[go: up one dir, main page]

JPH06244892A - Phase comparator - Google Patents

Phase comparator

Info

Publication number
JPH06244892A
JPH06244892A JP5029102A JP2910293A JPH06244892A JP H06244892 A JPH06244892 A JP H06244892A JP 5029102 A JP5029102 A JP 5029102A JP 2910293 A JP2910293 A JP 2910293A JP H06244892 A JPH06244892 A JP H06244892A
Authority
JP
Japan
Prior art keywords
phase
circuit
calculating
approximation
phase comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5029102A
Other languages
Japanese (ja)
Inventor
Yasushi Sugita
康 杉田
Tatsuya Ishikawa
石川  達也
Noboru Taga
昇 多賀
Susumu Komatsu
進 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP5029102A priority Critical patent/JPH06244892A/en
Publication of JPH06244892A publication Critical patent/JPH06244892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To reduce the scale of a hardware by providing a means for calculating any specified parameter X, means for calculating a phase theta from the parameter X by solving any specified approximate formula and means for calculating phase difference between the phase theta and any prescribed phase. CONSTITUTION:The real number part data and imaginary number part data of complex multiplied results are introduced to input terminals 40 and 41 and inputted to an area converter 42. The area converter 42 converts input signals, which exist in areas from 40 deg. to 360 deg. in the vector figure, to the parameter X in areas from 0 deg. to 45 deg. and supplies them to an approximate circuit 43. On the other hand, which area, where the input signal exists, among respective areas 1-8 is decided and the result is supplied to a phase detection circuit 44. The approximate circuit 43 converts the parameter X to the phase theta by the approximate formula, which is calculated by performing the Taylor expansion of theta-ArctanX around X=1, and supplies the approximately calculated phase thetato the phase difference detection circuit 44. According to the area decided result of the area converter 42, the phase difference detection circuit 44 compares the phase with the prescribed phase and outputs difference DELTAtheta. Thus, the capacity of a ROM can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、多位相変調方式や直
交振幅変調方式などを用いた送受信システムの搬送波再
生回路に用いられる位相比較器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase comparator used in a carrier recovery circuit of a transmission / reception system using a multi-phase modulation system or a quadrature amplitude modulation system.

【0002】[0002]

【従来の技術】近年、画像情報などの大容量のデジタル
データ伝送に関する実用化研究が行われており、これら
のデジタルデータ伝送方式には、多位相変調方式や直交
振幅変調方式が用いられている。これらの変調方式にお
いては、変調波から搬送波を再生する際に、デジタル位
相ロックループ(PLL)回路による搬送波再生回路が
用いられ、安定した搬送波を再生することが考えられて
いる。以下、複素数信号を用いたデジタルPLL回路に
ついて説明する。
2. Description of the Related Art In recent years, practical studies on transmission of large-capacity digital data such as image information have been conducted, and a multi-phase modulation method or a quadrature amplitude modulation method is used for these digital data transmission methods. . In these modulation methods, when reproducing a carrier wave from a modulated wave, a carrier wave reproducing circuit using a digital phase locked loop (PLL) circuit is used to reproduce a stable carrier wave. Hereinafter, a digital PLL circuit using a complex number signal will be described.

【0003】変調方式はQPSKとする。図7(b)は
QPSK信号のベクトル図である。QPSKでは、図に
示すように45°、135°、225°、315°の位
相のどれかにシンボルが存在し、そのシンボルの位相に
よりデータを伝送する。受信された信号は、準同期検波
され、ここでシンボルの位相は互いに直交するI軸とQ
軸の方向の振幅の値に変換される。これらの振幅データ
をI信号とQ信号と呼ぶ。
The modulation method is QPSK. FIG. 7B is a vector diagram of the QPSK signal. In QPSK, a symbol exists in one of the phases of 45 °, 135 °, 225 °, and 315 ° as shown in the figure, and data is transmitted according to the phase of the symbol. The received signal is quasi-coherently detected, where the phases of the symbols are orthogonal to each other in the I axis and the Q axis.
Converted to an amplitude value in the axial direction. These amplitude data are called I signal and Q signal.

【0004】図7(a)は、一般的なデジタルPLL回
路のブロック図である。端子10、11にはデジタル信
号に変換された複素数信号(I信号とQ信号)が入力さ
れ、このI信号とQ信号は複素乗算器12に入力され
る。複素乗算器12は、一方から入力されるI信号とQ
信号と、他方から入力されるデータ変換器16からのsi
n およびcos 特性の信号とを複素乗算し、その結果を位
相比較器13へ与える。位相比較器13は、複素乗算器
12の乗算結果の実数部データと虚数部データからタン
ジェント(tan )の逆特性(Arctan)によって、シンボ
ルの位相を検出する。そして検出された位相と所定の位
相(45°、135°、225°、315°)との位相
差を求め(図7(b)参照)、その位相差に比例した位
相誤差信号ΔθをPLLループフィルタ14に供給す
る。PLLフィルタ14は、位相誤差信号を平滑化して
制御信号を得、数値制御発振器15の制御端子に与え
る。
FIG. 7A is a block diagram of a general digital PLL circuit. The complex number signals (I signal and Q signal) converted into digital signals are input to the terminals 10 and 11, and the I signal and Q signal are input to the complex multiplier 12. The complex multiplier 12 receives the I signal and the Q signal input from one side.
Signal and si from the data converter 16 input from the other
Complex multiplication is performed with the signals having the n and cos characteristics, and the result is given to the phase comparator 13. The phase comparator 13 detects the phase of the symbol from the real part data and the imaginary part data of the multiplication result of the complex multiplier 12 based on the inverse characteristic (Arctan) of the tangent (tan). Then, the phase difference between the detected phase and the predetermined phase (45 °, 135 °, 225 °, 315 °) is obtained (see FIG. 7B), and the phase error signal Δθ proportional to the phase difference is obtained in the PLL loop. Supply to the filter 14. The PLL filter 14 smoothes the phase error signal to obtain a control signal and supplies it to the control terminal of the numerically controlled oscillator 15.

【0005】数値制御発振器15は、制御信号に基づい
て発振周波数が制御された位相信号を得、データ変換器
16に供給する。データ変換器16は、位相信号をsin
およびcos 特性を持つ2系統の信号に変換し、前述の複
素乗算器12の他方端子に供給する。
The numerically controlled oscillator 15 obtains a phase signal whose oscillation frequency is controlled based on the control signal and supplies the phase signal to the data converter 16. The data converter 16 sins the phase signal
And a signal having two cos characteristics, and supplied to the other terminal of the complex multiplier 12 described above.

【0006】以上のように、複素乗算器12、位相比較
器13、PLLループフィルタ14、数値制御発振器1
5及びデータ変換器16を経て複素乗算器12へ戻る完
全デジタル構成の制御ループにより、周波数引き込み及
び位相同期が行われる。
As described above, the complex multiplier 12, the phase comparator 13, the PLL loop filter 14, the numerically controlled oscillator 1
Frequency pulling and phase synchronization is provided by a fully digital control loop back to the complex multiplier 12 via 5 and the data converter 16.

【0007】前述したように、QPSKで伝送されるシ
ンボルは、図7(b)中で、45°、135°、225
°、315°の4つの位相のいずれかをとるが、位相引
込み動作状態でのシンボル21は、所定の位相(図中で
は45°)とΔθだけの位相差を持つ。位相比較器13
は、この位相差Δθを検出して位相誤差信号Δθとして
出力する。所定の位相とは、入力シンボル位相が0°〜
90°では45°、90°〜180°では135°、1
80°〜270°では225°、270°〜360°で
は315°であり、位相差Δθは−45°〜+45°の
範囲で検出される。位相差の検出精度は、PLLの性能
に大きな影響を与えるため、位相差検出には精度が要求
される。図7(b)からわかるように、変調シンボルの
位相θは、θ=Arctan(Q/I)で求めることができ
る。そこで従来の位相比較器はその位相検出精度を保つ
ために、図7(c)に示すように、複素乗算結果の実数
部Iと虚数部Qの値をアドレスとするROMで構成され
ていた。ROMには、実数部データIと虚数部データQ
をアドレスとし各アドレスにはデータIとデータQから
計算される位相θに対応する位相誤差信号Δθの値を格
納してある。ROMにアドレスとしてデータI、データ
Qを与えることで位相誤差信号Δθが出力されるため、
検出精度はアドレスのビット数に依存する。しかしアド
レスのビット数が増えると、ROMの容量が増えるた
め、ハードウエア規模が大きくなり、IC化の際に不利
となる。
As described above, the symbols transmitted by QPSK are 45 °, 135 °, and 225 in FIG. 7B.
One of the four phases of 315 ° and 315 ° is taken, but the symbol 21 in the phase pull-in operation state has a phase difference of Δθ with a predetermined phase (45 ° in the figure). Phase comparator 13
Detects this phase difference Δθ and outputs it as a phase error signal Δθ. The predetermined phase means that the input symbol phase is 0 ° to
45 ° at 90 °, 135 ° at 90 ° to 180 °, 1
It is 225 ° at 80 ° to 270 ° and 315 ° at 270 ° to 360 °, and the phase difference Δθ is detected in the range of −45 ° to + 45 °. Since the detection accuracy of the phase difference has a great influence on the performance of the PLL, the accuracy of the phase difference detection is required. As can be seen from FIG. 7B, the phase θ of the modulation symbol can be calculated by θ = Arctan (Q / I). Therefore, in order to maintain the phase detection accuracy, the conventional phase comparator is composed of a ROM having the addresses of the real part I and the imaginary part Q of the complex multiplication result as shown in FIG. 7C. The ROM has real part data I and imaginary part data Q.
Is stored as an address, and the value of the phase error signal Δθ corresponding to the phase θ calculated from the data I and the data Q is stored in each address. Since the phase error signal Δθ is output by giving data I and data Q to the ROM as addresses,
The detection accuracy depends on the number of bits of the address. However, when the number of bits of the address increases, the capacity of the ROM increases, so that the hardware scale increases, which is disadvantageous when integrated into an IC.

【0008】[0008]

【発明が解決しようとする課題】上記したように複素数
表現の信号を入力とする位相比較器においては、ROM
を使用して位相差検出を行った。しかしその検出精度を
高めるためには、ハードウエア規模が大きくなる問題が
ある。そこでこの発明は、ハードウエアの規模を小さく
することができる位相比較器を提供することを目的とす
る。
As described above, in the phase comparator which inputs the signal of the complex number representation, the ROM
Was used to detect the phase difference. However, in order to improve the detection accuracy, there is a problem that the hardware scale becomes large. Therefore, an object of the present invention is to provide a phase comparator capable of reducing the scale of hardware.

【0009】[0009]

【課題を解決するための手段】この発明の位相比較器
は、入力信号が実数部Iと虚数部Qからなる複素数で表
現される位相比較器において、前記実数部Iと虚数部Q
から0≦X(X=Q/IあるいはI/Q)≦1なる変数
Xを求める手段と、関数θ=ArctanXを級数展開して得
た近似式を計算して前記変数Xから位相θを求める手段
と、前記位相θと所定の位相との位相差を求める手段と
を備えるものである。
The phase comparator of the present invention is a phase comparator in which an input signal is represented by a complex number consisting of a real part I and an imaginary part Q, and the real part I and the imaginary part Q are used.
From 0 to X (X = Q / I or I / Q) ≦ 1, and a function θ = ArctanX to calculate the approximate expression obtained by series expansion to obtain the phase θ from the variable X Means and means for obtaining a phase difference between the phase θ and a predetermined phase.

【0010】[0010]

【作用】上記の手段により、θ=ArctanXをX=1を中
心にしてテーラー展開することにより近似式の近似誤差
を少なくすることができ、この近似式を用いて位相差Δ
θを求める過程で用いるROMの容量を大幅に削減でき
るため、全体のハードウエア規模を小さくできる。
By the means described above, the approximation error of the approximate expression can be reduced by performing Taylor expansion of θ = Arctan X centering on X = 1, and using this approximate expression, the phase difference Δ
Since the capacity of the ROM used in the process of obtaining θ can be significantly reduced, the overall hardware scale can be reduced.

【0011】[0011]

【実施例】以下、この発明の実施例を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1はこの発明の一実施例であり、複素数
信号を入力とする位相比較器13のブロックを示してい
る。入力端子40、41には、複素乗算結果の実数部デ
ータIと虚数部データQが導入され、領域変換器42に
入力される。領域変換器42は、図2の(a)に示すベ
クトル図の45°〜360°の領域に存在する入力信号
を0°〜45°の領域の変数Xに変換し、近似回路43
に供給する。また、同図(a)に示す各領域1〜8のど
の領域にあるかを判定して、その結果を位相差検出回路
44に供給する。近似回路43は、変数Xを、θ=Arct
anXをX=1を中心にしてテーラー展開をして求めた近
似式によって位相θに変換しており、近似計算された位
相θを位相誤差検出回路44に供給する。位相差検出回
路44は、領域変換器42での領域判定結果に従って位
相θを所定の位相と比較し、その差分Δθを出力する。
次に領域変換器42、近似回路43および位相差検出回
路44の各実施例について説明する。
FIG. 1 shows an embodiment of the present invention and shows a block of a phase comparator 13 to which a complex number signal is input. The real part data I and the imaginary part data Q of the complex multiplication result are introduced into the input terminals 40 and 41, and are input to the domain converter 42. The domain converter 42 transforms the input signal existing in the region of 45 ° to 360 ° in the vector diagram shown in FIG. 2A into the variable X in the region of 0 ° to 45 °, and the approximation circuit 43.
Supply to. Further, it determines which of the areas 1 to 8 shown in FIG. 9A, and supplies the result to the phase difference detection circuit 44. The approximation circuit 43 sets the variable X to θ = Arct
AnX is converted into a phase θ by an approximate expression obtained by Taylor expansion centering on X = 1, and the approximate calculated phase θ is supplied to the phase error detection circuit 44. The phase difference detection circuit 44 compares the phase θ with a predetermined phase according to the area determination result of the area converter 42, and outputs the difference Δθ.
Next, examples of the domain converter 42, the approximation circuit 43, and the phase difference detection circuit 44 will be described.

【0013】図3は、領域変換器42の具体例を示すブ
ロック図である。複素乗算器の実数部データIと虚数部
データQは、それぞれ絶対値回路60と61および領域
判定回路66に入力される。ここで、領域判定回路66
にはIとQの符号のみ入力される。実数部Iの絶対値i
と、虚数部Qの絶対値qは、比較回路62で比較され、
比較結果は選択回路63、64および領域判定回路66
に入力される。また、iとqは選択回路63と64にも
それぞれ入力されている。
FIG. 3 is a block diagram showing a specific example of the domain converter 42. The real part data I and the imaginary part data Q of the complex multiplier are input to the absolute value circuits 60 and 61 and the area determination circuit 66, respectively. Here, the area determination circuit 66
Only the codes of I and Q are input to. Absolute value i of real part I
And the absolute value q of the imaginary part Q are compared by the comparison circuit 62,
The comparison result is the selection circuits 63 and 64 and the area determination circuit 66.
Entered in. Further, i and q are also input to the selection circuits 63 and 64, respectively.

【0014】ここで実数部データIの絶対値iと虚数部
データQの絶対値qがi>qの場合、選択回路63はq
を、選択回路64はiをそれぞれ選択して割算器65に
出力する。また、q>iの場合は、選択回路63はi
を、選択回路64はqをそれぞれ出力する。割算器65
は、選択回路63からの入力を分子、選択回路64から
入力を分母として割り算を行い、その結果を変数Xとし
て出力する。
When the absolute value i of the real part data I and the absolute value q of the imaginary part data Q are i> q, the selection circuit 63 outputs q.
The selection circuit 64 selects i and outputs it to the divider 65. When q> i, the selection circuit 63
And the selection circuit 64 outputs q. Divider 65
Performs division with the input from the selection circuit 63 as the numerator and the input from the selection circuit 64 as the denominator, and outputs the result as a variable X.

【0015】すなわち、図2(a)に示すように、入力
信号である複素乗算結果の実数部と虚数部が、各領域の
黒丸で印した位置のどれかを示したとする。このときi
>qであり、比較回路62がi>qの結果を出力する
と、選択回路63は虚数部データqを選択し、選択回路
64は実数部データiを選択して出力する。よって割算
器65では変数XはX=q/iとなり、入力が領域1の
2重丸印の位置に変換される。結果としてX=i/qあ
るいはq/iは、常に0≦分子≦分母なので、0≦X≦
1となる。領域判定回路66は、図2(b)に示す表に
従って入力信号の領域を判定する。QPSK変調の場
合、白丸印で示す各シンボルに対して−45°〜+45
°の範囲で位相差を検出すればよいので、領域判定回路
66は、領域1、3、5および7のときはLを、領域
2、4、6および8のときはHを出力する。図4(a)
に近似回路43の具体例を示す。
That is, as shown in FIG. 2A, it is assumed that the real part and the imaginary part of the complex multiplication result which is the input signal indicate one of the positions marked by black circles in each region. Then i
> Q and the comparison circuit 62 outputs the result of i> q, the selection circuit 63 selects the imaginary part data q, and the selection circuit 64 selects and outputs the real part data i. Therefore, in the divider 65, the variable X becomes X = q / i, and the input is converted to the position of the double circle mark in the area 1. As a result, X = i / q or q / i is always 0 ≦ numerator ≦ denominator, so 0 ≦ X ≦
It becomes 1. The area determination circuit 66 determines the area of the input signal according to the table shown in FIG. In the case of QPSK modulation, −45 ° to +45 for each symbol indicated by a white circle.
Since it suffices to detect the phase difference in the range of °, the area determination circuit 66 outputs L in areas 1, 3, 5 and 7 and outputs H in areas 2, 4, 6 and 8. Figure 4 (a)
A concrete example of the approximation circuit 43 is shown in FIG.

【0016】ここに示したのは、θ=ArctanXをX=1
を中心にしてテーラー展開した2次の近似式θ=π/4
+(X−1)/2−(X−1)2 /4を実現するための
具体例である。まず変数Xは、減算器81に入力され
1.0を引かれる。減算器81の出力は、乗算器83と
係数器82に入力される。乗算器83では減算器81の
出力どうしを乗算し、係数器82は減算器81の出力を
2分の1倍する。ここで係数器82はビットシフトであ
ってもよい。乗算器83の出力は、係数器84で4分の
1倍され、その出力は加算器85によって係数器82の
出力に加えられる。ここでの、係数器84もビットシフ
トであってよい。加算器85の出力は、加算器86によ
って4分のπが加えられて近似回路の位相出力θとな
る。
Shown here is θ = Arctan X where X = 1.
Approximate equation θ = π / 4 of Taylor expansion centered on
+ (X-1) / 2- (X-1) 2 This is a specific example for realizing / 4. First, the variable X is input to the subtractor 81 and subtracted by 1.0. The output of the subtractor 81 is input to the multiplier 83 and the coefficient unit 82. The multiplier 83 multiplies the outputs of the subtractor 81, and the coefficient unit 82 multiplies the output of the subtractor 81 by half. Here, the coefficient unit 82 may be a bit shifter. The output of the multiplier 83 is multiplied by a quarter in the coefficient unit 84, and its output is added to the output of the coefficient unit 82 by the adder 85. The coefficient unit 84 here may also be a bit shifter. The output of the adder 85 is added with π / 4 by the adder 86, and becomes the phase output θ of the approximation circuit.

【0017】以上の例では、位相θを求める手順が、前
掲した2次の近似式を形成せずに計算したときの手順に
同じであるが、後述するように近似式を変形したときの
計算手順を持つ回路であってもよいことは明らかであ
る。
In the above example, the procedure for obtaining the phase θ is the same as the procedure for calculating without forming the quadratic approximate expression described above, but the calculation for modifying the approximate expression as described later. It is obvious that the circuit may have a procedure.

【0018】図5には位相差検出回路44のブロック図
を示す。近似された位相θは、差分回路70で45°と
の差分がとられ、選択回路71と符号反転回路72に供
給される。符号反転回路72は、差分演算の結果の値の
正負の符号を反転した値を選択回路71に供給する。選
択回路71は、領域判定信号がLであって領域判定の結
果が1、3、5および7のときは差分演算回路70の出
力を、領域判定信号がHであって領域判定の結果が2、
4、6および8のときは符号反転回路72の出力を、位
相差Δθとして出力する。図2(a)に示すように、入
力信号が領域1、3、5および7のときは各シンボルと
の位相差が0°〜−45°であり、2、4、6および8
のときは各シンボルとの位相差が0〜45°であるの
で、上記のように領域判定信号によって位相差の符号を
切り替えることで各領域での各シンボルとの位相差が求
められる。図4(b)は、近似回路43の別の実施例で
ある。この例ではθ=ArctanXのX=1を中心にした1
次の近似式θ=π/4+(X−1)/2を変形した θ={π/4+(X−1)}/2
FIG. 5 shows a block diagram of the phase difference detection circuit 44. The approximated phase θ is differentiated from 45 ° by the difference circuit 70 and supplied to the selection circuit 71 and the sign inversion circuit 72. The sign inversion circuit 72 supplies a value obtained by inverting the positive and negative signs of the value of the difference calculation result to the selection circuit 71. The selection circuit 71 outputs the output of the difference calculation circuit 70 when the area determination signal is L and the area determination results are 1, 3, 5 and 7, and the area determination signal is H and the area determination result is 2 ,
In the case of 4, 6 and 8, the output of the sign inverting circuit 72 is output as the phase difference Δθ. As shown in FIG. 2A, when the input signal is in the regions 1, 3, 5 and 7, the phase difference with each symbol is 0 ° to −45 °, and 2, 4, 6 and 8 are given.
In this case, since the phase difference with each symbol is 0 to 45 °, the phase difference with each symbol in each region is obtained by switching the sign of the phase difference with the region determination signal as described above. FIG. 4B shows another embodiment of the approximation circuit 43. In this example, 1 centered on X = 1 of θ = ArctanX
The following approximate expression θ = π / 4 + (X-1) / 2 is modified and θ = {π / 4 + (X-1)} / 2

【0019】の計算手順にそって位相θが計算される。
つまり、まず変数Xに加算器87によって(π/2 −
1.0)が加えられ、この加算器87の出力が係数器8
8によって2分の1にされる。この係数器88はビット
シフトであってよい。図4(c)では同じ近似式を変形
せずにθ=π/4+(X−1)/2の手順のまま計算回
路とした実施例であって、図4(b)の構成要素に対し
て減算器89の分だけ回路規模が大きくなる。このよう
に近似式を変形することによって回路規模の削減が期待
できる場合には、近似回路41は変形した近似式の手順
によって位相θを計算する回路であってもよい。
The phase θ is calculated according to the calculation procedure of.
That is, first, the variable X is added to the variable X by (π / 2 −
1.0) is added, and the output of the adder 87 is the coefficient unit 8
It is halved by 8. This coefficient unit 88 may be a bit shift. FIG. 4C shows an embodiment in which the same approximation formula is not modified and the calculation circuit is used as it is in the procedure of θ = π / 4 + (X−1) / 2, and Therefore, the circuit scale becomes larger by the amount of the subtractor 89. When the circuit scale can be expected to be reduced by modifying the approximate expression in this way, the approximate circuit 41 may be a circuit that calculates the phase θ by the procedure of the modified approximate expression.

【0020】また、以上にあげた1次、2次以上の3
次、5次などの次数を持つ近似式を用いても、同様にし
て位相近似計算回路を構成することができ、その場合に
は、次数に応じて位相θの近似誤差を少なくできること
はいうまでもない。
In addition, the above-mentioned primary, secondary and higher three
It is needless to say that the phase approximation calculation circuit can be configured in the same manner by using an approximation formula having orders such as quintic and quintic, and in that case, the approximation error of the phase θ can be reduced according to the order. Nor.

【0021】図6には、Xに対するθ=ArctanXと近似
計算式との近似誤差のグラフを示す。1次近似の場合の
近似誤差が91、2次近似の場合の近似誤差が92、3
次近似の場合が93である。近似の次数が上がるにつ
れ、近似誤差が少なくなるが、実際には計算回路を構成
する場合の近似の次数は、回路のビット精度、近似誤
差、ハードウエアの規模や必要とされる位相計算精度な
どを勘案して決定されるべきである。
FIG. 6 shows a graph of the approximation error between θ = Arctan X and the approximate calculation formula with respect to X. The approximation error in the case of the first-order approximation is 91, and the approximation error in the case of the second-order approximation is 92, 3.
The case of the next approximation is 93. Although the approximation error decreases as the approximation order increases, the approximation order when actually configuring a calculation circuit depends on the bit accuracy of the circuit, the approximation error, the scale of the hardware, and the required phase calculation accuracy. Should be taken into consideration.

【0022】以上のように、複素表現された信号を入力
とする位相比較器において、ハードウエア規模の大きな
ROMを使用せず、簡単な近似式によって誤差の少ない
位相差を検出することができ、IC化に有利な位相比較
器を実現することができる。なおこの発明による位相比
較器は、PLL以外にも使用できることはもちろんであ
る。
As described above, in the phase comparator which receives the complex-represented signal as an input, it is possible to detect a phase difference with a small error by a simple approximation formula without using a ROM having a large hardware scale. It is possible to realize a phase comparator which is advantageous for IC integration. Of course, the phase comparator according to the present invention can be used for other than the PLL.

【0023】[0023]

【発明の効果】以上説明したようにこの発明によると、
ハードウエア規模の小さな位相比較器を実現できる。
As described above, according to the present invention,
A phase comparator with small hardware scale can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1の回路の動作を説明するために示した入力
データ位相の説明図及び領域説明図。
2A and 2B are an explanatory diagram and a region explanatory diagram of an input data phase shown for explaining the operation of the circuit of FIG.

【図3】図1の領域変換器の具体的構成例を示す図。FIG. 3 is a diagram showing a specific configuration example of the domain converter of FIG.

【図4】図1の近似回路の具体例を示す図。FIG. 4 is a diagram showing a specific example of the approximation circuit shown in FIG.

【図5】図1の位相差検出回路の具体例を示す図。5 is a diagram showing a specific example of the phase difference detection circuit in FIG.

【図6】近似式による値と実際位相との誤差の説明図。FIG. 6 is an explanatory diagram of an error between a value based on an approximate expression and an actual phase.

【図7】搬送波再生回路の回路図と、これに用いられる
位相比較器の位相判定動作を説明するための説明図及び
位相比較器の構成例を示す図。
FIG. 7 is a circuit diagram of a carrier recovery circuit, an explanatory diagram for explaining a phase determination operation of a phase comparator used therein, and a diagram showing a configuration example of a phase comparator.

【符号の説明】[Explanation of symbols]

42…領域変換器、43…近似回路、44…位相差検出
回路。
42 ... Domain converter, 43 ... Approximation circuit, 44 ... Phase difference detection circuit

フロントページの続き (72)発明者 多賀 昇 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内 (72)発明者 小松 進 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内Front Page Continuation (72) Noboru Inventor Noboru Shiga, 3-3-9 Shinbashi, Minato-ku, Tokyo Within Toshiba Abu E. Ltd. (72) Susumu Komatsu 3-3-9 Shimbashi, Minato-ku, Tokyo Toshiba Abu E Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】入力信号が実数部Iと虚数部Qからなる複
素数で表現される位相比較器において、 前記実数部Iと虚数部Qから0≦X(X=Q/Iあるい
はI/Q)≦1なる変数Xを求める手段と、 関数θ=ArctanXを級数展開して得た近似式を計算して
前記変数Xから位相θを求める手段と、 前記位相θと所定の位相との位相差を求める手段とを具
備したことを特徴とする位相比較器。
1. A phase comparator in which an input signal is represented by a complex number consisting of a real part I and an imaginary part Q, wherein 0 ≦ X (X = Q / I or I / Q) from the real part I and the imaginary part Q. Means for obtaining a variable X of ≦ 1, means for calculating a phase θ from the variable X by calculating an approximate expression obtained by series expansion of the function θ = ArctanX, and a phase difference between the phase θ and a predetermined phase. A phase comparator comprising: means for obtaining.
【請求項2】入力信号が実数部Iと虚数部Qからなる複
素数で表現される位相比較器において、 前記実数部Iと虚数部Qから0≦X(X=Q/Iあるい
はI/Q)≦1なる変数Xを求める手段と、 関数θ=ArctanXをX=1を中心としてテーラー展開し
て得た近似式 θ=π/4+(X−1)/2−(X−1)2 /4+(X
−1)3 /12…を計算して前記変数Xから位相θを求
める近似手段と、 前記位相θと所定の位相との位相差を求める手段とを具
備したことを特徴とする位相比較器。
2. A phase comparator in which an input signal is represented by a complex number composed of a real part I and an imaginary part Q, wherein 0 ≦ X (X = Q / I or I / Q) from the real part I and the imaginary part Q. A means for obtaining a variable X such that ≦ 1 and an approximate expression θ = π / 4 + (X-1) / 2- (X-1) 2 obtained by Taylor expansion of the function θ = ArctanX centered around X = 1. / 4 + (X
-1) 3 A phase comparator comprising: approximating means for calculating / 12 ... and obtaining a phase θ from the variable X; and means for obtaining a phase difference between the phase θ and a predetermined phase.
【請求項3】前記近似手段は、 関数θ=ArctanXをX=1を中心としてテーラー展開し
た結果として得られる四則演算による1次の近似式であ
るθ=π/4+(X−1)/2,あるいは2次の近似式
であるθ=π/4+(X−1)/2−(X−1)2
4,あるいはこれら以上の次数を持つ近似計算式を計算
する手段であることを特徴とする請求項1記載の位相比
較器。
3. The approximation means is a first-order approximation formula by four arithmetic operations obtained as a result of Taylor expansion of a function θ = ArctanX centering around X = 1, and θ = π / 4 + (X-1) / 2. , Or a quadratic approximation θ = π / 4 + (X-1) / 2- (X-1) 2 /
4. The phase comparator according to claim 1, which is means for calculating an approximate calculation formula having an order of 4, or higher.
【請求項4】前記近似手段は、 関数θ=ArctanXをX=1を中心としてテーラー展開し
て得た近似式 θ=π/4+(X−1)/2−(X−1)2 /4+(X
−1)3 /12…を数学的に等価に変形した計算式を計
算する手段を備えていることを特徴とする請求項1記載
の位相比較器。
4. The approximation means obtains an approximation formula θ = π / 4 + (X-1) / 2- (X-1) 2 obtained by Taylor expansion of a function θ = ArctanX centered around X = 1. / 4 + (X
-1) 3 2. The phase comparator according to claim 1, further comprising means for calculating a calculation formula obtained by mathematically transforming / 12 ...
JP5029102A 1993-02-18 1993-02-18 Phase comparator Pending JPH06244892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029102A JPH06244892A (en) 1993-02-18 1993-02-18 Phase comparator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029102A JPH06244892A (en) 1993-02-18 1993-02-18 Phase comparator

Publications (1)

Publication Number Publication Date
JPH06244892A true JPH06244892A (en) 1994-09-02

Family

ID=12266988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029102A Pending JPH06244892A (en) 1993-02-18 1993-02-18 Phase comparator

Country Status (1)

Country Link
JP (1) JPH06244892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608764A (en) * 1993-11-12 1997-03-04 Kabushiki Kaisha Toshiba OFDM synchronization demodulation circuit
JP2008211801A (en) * 2007-02-26 2008-09-11 Fujitsu Ltd Digital phase estimator, digital phase locked loop and optical coherent receiver
WO2009075144A1 (en) * 2007-12-10 2009-06-18 Nec Corporation Wireless communication device and dc offset adjustment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608764A (en) * 1993-11-12 1997-03-04 Kabushiki Kaisha Toshiba OFDM synchronization demodulation circuit
JP2008211801A (en) * 2007-02-26 2008-09-11 Fujitsu Ltd Digital phase estimator, digital phase locked loop and optical coherent receiver
WO2009075144A1 (en) * 2007-12-10 2009-06-18 Nec Corporation Wireless communication device and dc offset adjustment method
JPWO2009075144A1 (en) * 2007-12-10 2011-04-28 日本電気株式会社 Wireless communication apparatus and DC offset adjustment method
US8396433B2 (en) 2007-12-10 2013-03-12 Nec Corporation Radio communication apparatus and DC offset adjustment method

Similar Documents

Publication Publication Date Title
US4926443A (en) Correction circuit for a digital quadrature-signal pair
JP3147529B2 (en) Coherent demodulator with carrier recovery digital circuit
JPH0927830A (en) Method for bilateral frequency conversion in digital complexphasor generator and digital receiver
US5521559A (en) Signal oscillator, FM modulation circuit using the same, and FM modulation method
JPH11284677A (en) Demodulator and digital radio communication system using it
US4674105A (en) Digital signal processor
US5517689A (en) Phase detecting method and phase detector and FM receiver using phase detecting method
JP2000022772A (en) Carrier recovery circuit and carrier recovery method
JPS5925500B2 (en) Carrier wave regeneration circuit
JP2000209291A (en) Quadrature modulator
US5079513A (en) Demodulator and radio receiver having such a demodulator
EP0570979A1 (en) Quadrature modulation circuit
JPH07264063A (en) Frequency synthesizer
JPH06244892A (en) Phase comparator
US7224755B2 (en) Method and apparatus for generating a frequency control signal
JPH05347643A (en) Phase comparator
JPH11331291A (en) Automatic gain control method and demodulator provided with automatic gain control
US5838208A (en) Modulation of transmission data signal in sychronous with transmission clock signal
JPS6331987B2 (en)
JP3383318B2 (en) Digital modulation wave demodulator
JPH0779363B2 (en) Delay detection circuit
JP3394788B2 (en) Frequency discriminator
JPH0758794A (en) Phase comparison circuit
JPH059978B2 (en)
JP3999640B2 (en) Frequency control device