実
験と検討とを行った。その結果、意外にもNbを適正量添
加するだけでも、繰り返し応力負荷による転動接触面下
に生成する上述したミクロ組織変化を著しく遅延できる
ことを見い出し、本発明軸受鋼に想到した。
The inventors of the present invention focused on a new "microstructure change delay characteristic" as the bearing life based on the above-mentioned knowledge, and of course, it is necessary to improve it. With the recognition that a new alloy design (composition composition) of (1) is necessary and the life of the bearing cannot be further improved without realizing this, various experiments and studies were further conducted. As a result, they have surprisingly found that the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading can be remarkably delayed only by adding an appropriate amount of Nb, and have conceived the present invention bearing steel.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C:0.5〜1.5wt%,Nb:0.50超〜1.0wt%,O:0.0
020wt%以下を含有し、残部がFeおよび不可避的不純物
からなる、繰り返し応力負荷によるミクロ組織変化の遅
延特性に優れた軸受鋼(第1発明)。 (2) C:0.5〜1.5wt%,Nb:0.50超〜1.0wt%,O:0.0
020wt%以下を含有し、さらに、Si:0.05〜0.5wt%,M
n:0.05〜2.0wt%,Mo:0.05〜0.5wt%,Ni:0.05〜1.0
wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01wt%,A
l:0.005〜0.07wt%及びN:0.0005〜0.012wt%のうち
から選ばれるいずれか1種または2種以上を含み、残部
がFeおよび不可避的不純物からなる、繰り返し応力負荷
によるミクロ組織変化の遅延特性に優れた軸受鋼(第2
発明)。 (3) C:0.5〜1.5wt%,Nb:0.50超〜1.0wt%,O:0.0
020wt%以下を含有し,さらにSi:0.5超〜2.5wt%,C
r:2.5超〜8.0wt%,Ni:1.0超〜3.0wt%,N:0.012超
〜0.050wt%,W:0.05〜1.0wt%,Zr:0.02〜0.5wt
%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5wt%およびCo:
0.05〜1.5wt%のうちから選ばれるいずれか1種または
2種以上を含み、残部がFeおよび不可避的不純物からな
る、繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼(第3発明)。 (4) C:0.5〜1.5wt%,Nb:0.50超〜1.0wt%,O:0.0
020wt%以下を含有し、さらに、下記I群の成分のうち
から選ばれるいずれか1種または2種以上を含み、さら
に、下記II群の成分(ただし、I群で選択されている元
素は除く)のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなる、
繰り返し応力負荷によるミクロ組織変化の遅延特性に優
れた軸受鋼(第4発明)。 I群: Si:0.05〜0.5wt%,Mn:0.05〜2.0wt%,Mo:0.
05〜0.5wt%,Ni:0.05〜1.0wt%,Cu:0.05〜1.0wt
%,B:0.0005〜0.01wt%,Al:0.005〜0.07wt%及び
N:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Ni:
1.0超〜3.0wt%,N:0.012超〜0.050wt%,W:0.05〜
1.0wt%,Zr:0.02〜0.5wt%,Ta:0.02〜0.5wt%,H
f:0.02〜0.5wt%およびCo:0.05〜1.5wt%
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Nb: over 0.50 to 1.0 wt%, O: 0.0
A bearing steel containing 020 wt% or less and the balance consisting of Fe and unavoidable impurities and excellent in delay characteristics of microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Nb: over 0.50 to 1.0 wt%, O: 0.0
020wt% or less, and Si: 0.05-0.5wt%, M
n: 0.05 to 2.0 wt%, Mo: 0.05 to 0.5 wt%, Ni: 0.05 to 1.0
wt%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, A
l: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Any one kind or two or more kinds selected from the rest, Fe and unavoidable impurities in the balance, delay of microstructure change due to repeated stress loading Bearing steel with excellent characteristics (2nd
invention). (3) C: 0.5 to 1.5 wt%, Nb: over 0.50 to 1.0 wt%, O: 0.0
Contains less than 020wt% , Si: more than 0.5 to 2.5wt%, C
r: over 2.5 ~ 8.0wt%, Ni: over 1.0 ~ 3.0wt%, N: over 0.012 ~ 0.050wt%, W: 0.05 ~ 1.0wt%, Zr: 0.02 ~ 0.5wt
%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co:
A bearing steel containing one or more selected from 0.05 to 1.5 wt% and the balance consisting of Fe and unavoidable impurities and excellent in delay characteristics of microstructure change due to repeated stress load (third invention) ). (4) C: 0.5 to 1.5 wt%, Nb: over 0.50 to 1.0 wt%, O: 0.0
It contained the following 020Wt%, further comprising one kind or two or more species selected from among the following components group I, further
In addition, the components of group II below (however, the elements selected in group I
(Excluding elements) , and any one or more selected from the group consisting of Fe and inevitable impurities.
Bearing steel excellent in delay characteristics of microstructure change due to repeated stress load (4th invention). Serial group I: Si: 0.05~0.5wt%, Mn: 0.05~2.0wt%, Mo: 0.
05 to 0.5wt%, Ni: 0.05 to 1.0wt%, Cu: 0.05 to 1.0wt
%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Group II: Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni:
Over 1.0 ~ 3.0wt%, N: over 0.012 ~ 0.050wt%, W: 0.05 ~
1.0wt%, Zr: 0.02-0.5wt%, Ta: 0.02-0.5wt%, H
f: 0.02-0.5wt% and Co: 0.05-1.5wt%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、Nbを添加した2種の材料 (C:1.00wt%, Si:0.31wt%, Mn:0.50wt%,
O:0.0008wt%, Nb:0.46wt%, N:0.0050wt%) (C:1.00wt%, Si:0.27wt%, Mn:0.48wt%,
O:0.0010wt%, Nb:0.88wt%, N:0.0042wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35 wt%, N: 0.0040 wt%, O: 0.0012 wt%)
And two materials with Nb added (C: 1.00wt%, Si: 0.31wt%, Mn: 0.50wt%,
O: 0.0008wt%, Nb: 0.46wt%, N: 0.0050wt%) (C: 1.00wt%, Si: 0.27wt%, Mn: 0.48wt%,
O: 0.0010 wt%, Nb: 0.88 wt%, N: 0.0042 wt%) was prepared as a test steel material. Then, these test materials were subjected to normalizing treatment, spheroidizing normalizing treatment, quenching and tempering treatment, and 12 mmφ × 22 mm cylindrical test pieces were produced from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
kgf/mm2 , 46500 cpm の負荷条件の下で転動疲労寿命の
試験を行った。試験結果は、ワイブル分布確立紙上にプ
ロットし, 材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と高負荷
転動時の繰り返し応力負荷によるミクロ組織変化発生を
遅延させることによる転動疲労寿命の向上を示す数値と
見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a Hertz maximum contact stress: 60 using a radial type rolling fatigue life tester.
A rolling fatigue life test was conducted under load conditions of kgf / mm 2 and 46500 cpm. The test results are plotted on Weibull distribution establishment paper, and are considered to be the numerical values showing the improvement of rolling contact fatigue life due to the increase of material strength. B 10 (10% cumulative failure probability) and micro stress due to repeated stress loading during high load rolling. B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructural change, was determined.

【0011】その結果、表1に示すように、Nb添加材に
ついては、前記B10値についての改善はそれほど大きく
ないが、B50値については著しく高い数値を示し、軸受
平均寿命はSUJ 2 に比べてB10値で約2倍、B50値で約
5倍もの改善を示すことが認められた。とくに、Nbの添
加は高負荷転動中に生成するミクロ組織変化の遅延特性
に対して顕著な効果を示し、その分破損(寿命)を遅延
させることが期待できる。
As a result, as shown in Table 1, for the Nb-added material, the B 10 value was not so much improved, but the B 50 value was remarkably high, and the average bearing life was SUJ 2. In comparison, it was confirmed that the B 10 value showed an improvement of about 2 times and the B 50 value showed an improvement of about 5 times. In particular, the addition of Nb has a remarkable effect on the delaying property of the microstructure change generated during high load rolling, and it can be expected that the damage (life) is delayed by that amount.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物に起因する軸受寿命とミクロ組織変
化に起因する寿命の変化との関係を示す模式図である。
この図に明らかなように、従来のように累積破損確率10
%のB10値で示される軸受寿命(以下、これを「B10
動疲労寿命」という)によれば、Nbを添加しただけでは
期待した程の効果は得られない。しかし、これを累積破
損確率50%のB50値 (以下、これを「B50転動疲労寿
命」という)でみると、Nbを添加した場合の効果は極め
て顕著なものとなり、いわゆるミクロ組織変化生成環境
の下での軸受寿命 (B50) に関する限り、極めて良好な
結果が得られることが判った。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the bearing life due to non-metallic inclusions and the life change due to microstructural changes.
As is clear from this figure, the cumulative damage probability 10
According to the bearing life indicated by the B 10 value of% (hereinafter, referred to as “B 10 rolling contact fatigue life”), adding Nb alone does not provide the expected effect. However, looking at this in terms of the B 50 value with a cumulative failure probability of 50% (hereinafter referred to as “B 50 rolling contact fatigue life”), the effect of adding Nb becomes extremely remarkable, and the so-called microstructure change. It has been found that very good results are obtained as far as the bearing life (B 50 ) under the production environment is concerned.

【0014】そこで、本発明では、繰り返し応力負荷に
よるミクロ組織変化遅延特性の改善を図るという観点か
ら、以下に説明するような成分組成の範囲を決定した。
Therefore, in the present invention, from the viewpoint of improving the microstructure change delaying characteristics due to repeated stress loading, the range of the component composition as described below was determined.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定した。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen the martensite, and in order to secure the strength after quenching and tempering and to improve the rolling fatigue life by it. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the machinability and forgeability deteriorate, so the range was limited to 0.5 to 1.5 wt%.

【0016】Si:0.05〜0.5wt%,0.5超〜2.5wt% Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ,焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5wt%の範囲とする。さらに、このSi
は、0.5wt%超を添加すると、繰り返し応力負荷の下で
のミクロ組織変化の遅延をもたらして転動疲労寿命を向
上させる効果がある。しかし、その含有量が2.5wt%を
超えると、その効果が飽和する一方で加工性や靱性を低
下させるので、ミクロ組織変化遅延特性のより一層の向
上のためには、0.5超〜2.5wt%を添加することが有効で
ある。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5wt% Si is used as a deoxidizer during the melting of steel and also as a base material.
Quenching and tempering due to an increase in softening resistance
As an element that increases the strength after rolling and improves rolling contact fatigue life
Is effective. Containing Si added for these purposes
The amount is in the range of 0.05 to 0.5 wt%. Furthermore, this Si
Is0.5wt%With the addition of ultra, under repeated stress loading
The microstructure change of the
It has the effect of increasing the quality. However, its content is 2.5 wt%
If it exceeds, the effect will be saturated, but the workability and toughness will be reduced.
As a result, it is possible to further improve the microstructure change delay property.
For the above, it is effective to add more than 0.5 ~ 2.5wt%
is there.

【0017】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。しかし、こ
の含有量が0.05wt%に満たないと効果が顕れないし、2.
0 wt%を超えると被削性と鍛造性が低下するので、0.05
〜2.0 wt%の範囲に限定する。
Mn: 0.05 to 2.0 wt% Mn is an element that acts as a deoxidizer during the melting of steel and is effective in reducing the oxygen content of steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite, and effectively acts to improve the rolling fatigue life. However, if this content is less than 0.05 wt%, the effect will not be realized, and 2.
If it exceeds 0 wt%, machinability and forgeability will decrease, so 0.05
Limit to ~ 2.0 wt%.

【0018】Cr: 2.5超〜8.0 wt% Crは 2.5wt%を超えて多量に添加した場合には、繰返し
応力負荷によるミクロ組織変化を遅延せしめて、この面
での転動疲労寿命を向上させるのに有効な元素である。
そして、この目的のために添加したCrの効果は、 8.0wt
%を超えると飽和するのみならず、却って焼入れ時の固
溶C量の低下を招いて強度が低下する。従って、このCr
は、 2.5超〜8.0 wt%の範囲内で添加する。
Cr: more than 2.5 to 8.0 wt% When Cr is added in a large amount exceeding 2.5 wt%, the microstructure change due to repeated stress loading is delayed and the rolling fatigue life in this aspect is improved. Is an effective element.
The effect of Cr added for this purpose is 8.0 wt.
%, Not only is it saturated, but rather the amount of solid solution C during quenching is reduced and the strength is reduced. Therefore, this Cr
Is added in the range of more than 2.5 to 8.0 wt%.

【0019】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安性を害することになる他、コ
ストアップになるため、この作用効果を期待する場合に
は、1.0 超〜3.0 wt%の範囲内で添加することが必要で
ある。
Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability to enhance the strength after quenching and tempering, improve the toughness, and improve the rolling contact fatigue life. Is added in the range of 0.05 to 1.0 wt%. Further, this Ni, when added in excess of 1.0 wt%, delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be precipitated, resulting in reduced strength and impaired dimensional stability, as well as cost increase. , Addition of more than 1.0 to 3.0 wt% is necessary.

【0020】Mo:0.05〜0.5 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。
Mo: 0.05 to 0.5 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life.

【0021】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、転動疲労寿命を向上させるために添加する。この目
的のために添加するときは、0.05〜1.0 wt%の範囲で十
分である。
Cu: 0.05 to 1.0 wt% Cu is added in order to enhance the strength after quenching and tempering due to the increase in quenching and to improve the rolling contact fatigue life. When added for this purpose, a range of 0.05-1.0 wt% is sufficient.

【0022】Nb:0.50超〜1.0wt% Nbは、本発明において最も重要な役割を担っている成分
であり、これの含有は上述した繰り返し応力負荷による
ミクロ組織変化の発生を遅らせる作用を有し、一方で、
残留炭化物の安定化により耐磨耗性を向上させる作用を
も有する。また、結晶粒微細化に寄与して靭性を向上さ
せる。これらの作用,効果は、0.50wt%超の含有によっ
て顕著なものとなる。一方、この量が1.0wt%を超える
と、焼入れ時に固溶C量が減少して強度の低下を招く
他、上述したB10,B50値の両方に影響を及ぼす転動疲
労寿命の向上に対する効果が飽和するので、0.50超〜1.
0wt%の範囲で含有させる。
Nb: more than 0.50 to 1.0 wt% Nb is a component that plays the most important role in the present invention, and its inclusion has a function of delaying the occurrence of microstructure change due to the repeated stress loading described above. , On the other hand,
It also has the effect of improving wear resistance by stabilizing the residual carbides. It also contributes to the refinement of crystal grains and improves toughness. These actions and effects become remarkable when the content exceeds 0.50 wt% . On the other hand, when this amount exceeds 1.0 wt%, the amount of solid solution C decreases during quenching, resulting in a decrease in strength, and the improvement of rolling fatigue life affecting both of the above B 10 and B 50 values. The effect saturates, so over 0.50 to 1.
It is contained in the range of 0 wt%.

【0023】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0024】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤としても用いられると同時
に、鋼中Nと結合して結晶粒を微細化して鋼の靱性向上
に寄与する。また、焼入れ焼もどし後の強度を高めるこ
とによる転動疲労寿命の向上にも有効に作用するので、
0.005 wt%を添加するが、0.07wt%を超えると効果が飽
和するので、0.005 〜0.07wt%の範囲に限定する。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizing agent during the melting of steel, and at the same time, it combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Also, since it effectively works to improve the rolling fatigue life by increasing the strength after quenching and tempering,
Although 0.005 wt% is added, the effect is saturated when it exceeds 0.07 wt%, so the range is limited to 0.005 to 0.07 wt%.

【0025】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0026】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desired to be as low as possible because it lowers the toughness and rolling contact fatigue life of the steel, and the upper limit of its allowable limit is
It is 0.025 wt%.

【0027】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0028】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。
O: 0.0020 wt% or less O forms a hard non-metallic inclusion, so even if a delay in microstructure change due to repeated stress loading is obtained by controlling other components, rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.

【0029】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(NbおよびSi, Mn, Cr, Mo, Ni, Cu, B, A
l, N, O)およびC,P,Sの限定理由について説明
したが、本発明ではさらに、W, Zr, Ta, HfおよびCoの
うちから選ばれるいずれか1種または2種以上を添加す
ることにより、高負荷時の転動疲労寿命を改善させるよ
うにしてもよい。
As described above, the main components (Nb and Si, Mn, Cr, Nb and Si, Mn, Cr, etc.) for improving the rolling fatigue life by delaying the microstructural change due to repeated stress loading and improving the rolling fatigue life by increasing the strength. Mo, Ni, Cu, B, A
l, N, O) and C, P, S have been explained, but in the present invention, one or more selected from W, Zr, Ta, Hf and Co are further added. Thus, the rolling fatigue life under high load may be improved.

【0030】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.

【表2】 [Table 2]

【0031】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0032】[0032]

【実施例】表3, 表4に示す成分組成の鋼を常法にて溶
製し、得られた鋼材につき1240℃で30h の拡散焼鈍の後
に65mmφの棒鋼に圧延した。次いで、焼ならし−球状化
焼なまし−焼入れ−焼もどしの順で熱処理を行い、ラッ
ピング仕上げにより12mmφ×22mmの円筒型転動疲労寿命
試験片を作製した。そして、上記各試験片について、軸
受平均寿命であるB50転動疲労寿命の試験を行った。こ
のB50転動疲労寿命試験は、ラジアルタイプの転動疲労
寿命試験機を用いて、ヘルツ最大接触応力:600 kgf/mm
2 , 繰り返し応力数約46500 cpm の条件で行ったもので
ある。試験結果は、ワイブル分布に従うものとして確率
紙上にまとめ、鋼材No.1 (従来鋼である SUJ2) の平均
寿命 (累積破損確率:50%における、剥離発生までの総
負荷回数) を1として、その他の鋼種のものを対比して
評価した。その評価結果も、表3、表4にそれぞれ示し
た。
[Examples] Steels having the compositions shown in Tables 3 and 4 were melted by a conventional method, and the obtained steel materials were diffusion annealed at 1240 ° C for 30 hours and then rolled into steel bars of 65 mmφ. Then, heat treatment was performed in the order of normalizing-spheroidizing annealing-quenching-tempering, and a 12 mmφ x 22 mm cylindrical rolling fatigue life test piece was prepared by lapping finish. Then, a B 50 rolling contact fatigue life, which is an average bearing life, was tested for each of the above test pieces. This B 50 rolling contact fatigue life test uses a radial type rolling contact fatigue life tester and the maximum contact stress of Hertz: 600 kgf / mm.
2. The test was performed under the condition of cyclic stress number of about 46,500 cpm. The test results are summarized on the probability paper according to the Weibull distribution, and the average life of steel No. 1 (conventional steel SUJ2) (cumulative failure rate: 50%, the total number of loads before delamination) is set to 1, and others The steel grades were evaluated in comparison. The evaluation results are also shown in Tables 3 and 4, respectively.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.2, 鋼中Nb量が本
発明範囲外である鋼材No.3, ならびに鋼中O量が本発明
範囲外である鋼材No.4の平均寿命は、いずれも従来鋼
(鋼材No.1)に比べて低い値を示している。これに対
し、Nbとともに各種軸受寿命改善成分のいずれか1つ以
上を添加してなる本発明鋼である鋼材No.5, 6 の平均寿
命は、従来鋼(鋼材No.1)に比較して約3倍も優れてい
る。すなわち、軸受鋼へのNbの添加がミクロ組織変化を
著しく遅延し、その結果転動疲労寿命の向上に有効に作
用したことが窺える。
As is clear from the results shown in Tables 3 and 4,
Average of steel material No. 2 having C content outside the scope of the present invention, steel material No. 3 having Nb content outside the scope of the present invention, and steel material No. 4 having O content outside the scope of the present invention The service life is lower than that of conventional steel (steel material No. 1). On the other hand, the average service life of steel materials No. 5 and 6, which are steels of the present invention in which at least one of various bearing life improving components is added together with Nb, is higher than that of the conventional steel (steel material No. 1). About 3 times better. That is, it can be seen that the addition of Nb to the bearing steel significantly retarded the microstructural change, and as a result, effectively acted to improve the rolling fatigue life.

【0036】なかでも、このNbとともにSi,Mn,Cr,M
o,W,Zr,Ta,Hf,Ni,Cu,Co,Al,Nを所定量以上
を積極的に加えた鋼No.10〜26(但し、No.16,17,19,2
0,24を除く)の場合には、上記平均寿命(B50転動疲労
寿命)は、より一層向上することが確かめられた。
Above all, Si, Mn, Cr, M together with this Nb
Steel No. 10 to 26 (however, No. 16, 17, 19 , 2) in which a predetermined amount or more of o, W, Zr, Ta, Hf, Ni, Cu, Co, Al, N was positively added .
It was confirmed that the above average life (B 50 rolling contact fatigue life) was further improved in the case of ( except for 0 and 24) .

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には≧0.05%のNb含有軸受鋼とすることにより、
繰り返し応力負荷に伴うミクロ組織変化の遅延をもたら
すことによる転動疲労寿命の向上を達成して、高寿命の
軸受用の鋼を提供することができる。従って、従来技術
の下では不可欠とされていた、より一層の鋼中酸素量の
低減あるいは鋼中に存在する酸化物系非金属介在物の組
成, 形状, ならびにその分布状態をコントロールするた
めに必要となる製鋼設備の改良あるいは建設が不必要で
ある。また、本発明にかかる軸受鋼の開発によって、転
がり軸受の小型化ならびに軸受使用温度のより以上の上
昇が可能となる。
As described above, according to the present invention,
Basically, by using bearing steel containing Nb of ≧ 0.05%,
The rolling fatigue life can be improved by delaying the microstructural change associated with cyclic stress loading, and a long-life bearing steel can be provided. Therefore, it is necessary to further reduce the oxygen content in steel or control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment. Further, the development of the bearing steel according to the present invention enables downsizing of the rolling bearing and further increase of the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に、
発生するミクロ組織変化のようすを示す金属組織の顕微
鏡写真。
1 (a) and 1 (b) are under cyclic stress loading,
A micrograph of the metal structure showing the appearance of the microstructure change that occurs.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすNbの影響を示す説明図。
FIG. 2 is an explanatory diagram showing the influence of Nb on the bearing life due to inclusions and the bearing life due to microstructural changes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平3−47947(JP,A) 特開 平3−138332(JP,A) 特開 平2−125841(JP,A) 特開 平4−143253(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Ltd. Technical Research Headquarters (56) Reference JP-A-3-47947 Kaihei 3-138332 (JP, A) JP-A-2-125841 (JP, A) JP-A-4-143253 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38 / 00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.5〜1.5wt%,Nb:0.50超〜1.0wt
%,O:0.0020wt%以下を含有し、残部がFeおよび不可
避的不純物からなる、繰り返し応力負荷によるミクロ組
織変化の遅延特性に優れた軸受鋼。
1. A C: 0.5~1.5wt%, Nb: 0.50 ultra ~1.0wt
%, O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities, and a bearing steel excellent in delay characteristics of microstructure change due to repeated stress load.
【請求項2】C:0.5〜1.5wt%,Nb:0.50超〜1.0wt
%,O:0.0020wt%以下を含有し、さらに、Si:0.05〜
0.5wt%,Mn:0.05〜2.0wt%,Mo:0.05〜0.5wt%,N
i:0.05〜1.0wt%,Cu:0.05〜1.0wt%,B:0.0005〜
0.01wt%,Al:0.005〜0.07wt%及びN:0.0005〜0.012
wt%のうちから選ばれるいずれか1種または2種以上を
含み、残部がFeおよび不可避的不純物からなる、繰り返
し応力負荷によるミクロ組織変化の遅延特性に優れた軸
受鋼。
2. C: 0.5 to 1.5 wt%, Nb: more than 0.50 to 1.0 wt.
%, O: 0.0020 wt% or less, and Si: 0.05 to
0.5wt%, Mn: 0.05 to 2.0wt%, Mo: 0.05 to 0.5wt%, N
i: 0.05 to 1.0 wt%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to
0.01wt%, Al: 0.005-0.07wt% and N: 0.0005-0.012
A bearing steel containing one or more selected from wt % and the balance being Fe and unavoidable impurities, and having excellent delay characteristics of microstructure change due to repeated stress loading.
【請求項3】C:0.5〜1.5wt%,Nb:0.50超〜1.0wt
%,O:0.0020wt%以下を含有し,さらにSi:0.5超
〜2.5wt%,Cr:2.5超〜8.0wt%,Ni:1.0超〜3.0wt
%,N:0.012超〜0.050wt%,W:0.05〜1.0wt%,Z
r:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5
wt%およびCo:0.05〜1.5wt%のうちから選ばれるいず
れか1種または2種以上を含み、残部がFeおよび不可避
的不純物からなる、繰り返し応力負荷によるミクロ組織
変化の遅延特性に優れた軸受鋼。
3. C: 0.5~1.5wt%, Nb: 0.50 ultra ~1.0wt
%, O: 0.0020 wt% or less , Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni: more than 1.0 to 3.0 wt%
%, N: over 0.012 to 0.050 wt%, W: 0.05 to 1.0 wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5
wt% and Co: 0.05 to 1.5 wt% selected from the group consisting of one or more selected from the group consisting of Fe and unavoidable impurities, the balance being excellent in delay characteristics of microstructural change due to repeated stress loading. steel.
【請求項4】C:0.5〜1.5wt%,Nb:0.50超〜1.0wt
%,O:0.0020wt%以下を含有し、さらに、下記I群の
成分のうちから選ばれるいずれか1種または2種以上を
含み、さらに、下記II群の成分(ただし、I群で選択さ
れている元素は除く)のうちから選ばれるいずれか1種
または2種以上を含み、残部がFeおよび不可避的不純物
からなる、繰り返し応力負荷によるミクロ組織変化の遅
延特性に優れた軸受鋼。 I群: Si:0.05〜0.5wt%,Mn:0.05〜2.0wt%,Mo:0.
05〜0.5wt%,Ni:0.05〜1.0wt%,Cu:0.05〜1.0wt
%,B:0.0005〜0.01wt%,Al:0.005〜0.07wt%及び
N:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Ni:
1.0超〜3.0wt%,N:0.012超〜0.050wt%,W:0.05〜
1.0wt%,Zr:0.02〜0.5wt%,Ta:0.02〜0.5wt%,H
f:0.02〜0.5wt%およびCo:0.05〜1.5wt%
4. C: 0.5~1.5wt%, Nb: 0.50 ultra ~1.0wt
%, O: 0.0020 wt% or less ,
It contains any one kind or two or more kinds selected from the components , and further contains the following group II components (provided that the group I is selected.
(Excluding the elements described above), and a balance of Fe and unavoidable impurities, the balance of which is excellent in delay characteristics of microstructure change due to repeated stress loading. Serial group I: Si: 0.05~0.5wt%, Mn: 0.05~2.0wt%, Mo: 0.
05 to 0.5wt%, Ni: 0.05 to 1.0wt%, Cu: 0.05 to 1.0wt
%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Group II: Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni:
Over 1.0 ~ 3.0wt%, N: over 0.012 ~ 0.050wt%, W: 0.05 ~
1.0wt%, Zr: 0.02-0.5wt%, Ta: 0.02-0.5wt%, H
f: 0.02-0.5wt% and Co: 0.05-1.5wt%
JP09564893A 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3379788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09564893A JP3379788B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09564893A JP3379788B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287706A JPH06287706A (en) 1994-10-11
JP3379788B2 true JP3379788B2 (en) 2003-02-24

Family

ID=14143331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09564893A Expired - Fee Related JP3379788B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3379788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139346A (en) * 2014-02-27 2014-07-31 Jfe Steel Corp Carbon steel excellent in spheroidizing processability

Also Published As

Publication number Publication date
JPH06287706A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379784B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379786B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees