JPH06268559A - Diversity receiver - Google Patents
Diversity receiverInfo
- Publication number
- JPH06268559A JPH06268559A JP5049319A JP4931993A JPH06268559A JP H06268559 A JPH06268559 A JP H06268559A JP 5049319 A JP5049319 A JP 5049319A JP 4931993 A JP4931993 A JP 4931993A JP H06268559 A JPH06268559 A JP H06268559A
- Authority
- JP
- Japan
- Prior art keywords
- phase difference
- phase
- output
- taken
- reception level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 42
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 238000003786 synthesis reaction Methods 0.000 abstract description 11
- 238000005562 fading Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Radio Transmission System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は例えばディジタル移動
通信においてマルチパスフェージングによる伝送品質の
劣化を改善するために用いられ、複数のアンテナからの
受信信号を位相差検波後に受信レベルに応じて重み付け
して合成する検波後合成ダイバーシチ受信機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used, for example, in digital mobile communications to improve the deterioration of transmission quality due to multipath fading. The signals received from a plurality of antennas are weighted according to the reception level after phase difference detection. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a post-detection combining diversity receiver that combines signals by combining.
【0002】[0002]
【従来の技術】ディジタル移動通信ではマルチパスフェ
ージングにより受信信号の振幅および位相は激しく変動
し、伝送品質は大きく劣化する。フェージングの影響を
軽減する技術として2つ以上の受信波を利用するダイバ
ーシチ受信がある。ダイバーシチ受信は、フェージング
の相関が小さい複数の受信波を用いることにより、一方
の受信波のレベルが落ち込んでも他のレベルの高い受信
波を利用して良好な品質を実現する技術である。ダイバ
ーシチ受信には検波前合成と検波後合成がある。検波後
合成は、検波前合成に比べフェージングによる受信信号
の高速な位相変動に追従して同相合成する機能が不要な
ので実用的である。2. Description of the Related Art In digital mobile communications, the amplitude and phase of a received signal fluctuate drastically due to multipath fading, and the transmission quality is greatly degraded. Diversity reception using two or more received waves is a technique for reducing the influence of fading. Diversity reception is a technique that uses a plurality of received waves having a small fading correlation so that even if the level of one received wave drops, the received waves of another level are used to achieve good quality. Diversity reception includes pre-detection synthesis and post-detection synthesis. Post-detection synthesis is more practical than pre-detection synthesis because it does not require the function of performing in-phase synthesis by following the high-speed phase fluctuation of the received signal due to fading.
【0003】検波後ダイバーシチ受信には、選択合成法
や最大比合成法がある。選択合成法は受信レベルが最も
大きいブランチ(受信系)のシンボル判定結果を選択す
る。選択合成法ではシンボル毎に常に最も受信レベルが
大きい1ブランチの信号しか利用しないのに対し、最大
比合成法では各ブランチの受信波を受信レベルに応じて
重み付けして合成することにより、より大きな伝送特性
の改善効果が得られる。文献〔1〕Adachi,F.
and Ohno,K.,“BER performa
nce of QDPSK with postdet
ectiondiversity reception
in mobile radiochannel
s,”IEEE Trans.Veh.Techno
l.,vol.40,pp.237−249,Feb.
1991.では、π/4シフトQDPSK遅延検波に、
検波後ダイバーシチを適用した場合のレイリーフェージ
ング下での誤り率特性を解析しており、その効果は文献
〔2〕Adachi,F.and Ohno,K.“P
ostdetection MRC diversit
y for π/4−shift QDPSK mob
ile radio,”Electron.Let
t.,vol.27,pp.1642−1643,Au
g.1991.において実験により確認されている。For diversity reception after detection, there are a selective combining method and a maximum ratio combining method. The selective combining method selects the symbol determination result of the branch (reception system) having the highest reception level. In the selective combining method, only the signal of one branch having the highest reception level is always used for each symbol, whereas in the maximum ratio combining method, the received waves of each branch are weighted according to the reception level to be combined, so that a larger signal can be obtained. The effect of improving the transmission characteristics can be obtained. Reference [1] Adachi, F .;
and Ohno, K .; , "BER performance
nce of QDPSK with postdet
section diversity reception
in mobile radiochannel
s, "IEEE Trans. Veh. Techno
l. , Vol. 40, pp. 237-249, Feb.
1991. Then, for π / 4 shift QDPSK differential detection,
The error rate characteristics under Rayleigh fading when the diversity after detection is applied are analyzed, and the effect is described in [2] Adachi, F. et al. and Ohno, K .; "P
ostdetection MRC diversit
y for π / 4-shift QDPSK mob
ile radio, "Electron. Let
t. , Vol. 27, pp. 1642-1643, Au
g. 1991. Have been confirmed by experiments.
【0004】図3に従来のQDPSK信号を位相差検波
した場合の2ブランチ位相合成ダイバーシチ受信機の構
成を示す。図に示していないが2つのアンテナからの受
信信号はそれぞれ中間周波信号に変換されて入力端子1
11 ,112 より信号処理部121 ,122 にそれぞれ
入力される。信号処理部121 では受信信号をリミタ1
3で振幅制限し、局部発振器14の信号を用い、位相検
波器15で位相検波する。位相検波器15の検波出力は
サンプリング回路16においてシンボルタイミングでサ
ンプリングされ、加算器17へ供給されると共に1シン
ボル遅延回路18へも供給される。加算器17で現シン
ボルタイミングの位相検波出力と、1シンボル前の位相
検波出力との位相差が検波される。位相検波器15、サ
ンプリング回路16、遅延回路18は位相差検波回路を
構成している。この位相差検波出力は受信レベル検出器
19の出力WK が乗算器21で掛算され重み付けされ
る。このように処理された信号処理部121 、122 の
出力は合成器22で合成される。データ判定器23は合
成器22の出力に応じて符号判定をする。FIG. 3 shows the configuration of a conventional two-branch phase-combining diversity receiver when phase difference detection is performed on a QDPSK signal. Although not shown in the figure, the received signals from the two antennas are converted into intermediate frequency signals and input terminal 1
The signals 1 1 and 11 2 are input to the signal processing units 12 1 and 12 2 , respectively. The signal processing unit 12 1 limits the received signal to the limiter 1
The amplitude is limited by 3, and the signal of the local oscillator 14 is used to detect the phase by the phase detector 15. The detection output of the phase detector 15 is sampled at the symbol timing in the sampling circuit 16 and supplied to the adder 17 and the 1-symbol delay circuit 18. The adder 17 detects the phase difference between the phase detection output at the current symbol timing and the phase detection output one symbol before. The phase detector 15, the sampling circuit 16, and the delay circuit 18 constitute a phase difference detection circuit. The output W K of the reception level detector 19 is multiplied by the multiplier 21 to weight the phase difference detection output. The outputs of the signal processing units 12 1 and 12 2 processed in this way are combined by the combiner 22. The data determiner 23 determines the sign according to the output of the combiner 22.
【0005】直交遅延検波では各ブランチの検波出力の
同相成分および直交成分をそれぞれ受信レベルで重み付
けてベクトル合成するが、位相合成では各ブランチの位
相差検波出力を受信レベルで重み付けて〔−π,π〕の
範囲内でスカラー合成する。すなわち、t=nT(T:
シンボル長)における各ブランチの位相差検波出力をΔ
Ψk (n)とし、各ブランチの重み係数をWk とする
と、合成出力ΔΨ(n)は次式で与えられる。In the quadrature delay detection, the in-phase component and the quadrature component of the detection output of each branch are weighted at the reception level and vector-synthesized. In the phase synthesis, the phase difference detection output of each branch is weighted at the reception level [-π, Scalar synthesis is performed within the range of [π]. That is, t = nT (T:
The phase difference detection output of each branch in the symbol length)
If Ψ k (n) and the weighting coefficient of each branch are W k , the combined output ΔΨ (n) is given by the following equation.
【0006】 ΔΨ(n)=ΣWk ΔΨk (n)mod 2π (1) Σはk=1から2まで しかし、|ΔΨ1 (n)−ΔΨ2 (n)|>πの場合は
式(1)に基づいて各ブランチの位相差を合成すると、
例えば図4に示すようにベクトル合成の場合は合成ベク
トルΔΨ(n)は点線で示す方向となるが、合成ベクト
ルΔΨ(n)は実線で示すように点線と反対側の位相に
合成されてしまう。このため次式のようにΔΨ2 (n)
を修正してから式(1)による合成をしなければならな
い。ΔΨ (n) = ΣW k ΔΨ k (n) mod 2π (1) Σ is from k = 1 to 2 However, when | ΔΨ 1 (n) −ΔΨ 2 (n) |> π, the expression ( Combining the phase difference of each branch based on 1),
For example, as shown in FIG. 4, in the case of vector combination, the combined vector ΔΨ (n) has a direction indicated by a dotted line, but the combined vector ΔΨ (n) is combined in a phase opposite to the dotted line as shown by a solid line. . Therefore, ΔΨ 2 (n)
Must be corrected before the synthesis according to equation (1).
【0007】 ΔΨ2 (n)+2π, ΔΨ1 (n)−ΔΨ2 (n)>πのとき ΔΨ2 (n)−2π, ΔΨ1 (n)−ΔΨ2 (n)<−πのとき (2) このようにして、位相差検波出力を|ΔΨ1 (n)−Δ
Ψ2 (n)|>πの場合はΔΨ2 (n)を修正し、その
後、受信レベルで重み付けて合成することにより、位相
差検波において2ブランチダイバーシチ受信機が構成で
きる。When ΔΨ 2 (n) + 2π, ΔΨ 1 (n) −ΔΨ 2 (n)> π When ΔΨ 2 (n) -2π, ΔΨ 1 (n) −ΔΨ 2 (n) <− π ( 2) In this way, the phase difference detection output is calculated as | ΔΨ 1 (n) −Δ
In the case of Ψ 2 (n) |> π, ΔΨ 2 (n) is corrected, and then weighted by the reception level and combined, whereby a two-branch diversity receiver can be constructed in phase difference detection.
【0008】[0008]
【発明が解決しようとする課題】前述のように、移動通
信ではフェージングによる伝送品質劣化を改善する技術
が必要であり、ダイバーシチ受信は実用的な方法であ
る。文献〔1〕〔2〕からブランチ数の増加にともない
改善効果も大きくなる。しかし(1)式による合成は位
相平面上のスカラー合成を構成しているが、±πで位相
平面が不連続となるから、位相差検波後の式(1)
(2)の合成で2ブランチにのみ適用可能であり、これ
よりブランチ数を多くしても伝送特性の改善が見込めな
い。位相差検波は直交検波よりも高周波部分の構成が簡
単であり、位相差検波後合成においてもブランチ数に応
じた改善効果が得られることが望まれる。As described above, mobile communication requires a technique for improving the deterioration of transmission quality due to fading, and diversity reception is a practical method. From References [1] and [2], the improvement effect increases as the number of branches increases. However, although the synthesis by equation (1) constitutes scalar synthesis on the phase plane, the phase plane becomes discontinuous at ± π, so equation (1) after phase difference detection is used.
The combination of (2) can be applied only to two branches, and even if the number of branches is increased from this, improvement in transmission characteristics cannot be expected. Phase difference detection has a simpler high-frequency configuration than quadrature detection, and it is desired that the post-phase-difference detection combination effect can be improved according to the number of branches.
【0009】この発明はこのような問題を解決し、位相
差検波においてブランチ数に係わらずダイバーシチ合成
を可能とするダイバーシチ受信機を提供することを目的
とする。It is an object of the present invention to solve such a problem and to provide a diversity receiver capable of diversity combining regardless of the number of branches in phase difference detection.
【0010】[0010]
【課題を解決するための手段】この発明によれば複数の
アンテナにより受信される各受信信号つまり各ダイバー
シチブランチの受信信号はそれぞれ位相差検波器により
位相差検波され、また、各ダイバーシチブランチ(受信
系)の受信レベルが受信レベル検出器でそれぞれ検出さ
れ、各ダイバーシチブランチの位相差検波出力は理想位
相点との差がそれぞれとられ、これらの各差の絶対値が
とられ、これらの差の絶対値は各ブランチごとにその検
出した受信レベルに従った重み付けがなされ、各ブラン
チからの同一理想位相点について重み付けされた差絶対
値が合成器で合成され、その合成器出力が最小となる理
想位相点を判定してその理想位相点を示す符号がデータ
判定回路から出力される。According to the present invention, each reception signal received by a plurality of antennas, that is, each reception signal of each diversity branch is subjected to phase difference detection by a phase difference detector, and each diversity branch (reception The reception level detector detects the difference between the ideal phase point and the phase difference detection output of each diversity branch, and the absolute value of each difference is calculated. The absolute value is weighted according to the detected reception level for each branch, the difference absolute value weighted for the same ideal phase point from each branch is combined by the combiner, and the ideal output that minimizes the combiner output. The data determination circuit outputs a code indicating the ideal phase point by determining the phase point.
【0011】[0011]
【作用】この発明では前述のように理想的位相点と、位
相差検波出力との位相差の絶対値を受信レベルで重み付
けて合成しているため、位相平面上で不連続となる問題
は生じない。したがって、ブランチ数によらず合成ダイ
バーシチを実現することができ、フェージング下で伝送
特性の改善ができる。In the present invention, since the absolute value of the phase difference between the ideal phase point and the phase difference detection output is weighted by the reception level and combined as described above, the problem of discontinuity on the phase plane occurs. Absent. Therefore, combined diversity can be realized regardless of the number of branches, and transmission characteristics can be improved under fading.
【0012】[0012]
【実施例】π/4シフトQDPSKにこの発明を適用し
た実施例を図1に示す。この実施例ではn個のダイバー
シチブランチを設けた場合で図に示していないが、k個
のアンテナからの受信信号はそれぞれ中間周波信号とさ
れて入力端子111 〜11 k より、この発明にもとづく
信号処理部311 〜31k にそれぞれ入力される。信号
処理部311 〜31k は同一構成であり、信号処理部3
11 について説明する。入力端子111 よりの信号は受
信レベル検出器19へ供給されて、その受信レベルが検
出されると共にリミッタ13へも分岐供給されて、振幅
が制限され、位相差検波器32へ供給される。EXAMPLE The present invention is applied to π / 4 shift QDPSK.
Another embodiment is shown in FIG. In this example, n divers
Although not shown in the figure when a branch is provided, k pieces
The signals received from the antennas of
Input terminal 111~ 11 kBased on this invention
Signal processing unit 311~ 31kAre input respectively. signal
Processing unit 311~ 31kHave the same configuration, and the signal processing unit 3
11Will be described. Input terminal 111Signal from
It is supplied to the signal level detector 19 and its reception level is detected.
Along with being output, it is branched and supplied to the limiter 13 as well.
Is limited and is supplied to the phase difference detector 32.
【0013】位相差検波器32は図3中の局部発振器1
4と、位相検波器15と、サンプリング回路16と、加
算器17と、1シンボル遅延回路18とにより構成され
る。位相差検波器32の位相差検波出力ΔΨ1 (n)
と、受信レベル検出器19の検出受信レベルとはそれぞ
れサンプル保持回路33、34においてシンボルタイミ
ングでサンプル保持される。サンプル保持回路33にサ
ンプル保持されたnT時点での位相差検波出力ΔΨ
1 (n)は加算器351 、352 、353 、354 にお
いて、それぞれ理想位相点3π/4、π/4、−π/
4、−3π/4との差がとられる。この例ではπ/4シ
フトQDPSKであるから、隣接シンボル間のとり得る
位相差は3π/4、π/4、−π/4、−3π/4の何
れかであって、これらが理想位相点となる。The phase difference detector 32 is the local oscillator 1 in FIG.
4, a phase detector 15, a sampling circuit 16, an adder 17, and a 1-symbol delay circuit 18. Phase difference detection output of phase difference detector 32 ΔΨ 1 (n)
And the detected reception level of the reception level detector 19 are sample-held at the symbol timing in the sample-holding circuits 33 and 34, respectively. Phase difference detection output ΔΨ at the time point nT when the sample is held in the sample holding circuit 33
1 (n) is the ideal phase point 3π / 4, π / 4, −π / in adders 35 1 , 35 2 , 35 3 , and 35 4 , respectively.
The difference between 4 and -3π / 4 is taken. In this example, since it is π / 4 shift QDPSK, the possible phase difference between adjacent symbols is any of 3π / 4, π / 4, -π / 4, and -3π / 4, and these are ideal phase points. Becomes
【0014】加算器351 〜354 からの位相差検波出
力と、各理想位相点との差はスイッチ36を、シンボル
周波数1/Tよりも十分速い(少くとも4倍以上速い)
高速クロックで順次切替えて絶対値回路37へ供給され
て、それぞれの絶対値がとられる。これら絶対値回路3
7の出力は乗算器38でサンプル保持回路34の出力W
1 (n)が掛算されて重み付けされ、W1 (n)・|Ψ
1 (n)−3π/4|,W1 (n)・|Ψ1 (n)−π
/4|,W1 (n)・|Ψ1 (n)+π/4|,W
1 (n)・|Ψ1 (n)+3π/4|が信号処理部31
1 から順次出力される。[0014] and the phase difference detection output from the adder 35 1 to 35 4, the difference switch 36 between each ideal phase points, (fast at least 4 times or more) sufficiently higher than the symbol frequency 1 / T
The absolute values are sequentially switched by the high-speed clock and supplied to the absolute value circuit 37, and the respective absolute values are taken. These absolute value circuit 3
The output of 7 is the output W of the sample holding circuit 34 in the multiplier 38.
1 (n) is multiplied and weighted, and W 1 (n) · | Ψ
1 (n) -3π / 4 |, W 1 (n) · | Ψ 1 (n) -π
/ 4 |, W 1 (n) · | Ψ 1 (n) + π / 4 |, W
1 (n) · | Ψ 1 (n) + 3π / 4 | is the signal processing unit 31.
It is output sequentially from 1 .
【0015】同様にして信号処理部31k からW
k (n)・|Ψk (n)−3π/4|,W k (n)・|
Ψk (n)−π/4|,Wk (n)・|Ψk (n)+π
/4|,W k (n)・|Ψk (n)+3π/4|が順次
出力される。合成器39で信号処理部311 〜31k 出
力の対応理想位相点について合成される。つまり理想位
相点3π/4について、W1 (n)・|Ψ1 (n)−3
π/4|+W2 (n)・|Ψ 2 (n)−3π/4|+…
+Wk (n)・|Ψk (n)−3π/4|と合成され、
他の理想位相点についても同様にそれぞれ合成される。
これら合成出力はデータ判定部41へ供給される。デー
タ判定部41では各シンボル周期ごとに4つの理想位相
点に対する合成出力の内で、出力値が最小となる理想位
相点を判定し、その理想位相点を示す符号を出力する。Similarly, the signal processing unit 31kTo W
k(N) ・ | Ψk(N) -3π / 4 |, W k(N) ・ |
Ψk(N) -π / 4 |, Wk(N) ・ | Ψk(N) + π
/ 4 |, W k(N) ・ | Ψk(N) + 3π / 4 |
Is output. The signal processing unit 31 in the synthesizer 391~ 31kOut
The corresponding ideal phase points of force are combined. That is, ideal
For the phase point 3π / 4, W1(N) ・ | Ψ1(N) -3
π / 4 | + W2(N) ・ | Ψ 2(N) -3π / 4 | + ...
+ Wk(N) ・ | Ψk(N) -3π / 4 |
The other ideal phase points are similarly combined.
These combined outputs are supplied to the data determination unit 41. Day
The data determination unit 41 uses four ideal phases for each symbol period.
The ideal position where the output value is the minimum in the composite output for the point
The phase point is determined and the code indicating the ideal phase point is output.
【0016】[0016]
【発明の効果】以上説明したように、この発明によれば
位相差検波においてブランチ数に係わらず合成ダイバー
シチを実現することができる。計算機シミュレーション
により確認したこの発明の効果をπ/4シフトQDPS
Kの場合について図2に示す。シンボル長Tで正規化し
たフェージングピッチfD T=1.9×10-3である。
横軸は平均Eb /N0 、縦軸は平均誤り率である。□の
プロットがこの発明の特性であり、その他は直交遅延検
波であり、×のプロットはダイバーシチを適用しない場
合の特性であり、Δのプロットは選択ダイバーシチの特
性、○のプロットは最大比合成ダイバーシチの特性であ
る。実線および破線は文献〔1〕によるQDPSK遅延
検波における理論特性曲線であり、Lはブランチ数であ
る。この図からこの発明のダイバーシチによれば遅延検
波における最大比合成ダイバーシチとほぼ同等の改善効
果があり、選択ダイバーシチよりも大きなダイバーシチ
利得が得られており、フェージング下での伝送品質改善
に効果的である。ブランチ数Lを3にすると、ブランチ
数が2よりも特性がよくなり、ブランチ数を多くする
程、ダイバーシチ効果が大きくなる。また理論特性とほ
ぼ同一特性を示している。As described above, according to the present invention, combined diversity can be realized in phase difference detection regardless of the number of branches. The effect of the present invention confirmed by computer simulation was confirmed by π / 4 shift QDPS.
The case of K is shown in FIG. The fading pitch f D T normalized by the symbol length T is 1.9 × 10 −3 .
The horizontal axis is the average E b / N 0 , and the vertical axis is the average error rate. Plots of □ are characteristics of the present invention, others are quadrature differential detection, plots of × are characteristics when diversity is not applied, plots of Δ are characteristics of selection diversity, and plots of ○ are maximum ratio combining diversity. Is a characteristic of. The solid line and the broken line are theoretical characteristic curves in QDPSK differential detection according to document [1], and L is the number of branches. From this figure, according to the diversity of the present invention, there is almost the same improvement effect as the maximum ratio combining diversity in the differential detection, a greater diversity gain than the selective diversity is obtained, and it is effective in improving the transmission quality under fading. is there. When the number of branches L is 3, the characteristic becomes better than when the number of branches is 2, and the greater the number of branches, the greater the diversity effect. The characteristics are almost the same as the theoretical characteristics.
【図1】この発明による検波後合成ダイバーシチ受信機
の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of a post-detection combining diversity receiver according to the present invention.
【図2】各受信方式における平均E0 /N0 に対する誤
り率特性を示す図。FIG. 2 is a diagram showing error rate characteristics with respect to an average E 0 / N 0 in each reception system.
【図3】従来の2ブランチ位相合成ダイバーシチ受信機
を示すブロック図。FIG. 3 is a block diagram showing a conventional 2-branch phase-combining diversity receiver.
【図4】位相合成出力において実際と方向が反転する例
を示す信号ベクトル図。FIG. 4 is a signal vector diagram showing an example in which the direction is reversed from the actual state in the phase combined output.
Claims (1)
信号をそれぞれ位相差検波器で、位相差検波後に合成す
るダイバーシチ受信機において、 上記各アンテナの受信レベルを検出する受信レベル検出
器と、 上記各位相差検波器からの位相差検波出力と理想位相点
との差をとる手段と、 その各差の絶対値をとる手段と、 上記差の絶対値をそれぞれ対応する上記検出受信レベル
に従った重み付をする手段と、 これら重み付けられた絶対値を上記各理想位相点ごとに
合成する合成器と、 その合成器の出力中の最小となる理想位相点を判定して
その理想位相点を示す符号を復調データとして出力する
データ判定回路と、 を備えることを特徴とするダイバーシチ受信機。1. A diversity receiver for combining received signals received by a plurality of antennas with a phase difference detector, and combining the received signals after the phase difference detection, a reception level detector for detecting a reception level of each antenna, Means for obtaining the difference between the phase difference detection output from each phase difference detector and the ideal phase point, means for obtaining the absolute value of each difference, and weighting according to the detection reception level corresponding to the absolute value of each difference Means for adding, a synthesizer for synthesizing these weighted absolute values for each of the ideal phase points, and a code indicating the ideal phase point by determining the minimum ideal phase point in the output of the synthesizer. A diversity receiver, comprising: a data determination circuit for outputting as demodulated data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5049319A JPH06268559A (en) | 1993-03-10 | 1993-03-10 | Diversity receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5049319A JPH06268559A (en) | 1993-03-10 | 1993-03-10 | Diversity receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06268559A true JPH06268559A (en) | 1994-09-22 |
Family
ID=12827656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5049319A Pending JPH06268559A (en) | 1993-03-10 | 1993-03-10 | Diversity receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06268559A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0788245A2 (en) | 1996-01-31 | 1997-08-06 | Mitsubishi Denki Kabushiki Kaisha | Space diversity receiver for differential PSK signals using signal detection and sequence estimation |
US5933466A (en) * | 1996-03-05 | 1999-08-03 | Kabushiki Kaisha Toshiba | Radio communications apparatus with a combining diversity |
-
1993
- 1993-03-10 JP JP5049319A patent/JPH06268559A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0788245A2 (en) | 1996-01-31 | 1997-08-06 | Mitsubishi Denki Kabushiki Kaisha | Space diversity receiver for differential PSK signals using signal detection and sequence estimation |
US5953383A (en) * | 1996-01-31 | 1999-09-14 | Mitsubishi Denki Kabushiki Kaisha | Diversity receiver |
US5933466A (en) * | 1996-03-05 | 1999-08-03 | Kabushiki Kaisha Toshiba | Radio communications apparatus with a combining diversity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2149364C (en) | Diversity reception device | |
JP3033191B2 (en) | Phase combining method and apparatus for diversity receiver | |
EP0613260B1 (en) | Space diversity receiver for a digital communications system | |
US5109392A (en) | Diversity receiver arrangement for digital signals | |
JPH10303794A (en) | Known system detector | |
US7116999B2 (en) | Mobile communications receiving apparatus and method | |
US6148186A (en) | Method of combining received signal of diversity type radio device and diversity type radio device | |
US7167695B2 (en) | Diversity receiver and method of diversity reception | |
US6842421B1 (en) | Method and apparatus for post-detection maximum ratio combining with antenna diversity in an orthogonal frequency division multiplexing (OFDM) communication system | |
JPH06268559A (en) | Diversity receiver | |
EP1315313B1 (en) | Vectorial combiner for diversity reception in RF transceivers | |
JPH06303171A (en) | Diversity reception system | |
EP2214326B1 (en) | Method for combining signals at wireless receivers in the absence of channel gain estimation and apparatus therefor | |
JPH1168647A (en) | Diversity receiver | |
JPH10256967A (en) | Post-detection diversity receiving circuit | |
JPH0923178A (en) | Diversity receiver | |
JP2000078115A (en) | Diversity receiver | |
JP2002368661A (en) | Selective combining diversity receiver | |
JP3361930B2 (en) | Delay detection circuit | |
JP2756477B2 (en) | Received level adaptive post-detection combining diversity receiver circuit. | |
JP3182376B2 (en) | Diversity receiver | |
JP3043655B2 (en) | Diversity method | |
JP2754414B2 (en) | Diversity receiver circuit | |
JPH10229360A (en) | After-detection diversity reception circuit | |
JPH08195705A (en) | Diversity receiver |