[go: up one dir, main page]

JPH06242419A - Method for driving liquid crystal device - Google Patents

Method for driving liquid crystal device

Info

Publication number
JPH06242419A
JPH06242419A JP2663193A JP2663193A JPH06242419A JP H06242419 A JPH06242419 A JP H06242419A JP 2663193 A JP2663193 A JP 2663193A JP 2663193 A JP2663193 A JP 2663193A JP H06242419 A JPH06242419 A JP H06242419A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
crystal device
applying
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2663193A
Other languages
Japanese (ja)
Inventor
Shigeto Koda
成人 幸田
Seiichi Shirai
誠一 白井
Noriyoshi Yamauchi
規義 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2663193A priority Critical patent/JPH06242419A/en
Publication of JPH06242419A publication Critical patent/JPH06242419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To maintain excellent optical characteristics at the time of storing operation for a ferroelectric liquid crystal device which can not be expected to be held in a sufficient surface stabilized state when no voltage is applied between electrodes. CONSTITUTION:The liquid crystal device controls double refraction based upon the optical anisotropy of ferroelectric liquid crystal 14 by applying a voltage between a couple of opposite electrodes 10 and 11 of the liquid crystal which has the electrodes 10 and 11 and a liquid crystal cell having the ferroelectric liquid crystal 14 between the electrodes 10 and 11. For the driving method of this liquid crystal device, a state is written in the liquid crystal cell by applying a write pulse voltage and the state written in the liquid crystal cell is held with a DC hold voltage following the write pulses; and the hold voltage has the same polarity with the write pulses and are much lower than the write voltage. In a period wherein a select signal is applied to a scanning line to select the liquid crystal cell, the write pulse voltage is applied through a data line, and then the hold voltage is applied successively, and then the scanning line is unselected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光シャッタ,光スイッ
チあるいは画像表示装置等の強誘電性液晶を用いた液晶
装置の駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving method of a liquid crystal device using a ferroelectric liquid crystal such as an optical shutter, an optical switch or an image display device.

【0002】[0002]

【従来の技術】強誘電性液晶を透明電極で狭持し、電気
光学効果を利用した液晶装置は、セル厚が薄い場合に、
電圧印加時に観測される応答性の速さ、電圧除去時に観
測される表面安定化状態による光学異方性のメモリ性と
いう他の液晶装置にない特徴を有していることが見出さ
れている。この性質を利用し、偏光による複屈折とを組
み合わせて光をオン、オフする単純マトリクス形の液晶
装置がクラークとラガウォールにより米国特許4367
924に提示されている。
2. Description of the Related Art A liquid crystal device in which a ferroelectric liquid crystal is sandwiched between transparent electrodes and which utilizes an electro-optical effect is required when a cell thickness is small.
It has been found that it has characteristics not found in other liquid crystal devices, such as the speed of response observed when a voltage is applied and the memory property of optical anisotropy due to the surface stabilization state observed when a voltage is removed. . Utilizing this property, a simple matrix type liquid crystal device which turns on / off light by combining with birefringence due to polarized light is disclosed in US Pat.
924 are presented.

【0003】なお、強誘電性液晶の表面安定化状態に基
づくメモリ性や、電界に対する応答特性、複屈折形液晶
装置に関する原理については、出版物「強誘電性液晶の
構造と物性」(福田敦夫、竹添秀男著、1990年5月
25日コロナ社発行)、「液晶デバイスハンドブック」
(日本学術振興会第142委員会偏、1989年9月2
9日、日刊工業新聞社発行)に詳述されており、ここで
は説明を省略する。
Regarding the memory property based on the surface-stabilized state of the ferroelectric liquid crystal, the response characteristic to an electric field, and the principle of the birefringent liquid crystal device, the publication "Structure and Physical Properties of Ferroelectric Liquid Crystal" (Atsuo Fukuda) , Hidezo Takezoe, Published by Corona Publishing Co., Ltd. on May 25, 1990), "Liquid Crystal Device Handbook"
(The 142nd Committee of Japan Society for the Promotion of Science, September 2, 1989)
9th, published by Nikkan Kogyo Shimbun), and the description is omitted here.

【0004】前述した液晶装置に必須なメモリ状態の発
現は、実際には製造上かなりの制限と技術的困難を伴う
ことが周知である。例えば、表面安定化状態の発生は、
現在使用されている材料ではセル厚が2μm以下の場合
に限られ、それ以上では電圧除去時には2安定状態を保
持できない。また、2μm以下としても、一般に電圧印
加時と電圧除去時(メモリ時)の状態に差が生じ、シス
テムへの応用上著しく使いにくい。また、この差は使用
する液晶材料の性質や配向処理の方法,条件によって大
きく変わり、強誘電性液晶装置の製造を困難なものにし
ている。
It is well known that manifestation of the memory state essential for the above-mentioned liquid crystal device is actually accompanied by considerable restrictions and technical difficulties in manufacturing. For example, the occurrence of a surface-stabilized state is
The materials currently used are limited to the case where the cell thickness is 2 μm or less, and above that, the bistable state cannot be maintained when the voltage is removed. Further, even if the thickness is 2 μm or less, there is generally a difference between the states when the voltage is applied and when the voltage is removed (at the time of memory), and it is extremely difficult to use in application to a system. Further, this difference greatly changes depending on the properties of the liquid crystal material used, the method of alignment treatment, and the conditions, which makes the manufacture of the ferroelectric liquid crystal device difficult.

【0005】図7は、液晶セルを2枚の平行偏光板で挟
んだ複屈折形の液晶装置の駆動電圧波形と透過光強度の
時間変化を示した図であり、例えば、正負極性のパルス
電圧53,54を印加したときの透過光強度の典型的変
動を示している。正電圧印加時の透過光強度をIon、負
電圧印加時の透過光強度をIoffとすると、液晶装置の
性能を表す消光比R=Ion/Ioffは、1/2波長板に
相当する波長を選べば1000以上の値が達成されてい
る。
FIG. 7 is a diagram showing a time-dependent change in drive voltage waveform and transmitted light intensity of a birefringent liquid crystal device in which a liquid crystal cell is sandwiched by two parallel polarizing plates. The typical variation of the transmitted light intensity when 53 and 54 are applied is shown. Assuming that the transmitted light intensity when a positive voltage is applied is Ion and the transmitted light intensity when a negative voltage is applied is Ioff, the extinction ratio R = Ion / Ioff, which represents the performance of the liquid crystal device, can be selected at a wavelength corresponding to a half-wave plate. For example, a value of 1000 or more has been achieved.

【0006】しかし、電圧除去時とともに透過光強度は
図7のように変化し、一定時間後それぞれImon,Imof
fとなる。従って、消光比Rm=Imon/Imoffは電圧印
加時に比べ大幅に低下するという問題がある。この変化
を減らす方法として、配向膜に導電性樹脂を用いる方法
等の製造技術による改善案が提案されているが、プロセ
スの複雑化、液晶材料との相性の善し悪し等汎用的に利
用できる状態にない。
However, the intensity of the transmitted light changes as shown in FIG. 7 as the voltage is removed, and after a certain time, Imon and Imof, respectively.
becomes f. Therefore, there is a problem that the extinction ratio Rm = Imon / Imoff is significantly reduced as compared to when a voltage is applied. As a method of reducing this change, an improvement plan by a manufacturing technique such as a method of using a conductive resin for the alignment film has been proposed, but the process is complicated, the compatibility with the liquid crystal material is good, and it can be used for general purposes. Absent.

【0007】そこで、強誘電性液晶の高速性のみに着目
し、メモリ性はアクティブ素子を付加することにより実
現する方法が、例えば、特開昭60−230121等に
提示されている。アクティブ素子をマトリクス状に配列
してTN液晶を駆動するアクティブマトリクス形液晶装
置は古くから周知の技術であり、TN液晶に交流電圧V
rmsを印加し電荷を保持するか、電圧を印加しないか
(0電荷を保持するか)で2つの光学状態を実現してい
た。
Therefore, a method of paying attention only to the high-speed property of the ferroelectric liquid crystal and realizing the memory property by adding an active element is presented in, for example, Japanese Patent Application Laid-Open No. 60-230121. An active matrix type liquid crystal device in which active elements are arranged in a matrix to drive a TN liquid crystal has been a well-known technique for a long time, and an AC voltage V is applied to the TN liquid crystal.
Two optical states are realized depending on whether rms is applied and the electric charge is retained or whether no voltage is applied (0 electric charge is retained).

【0008】TN液晶を強誘電性液晶に変えた場合に
は、周知のように正電圧を印加して正電荷を保持する
か、負電圧を印加して負電荷を保持するかで2つの光学
状態を実現することになる。しかし、一方の状態を継続
的に維持しようとすると、メモリ時では液晶セルに正ま
たは負の片極性電圧が定常的に印加されることになる。
一般に液晶セルは、高い直流電圧成分が長時間印加され
続けると焼き付きや、配向劣化により消光比の低下等が
生じることは周知であり、このような状況は装置の信頼
性上望ましくない。
When the TN liquid crystal is changed to a ferroelectric liquid crystal, it is well known that there are two optical methods depending on whether a positive voltage is applied to hold a positive charge or a negative voltage is applied to hold a negative charge. The state will be realized. However, if one of the states is continuously maintained, a positive or negative unipolar voltage is constantly applied to the liquid crystal cell during memory.
In general, it is well known that a liquid crystal cell suffers from burn-in or deterioration of the extinction ratio due to deterioration of orientation when a high DC voltage component is continuously applied for a long time, and such a situation is not desirable in terms of device reliability.

【0009】そこで、電圧の書き込み時に反対極性のパ
ルス電圧(リセット電圧)を印加する方法等が提案され
ているが、マトリクス形の液晶装置では直流成分を相殺
することは困難であると共に、光学特性が劣化する。
Therefore, a method of applying a pulse voltage (reset voltage) of opposite polarity at the time of writing a voltage has been proposed, but it is difficult to cancel the direct current component in the matrix type liquid crystal device, and the optical characteristics Deteriorates.

【0010】[0010]

【発明が解決しようとする課題】以上のように、強誘電
性液晶を用いた場合、メモリ時の光学特性が低下するた
め、電圧印加時の優れた特性を単純マトリクス形の液晶
装置の性能に反映することができなかった。また、アク
ティブマトリクス構成により常時電圧が印加された状態
では、信頼性が維持できないという問題があった。
As described above, when the ferroelectric liquid crystal is used, the optical characteristics at the time of memory are deteriorated. Therefore, the excellent characteristics at the time of applying a voltage are applied to the performance of the simple matrix type liquid crystal device. Could not be reflected. Further, there is a problem in that reliability cannot be maintained when a voltage is constantly applied due to the active matrix configuration.

【0011】本発明は、かかる問題点を解決するために
なされたものであり、本発明の目的は、電極間の電圧除
去時には、十分な表面安定化状態が期待できない強誘電
性液晶装置に対し、メモリ時の良好な光学特性を維持し
た液晶装置の駆動方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a ferroelectric liquid crystal device in which a sufficient surface stabilization state cannot be expected when the voltage between electrodes is removed. Another object of the present invention is to provide a method of driving a liquid crystal device that maintains good optical characteristics in memory.

【0012】本発明の他の目的は、特に、赤外領域の光
シャッタ等2μm以上のセル厚を必要とする場合に良好
な光学特性を与える駆動方法を提供することにある。
Another object of the present invention is to provide a driving method which gives good optical characteristics especially when a cell thickness of 2 μm or more is required such as an optical shutter in the infrared region.

【0013】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かにする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、対向する一対の電極と、該電極間に強誘
電性液晶を狭持した液晶セルを有する液晶装置の前記電
極間に電圧を印加することによって前記強誘電性液晶の
光学異方性に基づく複屈折を制御する液晶装置の駆動方
法において、前記液晶セルの状態の書込みは書き込みパ
ルス電圧を印加して行い、前記液晶セルに書き込まれた
状態の保持は前記書き込みパルスに引き続く直流の保持
電圧により行い、該保持電圧は前記書き込みパルスと同
極性でかつ、前記書き込み電圧に比し十分低い電圧であ
ることを特徴とする。
In order to achieve the above object, the present invention provides a space between the electrodes of a liquid crystal device having a pair of electrodes facing each other and a liquid crystal cell in which a ferroelectric liquid crystal is sandwiched between the electrodes. In a method of driving a liquid crystal device, which controls birefringence based on optical anisotropy of the ferroelectric liquid crystal by applying a voltage to the liquid crystal cell, writing of a state of the liquid crystal cell is performed by applying a write pulse voltage, The state of being written in the cell is held by a DC holding voltage following the writing pulse, and the holding voltage has the same polarity as the writing pulse and is a voltage sufficiently lower than the writing voltage. .

【0015】また、マトリクス状に配列された複数の画
素電極群と、その各々に接続されたアクティブ素子と、
該アクティブ素子を選択する走査線とデータ線とを有す
るアクティブマトリクス基板と、前記画素電極群に相対
して設置された対向電極を有する対向基板との間に強誘
電性液晶を狭持して液晶セルを構成する液晶装置の前記
画素電極群と対向電極間に電圧を印加することによっ
て、前記強誘電性液晶の光学異方性に基づく複屈折を制
御する液晶装置の駆動方法において、走査線に選択信号
を印加して液晶セルを選択している期間に、データ線を
介して書き込みパルス電圧を印加し、引続き前記パルス
電圧と同極性でかつ、十分低い電圧である保持電圧を印
加し、その後に走査線を非選択とすることを特徴とす
る。
Further, a plurality of pixel electrode groups arranged in a matrix and active elements connected to each of them.
Liquid crystal in which a ferroelectric liquid crystal is sandwiched between an active matrix substrate having scanning lines and data lines for selecting the active elements and an opposing substrate having an opposing electrode provided to face the pixel electrode group. In a method of driving a liquid crystal device, in which a birefringence based on optical anisotropy of the ferroelectric liquid crystal is controlled by applying a voltage between the pixel electrode group and a counter electrode of the liquid crystal device forming a cell, a scan line is While the liquid crystal cell is being selected by applying the selection signal, the write pulse voltage is applied via the data line, and subsequently, the holding voltage having the same polarity as the pulse voltage and a sufficiently low voltage is applied, and thereafter. It is characterized in that the scanning line is not selected.

【0016】[0016]

【作用】前述の手段によれば、強誘電性液晶セルの状態
の書き込みは、書き込みパルスに引き続く直流の同極性
で、かつ低い保持電圧により行うことにより、メモリ時
の光学特性が低下することがないので、電極間の電圧除
去時には、十分な表面安定化状態が期待できない強誘電
性液晶装置に対し、メモリ時の良好な光学特性を維持す
ることができる。特に、赤外領域の光シャッタ等2μm
以上のセル厚を必要とする場合に良好な光学特性を与え
ることができる。
According to the above-mentioned means, the writing of the state of the ferroelectric liquid crystal cell is carried out with the same polarity of DC following the writing pulse and with a low holding voltage, so that the optical characteristics at the time of memory may deteriorate. Therefore, when the voltage between the electrodes is removed, good optical characteristics at the time of memory can be maintained for the ferroelectric liquid crystal device in which a sufficient surface stabilization state cannot be expected. Especially 2 μm for optical shutter in infrared region
Good optical characteristics can be provided when the above cell thickness is required.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を用いて
詳細に説明する。なお、実施例を説明する全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
Embodiments of the present invention will be described in detail below with reference to the drawings. In all the drawings for explaining the embodiments, those having the same functions are designated by the same reference numerals, and the repeated description thereof will be omitted.

【0018】(実施例1)図1及び図2は、本発明に係
る液晶装置の実施例1の概略構成を示す模式構成図であ
り、具体的には表示装置あるいは光シャッタ装置に適用
した場合の原理的な構成図である。図3は、本実施例1
の液晶装置の駆動電圧波形と光透過光量を示す図であ
る。
(Embodiment 1) FIGS. 1 and 2 are schematic configuration diagrams showing a schematic configuration of Embodiment 1 of a liquid crystal device according to the present invention. Specifically, when applied to a display device or an optical shutter device. It is a principle block diagram of. FIG. 3 shows the first embodiment.
FIG. 3 is a diagram showing a drive voltage waveform and the amount of light transmitted through the liquid crystal device of FIG.

【0019】図1乃至図3において、1は駆動波形、2
は光透過光量、3は正電圧パルス、4は負電圧パルス、
5は最大透過光量、6は最小光量、7は直流保持電圧V
st、8は点線、10,11は透明電極、12,13はガ
ラス基板、14は強誘電性液晶、15は層法線、16,
17は偏光板、18は外部駆動回路、19は透過軸、2
0は光ビーム、21は出射光、22は偏波面である。
1 to 3, 1 is a drive waveform, 2 is
Is the amount of light transmitted, 3 is a positive voltage pulse, 4 is a negative voltage pulse,
5 is the maximum amount of transmitted light, 6 is the minimum amount of light, 7 is the DC holding voltage V
st and 8 are dotted lines, 10 and 11 are transparent electrodes, 12 and 13 are glass substrates, 14 is a ferroelectric liquid crystal, 15 is a layer normal line, 16,
17 is a polarizing plate, 18 is an external drive circuit, 19 is a transmission axis, 2
Reference numeral 0 is a light beam, 21 is outgoing light, and 22 is a plane of polarization.

【0020】本実施例1に係る液晶装置は、図1に示す
ように、例えば、インジウム錫膜(ITO)等で形成さ
れた透明電極10,11を有する2枚のガラス基板間1
2,13に強誘電性液晶14(分子形状を象徴的に表し
た)を挟み、強誘電性液晶の層法線15が基板表面に平
行になるように配向させ液晶セルを構成する。
As shown in FIG. 1, the liquid crystal device according to the first embodiment includes a space between two glass substrates 1 having transparent electrodes 10 and 11 formed of, for example, an indium tin film (ITO).
A ferroelectric liquid crystal 14 (symbolically representing the molecular shape) is sandwiched between 2 and 13, and a layer normal line 15 of the ferroelectric liquid crystal is oriented so as to be parallel to the substrate surface to form a liquid crystal cell.

【0021】液晶層の厚さdは、強誘電性液晶の屈折率
異方性△n、使用光波長λとの間に、
The thickness d of the liquid crystal layer is such that between the refractive index anisotropy Δn of the ferroelectric liquid crystal and the wavelength λ of light used,

【0022】[0022]

【数1】△n・d=λ/2 (1) の関係が成り立つようにする。透明電極間には正極性電
圧あるいは負極性電圧を外部駆動回路18から供給す
る。図1は、図3に示す閾値以上の正電圧パルス3印加
時の状態を、図2は同じく図3に示す負電圧パルス4印
加時の状態を示している。
## EQU1 ## The relation of Δnd = λ / 2 (1) is established. A positive voltage or a negative voltage is supplied from the external drive circuit 18 between the transparent electrodes. 1 shows a state when a positive voltage pulse 3 equal to or more than the threshold value shown in FIG. 3 is applied, and FIG. 2 shows a state when a negative voltage pulse 4 shown in FIG. 3 is applied.

【0023】周知のように、強誘電性液晶分子は閾値以
上の電圧を印加すると、自発分極によってそれぞれ層法
線15に対し±θのチルト角の方向に再配向する。基板
12,13の外側には偏光板16,17を透過軸19が
層法線15に対して前記チルト角+θ(または−θ)と
等しくなるように配置する。
As is well known, when a voltage higher than a threshold value is applied, the ferroelectric liquid crystal molecules are realigned in the directions of tilt angles of ± θ with respect to the layer normal 15 by spontaneous polarization. Polarizing plates 16 and 17 are arranged outside the substrates 12 and 13 so that the transmission axis 19 is equal to the tilt angle + θ (or −θ) with respect to the layer normal 15.

【0024】図1及び図2に示したように、正電圧パル
ス印加時に分子軸と透過軸を一致させると、負電圧パル
ス印加時には分子軸と透過軸は2θずれる。そこで、光
ビーム20を入射すると、正電圧パルス印加時(図1)
では出射光21の偏波面22は変化せず、光はそのまま
透過し、最大透過光量5が得られる(図3)。一方、負
電圧パルス印加時(図2)では、液晶セルに入射した偏
光は、出射面では偏波面が4θ回転する。いま、θ=2
2.5度の強誘電性液晶を用いると、偏波面は90度回
転するので、透過光は偏光板17によって阻止され、出
射光量は最小光量6を与える(図3)。
As shown in FIGS. 1 and 2, when the molecular axis and the transmission axis are made to coincide with each other when the positive voltage pulse is applied, the molecular axis and the transmission axis are deviated by 2θ when the negative voltage pulse is applied. Therefore, when the light beam 20 is incident, when a positive voltage pulse is applied (Fig. 1)
In, the polarization plane 22 of the emitted light 21 does not change, the light is transmitted as it is, and the maximum transmitted light amount 5 is obtained (FIG. 3). On the other hand, when a negative voltage pulse is applied (FIG. 2), the polarization plane of the polarized light incident on the liquid crystal cell rotates 4θ on the exit surface. Now θ = 2
When the ferroelectric liquid crystal of 2.5 degrees is used, the plane of polarization is rotated by 90 degrees, so that the transmitted light is blocked by the polarizing plate 17 and the emitted light quantity gives the minimum light quantity 6 (FIG. 3).

【0025】次に、強誘電性液晶のメモリ状態の動作
(作用)を説明する。従来技術では、書き込みパルス電
圧印加後、メモリ時には電圧を0Vとしていたが、本実
施例では、書き込み電圧パルス印加後0Vとせずに、図
3に示すように適切な同極性の直流保持電圧Vst7を印
加する。直流保持電圧Vstを印加することにより、液晶
分子の配向状態を書き込み時の状態を殆ど変化せずに保
持可能になる。
Next, the operation (action) of the ferroelectric liquid crystal in the memory state will be described. In the prior art, the voltage was set to 0 V after the application of the write pulse voltage at the time of memory, but in the present embodiment, the DC holding voltage Vst7 having an appropriate polarity as shown in FIG. 3 is not set to 0 V after the application of the write voltage pulse. Apply. By applying the DC holding voltage Vst, it becomes possible to hold the alignment state of the liquid crystal molecules with almost no change in the writing state.

【0026】書き込みパルス電圧は、通常10V/μm
の電界が得られる電圧を印加するのに対して、直流保持
電圧Vstは使用する材料、セル構造、プロセスに依存す
るが、書き込み電圧の1/5から1/100でよく、強
誘電性液晶のメモリ閾値電圧より低くても充分効果があ
る。例えば、強誘電性液晶層の厚さが5μmのセルに封
入した場合、±40Vの書き込みパルス電圧を印加する
と、電圧印加時には高速で安定な光学異方性状態へのス
イッチングを示す。しかし、電圧除去時(Vst=0V)
に相当)には、電気的に配向した分子は、直ちに光学異
方性状態を示さないヘリカル構造にもどってしまう。従
って、透過光量は、正電圧、負電圧で殆ど変わらず、図
3に点線8で示すようになる。そこで、本実施例の駆動
方法により、保持電圧として±2Vを印加すると、さき
に配向した状態がほぼそのままの状態で保持され、透過
光量はパルス電圧印加時と変化しない波形5,6とな
る。
The write pulse voltage is usually 10 V / μm
While the DC holding voltage Vst is 1/5 to 1/100 of the writing voltage, it depends on the material used, the cell structure, and the process. Even if it is lower than the memory threshold voltage, it is sufficiently effective. For example, when the ferroelectric liquid crystal layer is sealed in a cell having a thickness of 5 μm, when a writing pulse voltage of ± 40 V is applied, high-speed and stable switching to an optically anisotropic state is exhibited when the voltage is applied. However, when voltage is removed (Vst = 0V)
(Corresponding to), the electrically oriented molecule immediately returns to a helical structure that does not exhibit an optically anisotropic state. Therefore, the amount of transmitted light is almost the same between positive voltage and negative voltage, as shown by the dotted line 8 in FIG. Therefore, when ± 2 V is applied as the holding voltage by the driving method of the present embodiment, the previously oriented state is maintained in almost the same state, and the transmitted light amounts become waveforms 5 and 6 that do not change when the pulse voltage is applied.

【0027】このように、本発明は、非書き込み時に表
面安定化状態によるメモリ性が期待できないような厚い
セル厚の強誘電性液晶セルに有効である。例えば、制御
すべき光の波長が1μm以上の赤外域にある場合、現用
の強誘電性液晶の△nは0.1〜0.2にあることから、
(1)式により、セル厚は2.5μm以上が必要にな
り、表面安定状態による充分なメモリ性は期待できな
い。勿論、2μm以下の表面安定化状態に起因するメモ
リ性を用いる電気光学装置への適用に当たっても、メモ
リ時の消光比の改善に優れた効果を発揮する。
As described above, the present invention is effective for a ferroelectric liquid crystal cell having a large cell thickness such that the memory property due to the surface-stabilized state cannot be expected during non-writing. For example, when the wavelength of light to be controlled is in the infrared region of 1 μm or more, Δn of the current ferroelectric liquid crystal is 0.1 to 0.2,
According to the equation (1), the cell thickness needs to be 2.5 μm or more, and sufficient memory property due to the surface stable state cannot be expected. Of course, even when applied to an electro-optical device that uses a memory property due to a surface-stabilized state of 2 μm or less, an excellent effect of improving the extinction ratio during memory is exhibited.

【0028】直流保持電圧Vstは、常時片極性電圧が印
加される場合には、液晶セルの信頼性上は低い方がよ
い。しかし、周期的に書換えがあり、逆極性のリセット
パルス電圧の印加が可能な駆動の場合にはこの限りでは
ない。
The DC holding voltage Vst is preferably low in terms of reliability of the liquid crystal cell when a unipolar voltage is constantly applied. However, this is not the case in the case of driving in which rewriting is periodically performed and a reset pulse voltage of reverse polarity can be applied.

【0029】図4は、このような駆動波形24と透過光
量25を示したもので、書き込みパルス26、保持電圧
27、リセットパルス28からなり、リセットパルスの
負極性成分(面積)は、書き込みパルスと保持電圧との
正極性成分(面積)に等しくし、直流成分を相殺し高い
信頼性を確保できる。
FIG. 4 shows such a driving waveform 24 and a transmitted light amount 25, which is composed of a write pulse 26, a holding voltage 27, and a reset pulse 28, and the negative polarity component (area) of the reset pulse is the write pulse. And the holding voltage can be made equal to the positive polarity component (area) to cancel the DC component and ensure high reliability.

【0030】(実施例2)図5は、本発明に係る液晶装
置の実施例2の概略構成を示す模式構成図であり、具体
的には薄膜トランジスタをアクティブ素子とするアクテ
ィブマトリクス形液晶装置に適用した例である。図5に
おいて、31はインジウム錫膜(ITO)等の透明電極
からなる画素電極、32はスイッチング用の薄膜トラン
ジスタ、33はゲート線、34はデータ線、35は対向
電極でここでは電気的に接地してある。38はガラス基
板、39は偏光板、40は強誘電性液晶、41はデータ
線駆動回路、42はゲート線駆動回路である。
(Embodiment 2) FIG. 5 is a schematic configuration diagram showing a schematic configuration of Embodiment 2 of a liquid crystal device according to the present invention, and specifically, it is applied to an active matrix type liquid crystal device using a thin film transistor as an active element. It is an example. In FIG. 5, 31 is a pixel electrode made of a transparent electrode such as indium tin film (ITO), 32 is a thin film transistor for switching, 33 is a gate line, 34 is a data line, and 35 is a counter electrode, which is electrically grounded here. There is. 38 is a glass substrate, 39 is a polarizing plate, 40 is a ferroelectric liquid crystal, 41 is a data line drive circuit, and 42 is a gate line drive circuit.

【0031】図6は、本実施例2の液晶装置の駆動波形
及び実施例1と同様の偏光板を通した透過光量を示す図
であり、43は書き込みたい画素に接続されたデータ線
34の電圧波形で、時刻t0で正または負の書き込み信
号電圧Vwが供給される。44は書き込みたい画素に接
続されたゲート線33の電圧波形で、時刻t1で高電圧
になる。
FIG. 6 is a diagram showing the drive waveform of the liquid crystal device of the second embodiment and the amount of light transmitted through the polarizing plate similar to that of the first embodiment. 43 is the data line 34 connected to the pixel to be written. With a voltage waveform, a positive or negative write signal voltage Vw is supplied at time t0. A voltage waveform 44 of the gate line 33 connected to the pixel to be written is a high voltage at time t1.

【0032】本実施例2の液晶装置の動作(作用)を図
6を用いて説明する。時刻t1で薄膜トランジスタ32
がオンし、画素電極31の電圧45は書き込み信号電圧
Vwに充電される。それとともに強誘電性液晶40は電
界配向し、例えば、書き込み信号電圧Vwが正極性で
は、偏光板の透過軸方向に、負極性では透過軸に直交方
向に配向するとする。従って、画素の透過光量46は、
正負電圧印加時にそれぞれ最大値と最小値を与える。
The operation (action) of the liquid crystal device of the second embodiment will be described with reference to FIG. At time t1, the thin film transistor 32
Is turned on, and the voltage 45 of the pixel electrode 31 is charged to the write signal voltage Vw. At the same time, the ferroelectric liquid crystal 40 is oriented in the electric field, for example, when the write signal voltage Vw is positive, it is oriented in the transmission axis direction of the polarizing plate, and when it is negative, it is oriented in the direction orthogonal to the transmission axis. Therefore, the transmitted light amount 46 of the pixel is
The maximum and minimum values are given when positive and negative voltages are applied.

【0033】時刻t2でデータ線電圧を保持電圧Vstに
低下させる。前記実施例1で述べたように、その状態で
も透過光量は保持される。次に、時刻t3でゲート線電
圧を低電圧にして薄膜トランジスタをオフすると、画素
電極間には電圧Vstを与える電荷が蓄積され保持され
る。従って、透過光量もそのまま保持され、高い消光比
が維持できる。
At time t2, the data line voltage is lowered to the holding voltage Vst. As described in the first embodiment, the amount of transmitted light is maintained even in that state. Next, when the gate line voltage is set to a low voltage and the thin film transistor is turned off at time t3, electric charges for applying the voltage Vst are accumulated and held between the pixel electrodes. Therefore, the amount of transmitted light is maintained as it is, and a high extinction ratio can be maintained.

【0034】光学状態の保持時間は、液晶層の静電容量
と液晶層、薄膜トランジスタの抵抗値から決まる放電時
定数と、強誘電性液晶のメモリ性の強さに従うが、強誘
電性液晶材料の比抵抗の増大、薄膜トランジスタのオフ
抵抗の増大等により数時間以上も可能である。
The holding time of the optical state depends on the discharge time constant determined by the capacitance of the liquid crystal layer, the resistance value of the liquid crystal layer and the thin film transistor, and the memory property of the ferroelectric liquid crystal. It is possible for several hours or more due to an increase in specific resistance, an increase in off resistance of the thin film transistor, and the like.

【0035】このように、本実施例2では、走査線に選
択信号を印加して液晶セルを選択している期間に、デー
タ線を介して書き込みパルス電圧を印加し、引続き保持
電圧を印加し、その後に走査線を非選択とする。
As described above, in the second embodiment, the write pulse voltage is applied through the data line and the holding voltage is continuously applied during the period in which the liquid crystal cell is selected by applying the selection signal to the scanning line. , And then the scanning line is deselected.

【0036】従来技術では、書き込み電圧をそのまま画
素電極に蓄えていたため、長時間保持すると液晶セルが
劣化する問題があったが、前記駆動方法により保持電圧
Vstは書き込み電圧と独立に充分低い電圧にすることが
できるので、液晶セルの劣化を最小限に抑えることがで
きた。逆に言えば、書き込み電圧は保持電圧と独立によ
り高い電圧に設定できるので、強誘電性液晶のスイッチ
ング速度を更に高速化することが可能になった。
In the prior art, since the write voltage was stored in the pixel electrode as it was, there was a problem that the liquid crystal cell deteriorates when held for a long time. However, the holding voltage Vst becomes a sufficiently low voltage independently of the write voltage by the above driving method. Therefore, deterioration of the liquid crystal cell could be minimized. Conversely, since the writing voltage can be set to a higher voltage independently of the holding voltage, the switching speed of the ferroelectric liquid crystal can be further increased.

【0037】例えば、強誘電性液晶を用いて、液晶層の
厚さが2μmのアクティブマトリクス形液晶装置を形成
した場合、従来駆動法では画素に印加できる電圧は信頼
性確保上高々±7Vであり、応答速度は300μ秒程度
であったが、本実施例2を用いると、書き込み電圧を±
30Vにでき、応答速度は50μ秒に短縮できた。な
お、保持電圧は最小±0.5Vであり長期の信頼性確保
にも充分な値であった。このように、保持電圧の印加は
強誘電性液晶の高速性のみを活かすためのアクティブマ
トリクス構成にする場合の駆動方法として極めて有効
で、簡便な方法で高い信頼性が確保できた。なお、書き
込み電圧印加直前に反対極性のリセットパルスを印加
し、直流成分を相殺すれば信頼性はさらに向上する。
For example, when an active matrix type liquid crystal device having a liquid crystal layer with a thickness of 2 μm is formed by using a ferroelectric liquid crystal, the voltage which can be applied to the pixel by the conventional driving method is ± 7 V at most for ensuring reliability. , The response speed was about 300 μsec, but using the second embodiment, the write voltage was ±
The voltage can be set to 30 V and the response speed can be shortened to 50 μsec. The minimum holding voltage was ± 0.5 V, which was a sufficient value for ensuring long-term reliability. As described above, the application of the holding voltage is extremely effective as a driving method in the case of the active matrix configuration for utilizing only the high speed property of the ferroelectric liquid crystal, and the high reliability can be secured by the simple method. The reliability is further improved by applying a reset pulse of opposite polarity just before the write voltage is applied to cancel the DC component.

【0038】以上の実施例では、適用液晶装置として表
示装置あるいは光シャッタを例にとり説明したが、偏光
による複屈折を利用した他の液晶装置に対しても同様に
適用でき、同様の優れた性能を発揮できることは明白で
ある。例えば、液晶セルと偏光ビームスプリッタを積層
化したビームシフト形スイッチや、液晶セルを多層化し
ての偏波面の制御により光演算を行う光プロセッサ等に
おいても、メモリ時の高い消光比を確保し、スイッチン
グや演算精度を向上し、信頼性を高める方法として有効
である。特に通信用の光路切替用光スイッチのように、
リセットパルスによる光路の瞬断が許容できない場合、
長期間直流電圧が印加され続けるので、保持電圧による
信頼性向上の効果は大きい。
In the above-described embodiments, the display device or the optical shutter is used as an example of the applicable liquid crystal device, but the present invention can be similarly applied to other liquid crystal devices utilizing birefringence due to polarized light and has the same excellent performance. It is clear that the For example, in a beam shift type switch in which a liquid crystal cell and a polarization beam splitter are laminated, or in an optical processor that performs optical calculation by controlling the polarization plane of a liquid crystal cell in multiple layers, a high extinction ratio at the time of memory is ensured, It is effective as a method for improving switching and calculation accuracy and improving reliability. Especially, like the optical path switching optical switch for communication,
If the interruption of the optical path due to the reset pulse cannot be tolerated,
Since the DC voltage is continuously applied for a long time, the holding voltage has a great effect of improving the reliability.

【0039】以上、本発明を実施例に基づき具体的に説
明したが、本発明は前記実施例に限定されるものではな
く、その要旨を逸脱しない範囲において変更し得ること
はいうまでもない。
Although the present invention has been specifically described based on the embodiments, it is needless to say that the present invention is not limited to the above embodiments and can be modified without departing from the scope of the invention.

【0040】[0040]

【発明の効果】以上、説明したように、本発明によれ
ば、強誘電性液晶セルの状態の書き込みは、書き込みパ
ルスに引き続く直流の同極性で、かつ低い保持電圧によ
り行うことにより、メモリ時の光学特性が低下すること
がないので、電極間の電圧除去時には、表面安定化状態
が期待できない強誘電性液晶装置に対し、メモリ時の良
好な光学特性を維持することができる。つまり、本発明
は、非書き込み時に表面安定化状態によるメモリ性が期
待できないような厚いセル厚やメモリ性を発現しにくい
性質をもつ強誘電性液晶装置の光学状態の保持に有効で
ある。
As described above, according to the present invention, the writing of the state of the ferroelectric liquid crystal cell is performed at the same time as the writing pulse with the same DC polarity and a low holding voltage. Since the optical characteristics of No. 1 are not deteriorated, good optical characteristics at the time of memory can be maintained for the ferroelectric liquid crystal device in which the surface stabilization state cannot be expected when the voltage between the electrodes is removed. That is, the present invention is effective in maintaining the optical state of a ferroelectric liquid crystal device having a thick cell thickness and a memory property which is unlikely to exhibit the memory property due to the surface-stabilized state when not writing.

【0041】また、メモリ性を用いる液晶装置への適用
に当たっても、メモリ時の消光比の改善に優れた効果を
発揮する。さらに、保持電圧Vstが書き込み電圧と独立
に充分低い電圧にすることができるので、液晶セルの劣
化を最小限に抑えることができる。言いかえれば、書き
込み電圧は保持電圧と独立により高い電圧に設定できる
ので、強誘電性液晶のスイッチング速度を更に高速化す
ることが可能になる。
Further, even when applied to a liquid crystal device using a memory property, an excellent effect of improving the extinction ratio at the time of memory is exhibited. Further, since the holding voltage Vst can be set to a sufficiently low voltage independently of the writing voltage, deterioration of the liquid crystal cell can be suppressed to the minimum. In other words, since the writing voltage can be set to a higher voltage independently of the holding voltage, the switching speed of the ferroelectric liquid crystal can be further increased.

【0042】このことは、強誘電性液晶の高速性のみを
活かすためのアクティブマトリクス構成にする場合の駆
動方法として特に有効で、簡便な方法で高い信頼性と高
速性を実現できる利点がある。
This is particularly effective as a driving method in the case of an active matrix structure for making use of only the high speed of the ferroelectric liquid crystal, and has an advantage that high reliability and high speed can be realized by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る液晶装置の実施例1の概略構成
を示す模式構成図、
FIG. 1 is a schematic configuration diagram showing a schematic configuration of a first embodiment of a liquid crystal device according to the invention,

【図2】 本発明に係る液晶装置の実施例1の概略構成
を示す模式構成図、
FIG. 2 is a schematic configuration diagram showing a schematic configuration of Example 1 of the liquid crystal device according to the invention,

【図3】 本発明の実施例1の液晶装置の駆動電圧波形
と光透過光量を示す図、
FIG. 3 is a diagram showing a drive voltage waveform and an amount of light transmitted through the liquid crystal device according to the first embodiment of the present invention;

【図4】 本実施例1の液晶表示装置の駆動電圧波形と
透過光量を示す図、
FIG. 4 is a diagram showing a drive voltage waveform and a transmitted light amount of the liquid crystal display device of the first embodiment,

【図5】 本発明に係る液晶装置の実施例2の概略構成
を示す模式構成図、
FIG. 5 is a schematic configuration diagram showing a schematic configuration of a second embodiment of the liquid crystal device according to the present invention,

【図6】 本実施例2の液晶装置の駆動電圧波形と透過
光量を示す図、
FIG. 6 is a diagram showing drive voltage waveforms and transmitted light amounts of the liquid crystal device of the second embodiment,

【図7】 従来の典型的な駆動法による駆動電圧波形と
透過光強度の時間的変化を示す図。
FIG. 7 is a diagram showing a drive voltage waveform and a change with time of transmitted light intensity according to a conventional typical drive method.

【符号の説明】[Explanation of symbols]

1…駆動波形、2…光透過光量、3…正電圧パルス、4
…負電圧パルス、5…最大透過光量、6…最小光量、7
…直流保持電圧Vst、8…点線、10,11…透明電
極、12,13…ガラス基板、14…強誘電性液晶、1
5…層法線、16,17…偏光板、18…外部駆動回
路、19…透過軸、20…光ビーム、21…出射光、2
2…偏波面、24…駆動波形、25…透過光量、26…
書き込みパルス、27…保持電圧、28…リセットパル
ス、31…画素電極、32…薄膜トランジスタ、33…
ゲート線、34…データ線、35…対向電極、38…ガ
ラス基板、39…偏光板、40…強誘電性液晶、41…
データ線駆動回路、42…ゲート線駆動回路、43,4
4…電圧波形、45…画素電極の電圧、46…透過光
量、53…正極性のパルス、54…負極性のパルス。
1 ... Drive waveform, 2 ... Amount of transmitted light, 3 ... Positive voltage pulse, 4
... Negative voltage pulse, 5 ... Maximum transmitted light amount, 6 ... Minimum light amount, 7
... DC holding voltage Vst, 8 ... Dotted line, 10, 11 ... Transparent electrode, 12, 13 ... Glass substrate, 14 ... Ferroelectric liquid crystal, 1
5 ... Layer normal line, 16, 17 ... Polarizing plate, 18 ... External drive circuit, 19 ... Transmission axis, 20 ... Light beam, 21 ... Outgoing light, 2
2 ... Polarization plane, 24 ... Drive waveform, 25 ... Transmitted light amount, 26 ...
Write pulse, 27 ... Holding voltage, 28 ... Reset pulse, 31 ... Pixel electrode, 32 ... Thin film transistor, 33 ...
Gate line, 34 ... Data line, 35 ... Counter electrode, 38 ... Glass substrate, 39 ... Polarizing plate, 40 ... Ferroelectric liquid crystal, 41 ...
Data line drive circuit 42 ... Gate line drive circuit 43, 4
4 ... Voltage waveform, 45 ... Pixel electrode voltage, 46 ... Transmitted light amount, 53 ... Positive pulse, 54 ... Negative pulse

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対向する一対の電極と、該電極間に強誘
電性液晶を狭持した液晶セルを有する液晶装置の前記電
極間に電圧を印加することによって前記強誘電性液晶の
光学異方性に基づく複屈折を制御する液晶装置の駆動方
法において、前記液晶セルの状態の書込みは書き込みパ
ルス電圧を印加して行い、前記液晶セルに書き込まれた
状態の保持は前記書き込みパルスに引き続く直流の保持
電圧により行い、該保持電圧は前記書き込みパルスと同
極性でかつ前記書き込み電圧に比し十分低い電圧である
ことを特徴とする液晶装置の駆動方法。
1. An optical anisotropy of the ferroelectric liquid crystal by applying a voltage between a pair of electrodes facing each other and the electrodes of a liquid crystal device having a liquid crystal cell in which a ferroelectric liquid crystal is sandwiched between the electrodes. In the method of driving a liquid crystal device for controlling birefringence based on the property, the writing of the state of the liquid crystal cell is performed by applying a writing pulse voltage, and the holding of the state written in the liquid crystal cell is performed by a direct current following the writing pulse. A method of driving a liquid crystal device, which is performed by a holding voltage, the holding voltage having the same polarity as the writing pulse and a voltage sufficiently lower than the writing voltage.
【請求項2】 マトリクス状に配列された複数の画素電
極群と、その各々に接続されたアクティブ素子と、該ア
クティブ素子を選択する走査線とデータ線とを有するア
クティブマトリクス基板と、前記画素電極群に相対して
設置された対向電極を有する対向基板との間に強誘電性
液晶を狭持して液晶セルを構成する液晶装置の前記画素
電極群と対向電極間に電圧を印加することによって、前
記強誘電性液晶の光学異方性に基づく複屈折を制御する
液晶装置の駆動方法において、走査線に選択信号を印加
して液晶セルを選択している期間に、データ線を介して
書き込みパルス電圧を印加し、引続き前記書き込みパル
スと同極性でかつ、十分低い電圧である保持電圧を印加
し、その後に走査線を非選択とすることを特徴とする液
晶装置の駆動方法。
2. An active matrix substrate having a plurality of pixel electrode groups arranged in a matrix, active elements connected to each of them, a scanning line and a data line for selecting the active elements, and the pixel electrode. By applying a voltage between the pixel electrode group and the counter electrode of the liquid crystal device that constitutes the liquid crystal cell by sandwiching the ferroelectric liquid crystal between the counter substrate and the counter substrate that has the counter electrode that is installed facing the group. In the method of driving a liquid crystal device for controlling birefringence based on the optical anisotropy of a ferroelectric liquid crystal, writing is performed via a data line while a liquid crystal cell is selected by applying a selection signal to a scanning line. A method of driving a liquid crystal device, comprising applying a pulse voltage, subsequently applying a holding voltage having the same polarity as the write pulse and a sufficiently low voltage, and then deselecting a scanning line.
JP2663193A 1993-02-16 1993-02-16 Method for driving liquid crystal device Pending JPH06242419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2663193A JPH06242419A (en) 1993-02-16 1993-02-16 Method for driving liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2663193A JPH06242419A (en) 1993-02-16 1993-02-16 Method for driving liquid crystal device

Publications (1)

Publication Number Publication Date
JPH06242419A true JPH06242419A (en) 1994-09-02

Family

ID=12198803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2663193A Pending JPH06242419A (en) 1993-02-16 1993-02-16 Method for driving liquid crystal device

Country Status (1)

Country Link
JP (1) JPH06242419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503024A (en) * 2003-08-19 2007-02-15 イー インク コーポレイション Method for controlling an electro-optic display
US7233306B2 (en) 2000-04-28 2007-06-19 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233306B2 (en) 2000-04-28 2007-06-19 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization
US7830344B2 (en) 2000-04-28 2010-11-09 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization
JP2007503024A (en) * 2003-08-19 2007-02-15 イー インク コーポレイション Method for controlling an electro-optic display
JP4806634B2 (en) * 2003-08-19 2011-11-02 イー インク コーポレイション Electro-optic display and method for operating an electro-optic display

Similar Documents

Publication Publication Date Title
KR100354631B1 (en) A display device and a method of addressing a display device
US5495351A (en) Liquid crystal device with two monostable liquid crystal cells
JP2746486B2 (en) Ferroelectric liquid crystal device
KR100232690B1 (en) Liquid crystal display
JPH06242419A (en) Method for driving liquid crystal device
JPS60262133A (en) Driving method of liquid-crystal element
JPH08271921A (en) Liquid crystal device and manufacturing method thereof
JP2905030B2 (en) Ferroelectric liquid crystal display
JPS63198024A (en) Liquid crystal electrooptic device
JPH07111517B2 (en) Liquid crystal light valve, printer using the same, and optical logic operator
JPS61241731A (en) Smectic liquid crystal device
JP2566149B2 (en) Optical modulator
JPH09311315A (en) Ferroelectric liquid crystal element and ferroelectric liquid crystal material
JPH02289827A (en) Space optical modulating element and space optical modulator
JPH06186583A (en) Liquid crystal display device
JPH05142519A (en) Liquid crystal display device
JP3094013B2 (en) Ferroelectric liquid crystal display
JP3182405B2 (en) Ferroelectric liquid crystal display
JP2809567B2 (en) Ferroelectric liquid crystal display
JPS619623A (en) Driving method of liquid crystal element
JPH11279556A (en) Ferroelectric liquid crystal display
JPH07333579A (en) Light modulation element and light modulation method
JPS6111787A (en) liquid crystal matrix display device
JPS61204621A (en) Image forming device
JPS63192023A (en) Liquid crystal electrooptic device