[go: up one dir, main page]

JPH06239621A - Production of refractive index distribution type multicomponent-based glass - Google Patents

Production of refractive index distribution type multicomponent-based glass

Info

Publication number
JPH06239621A
JPH06239621A JP5301093A JP5301093A JPH06239621A JP H06239621 A JPH06239621 A JP H06239621A JP 5301093 A JP5301093 A JP 5301093A JP 5301093 A JP5301093 A JP 5301093A JP H06239621 A JPH06239621 A JP H06239621A
Authority
JP
Japan
Prior art keywords
gel
refractive index
index distribution
solvent
wet gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5301093A
Other languages
Japanese (ja)
Inventor
Satoshi Noda
野田  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5301093A priority Critical patent/JPH06239621A/en
Publication of JPH06239621A publication Critical patent/JPH06239621A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To readily produce a refractive index distribution type multicomponent-based glass having optically wide uses by more approaching a refractive index distribution, conventionally found in the case of a radial type refractive index distribution type optical element and tending to jumping up from a parabola to the parabolic shape. CONSTITUTION:This refractive index distribution type multicomponent-based glass is produced by a sol-gel method. In the process, a wet gel is dried while covering the surface of the wet gel in the direction at right angles from the direction of concentration distribution in the wet gel with a mask after a step for imparting the concentration distribution of a component contributing to the refractive index into the wet gel. Thereby, the moving direction of a solvent during the drying is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゾルゲル法による塊状
ガラス体の製造方法に係り、径方向などに屈折率分布の
付いた多成分系ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lump glass body by a sol-gel method, and more particularly to a method for producing a multi-component glass having a refractive index distribution in the radial direction.

【0002】[0002]

【従来の技術】ゾルゲル法による屈折率分布型塊状多成
分系ガラスの製造方法には、屈折率分布を付与する成分
の出発原料によって大きく分けて2つの方法がある。一
つは、その出発原料として金属アルコキシドを使用する
方法(特開昭61−183136号公報、USP4,7
97,376など)であり、そしてもう一つは、出発原
料として金属塩を使用する方法(特開昭63−2775
25号公報など)である。
2. Description of the Related Art There are two methods for producing a gradient index bulk multi-component glass by the sol-gel method, which are roughly classified according to the starting materials of the components that impart a refractive index distribution. One is a method using a metal alkoxide as the starting material (JP-A-61-183136, USP 4,7).
97, 376), and another method using a metal salt as a starting material (JP-A-63-2775).
No. 25, etc.).

【0003】前者は、シリコンアルコキシドを塩酸など
の触媒を用いて部分加水分解し、その液にチタン等の屈
折率を高くするための成分の金属アルコキシドおよび加
水分解のための水や、溶媒アルコール等を加えることに
よってゾルを作製し、ゲル化・熟成の後、塩酸などに該
ゲルを浸漬することにより、屈折率を高くするための成
分の一部を溶出させ、さらにゲルに洗浄等の処理を施し
た後、乾燥させてドライゲルとし、最後に焼成して屈折
率分布型光学素子を得る方法である。
The former is a method in which a silicon alkoxide is partially hydrolyzed using a catalyst such as hydrochloric acid, and the liquid contains a metal alkoxide as a component for increasing the refractive index of titanium or the like, water for hydrolysis, a solvent alcohol or the like. To prepare a sol, and after gelling and aging, immersing the gel in hydrochloric acid etc. to elute a part of the components for increasing the refractive index, and further subject the gel to treatment such as washing. After applying, it is a method of drying to obtain a dry gel, and finally baking to obtain a gradient index optical element.

【0004】それに対して後者は、シリコンアルコキシ
ド等を塩酸などの触媒を用いて部分加水分解し、その液
に酢酸鉛等の屈折率を高くするための成分の金属塩溶液
等を加えることによってゾルを作製し、ゲル化・熟成の
後、該ゲルをアルコール等の金属塩の難溶性溶液に順次
浸漬することにより、ゲル細孔中に金属塩の微結晶を析
出させて固定し、引続き該ゲルを酢酸カリウム溶液中に
浸漬してゲル中の鉛と溶液中のカリウムとを適当な時間
で交換させた後、再度アルコール等の金属塩の難溶性溶
液に順次浸漬することによって、金属塩の固定を行った
後、乾燥させてドライゲルとし、最後に焼成して屈折率
分布型光学素子を得る方法である。
On the other hand, the latter is sol by partially hydrolyzing silicon alkoxide or the like using a catalyst such as hydrochloric acid and adding a metal salt solution of a component such as lead acetate for increasing the refractive index to the solution. Was prepared, and after gelation and aging, the gel was sequentially immersed in a sparingly soluble solution of a metal salt such as alcohol to deposit and fix fine crystals of the metal salt in the gel pores, and then the gel Is immersed in a potassium acetate solution to exchange lead in the gel with potassium in the solution at an appropriate time, and then again immersed in a sparingly soluble solution of a metal salt such as alcohol to fix the metal salt. Is performed, then dried to obtain a dry gel, and finally baked to obtain a gradient index optical element.

【0005】後者の方法では、前者の方法(出発原料と
して金属アルコキシドを用いる方法)と違って、屈折率
を高くするための成分を金属塩によって供給している関
係上、金属塩とゲル骨格構造との間に結合関係が無いた
め、導入した成分をゲル中に固定する工程を必要として
いる。この固定工程は、ゲルを溶液中に浸漬することに
よってゲル中の溶媒を金属塩成分が難溶である溶媒に置
換し、ゲル中に金属塩成分の微結晶を析出させることに
より、ゲル細孔中に沈殿固定するものである。
In the latter method, unlike the former method (method using a metal alkoxide as a starting material), since the component for increasing the refractive index is supplied by the metal salt, the metal salt and the gel skeleton structure are provided. Since there is no binding relationship between and, it requires a step of fixing the introduced component in the gel. This fixing step is performed by immersing the gel in the solution to replace the solvent in the gel with a solvent in which the metal salt component is poorly soluble, and by precipitating fine crystals of the metal salt component in the gel, gel pores It is to be fixed in the sediment.

【0006】これら2つの方法を比較すると、前者の方
法に使用できる金属アルコキシドは、常温で液体である
Si,B,Ti,Ge,Nb,Ta,P,Alなどのア
ルコキシドに限られ、実際にガラス合成に使用できる元
素の種類が極めて少ないことから、前者の方法は後者の
方法よりも作製できる組成系に制限がある。したがっ
て、種々の組成系によって塊状ガラスや屈折率分布型光
学素子を作製するためには後者の方法が適している。
Comparing these two methods, the metal alkoxides that can be used in the former method are limited to alkoxides such as Si, B, Ti, Ge, Nb, Ta, P and Al which are liquids at room temperature. Since the types of elements that can be used for glass synthesis are extremely small, the former method is more limited in the composition system that can be produced than the latter method. Therefore, the latter method is suitable for producing a lump glass or a gradient index optical element with various composition systems.

【0007】[0007]

【発明が解決しようとする課題】屈折率分布型光学素子
の最適な屈折率分布は、適応する光学系によって各々違
うが、ラジアル型屈折率分布型光学素子では概して放物
線(2次曲線)分布に近い分布形状が収差補正上望まし
い。
The optimum refractive index distribution of the gradient index optical element differs depending on the optical system to which it is applied, but the radial type gradient index optical element generally has a parabolic (quadratic curve) distribution. A close distribution shape is desirable for aberration correction.

【0008】しかし、従来技術で述べた後者の方法によ
って屈折率分布型光学ガラスを実際に作製した場合に得
られる屈折率分布は、図2に示したように、放物線形状
から大きくはずれ、特にガラスの外周部で屈折率分布曲
線が跳ね上がる傾向にあり、半径方向の分布曲線の途中
に変曲点が存在するという欠点がある。
However, the refractive index profile obtained when the gradient index optical glass is actually manufactured by the latter method described in the prior art is greatly deviated from the parabolic shape as shown in FIG. The refractive index distribution curve tends to jump at the outer peripheral portion of, and there is a drawback that an inflection point exists in the middle of the radial distribution curve.

【0009】本発明は、かかる従来の問題点に鑑みてな
されたもので、表面部(ラジアル型では外周部、アキシ
ャル型では端面部)付近での屈折率分布の跳ね上がりを
防止し、特にラジアル型屈折率分布型光学素子の場合に
おいては従来みられた放物線からの跳ね上がり傾向にあ
る屈折率分布をより放物線形状に近づけた、光学的に用
途の広い屈折率分布型多成分系ガラスを容易に製造する
方法を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and prevents the refractive index distribution from jumping up in the vicinity of the surface portion (outer peripheral portion in the radial type, end face portion in the axial type), and particularly the radial type. In the case of gradient index optical elements, it is possible to easily manufacture a refractive index profile multi-component glass with a wide range of optical uses, which has a refractive index profile that tends to jump from a parabola, which has been observed in the past, closer to a parabolic shape. The purpose is to provide a method of doing.

【0010】[0010]

【課題を解決するための手段および作用】上記課題を解
決するために、本発明は、ゾルゲル法による屈折率分布
型光学素子の製造方法において、ウェットゲル中に屈折
率に寄与する成分の濃度分布を付与する工程の後、該ウ
ェットゲル中の濃度分布方向に対して垂直なウェットゲ
ル表面をマスクで覆いながら乾燥することとした。
In order to solve the above problems, the present invention provides a method for producing a gradient index optical element by a sol-gel method, wherein the concentration distribution of the components contributing to the refractive index in the wet gel is After the step of applying, the wet gel surface perpendicular to the concentration distribution direction in the wet gel was covered with a mask and dried.

【0011】金属塩を原料として用いた場合にのみ屈折
率分布曲線が跳ね上がる原因を検討したところ、まず、
屈折率の跳ね上がりの直接の原因は、鉛成分の分布曲線
の跳ね上がりであることがわかった。そこで、さらに鉛
成分が跳ね上がる原因について検討した結果、金属塩を
原料とした場合、ゲル中の溶媒を金属塩成分が難溶であ
る溶媒に置換してゲル中に金属塩成分の微結晶を析出さ
せることによってゲル細孔中に沈殿固定しているが、鉛
成分(具体的には酢酸鉛)の難溶性溶媒に対する溶解度
はわずかではあるがゼロではないために、溶媒が乾燥す
る際に鉛成分も溶媒に溶けた状態でゲル表面方向に溶媒
と同時に移動することが直接の原因であるという結論に
達した。
The reason why the refractive index distribution curve jumps up only when a metal salt is used as a raw material is as follows.
It was found that the direct cause of the jump of the refractive index was the jump of the lead component distribution curve. Therefore, as a result of further studying the cause of the lead component jumping up, when a metal salt was used as a raw material, the solvent in the gel was replaced with a solvent in which the metal salt component was poorly soluble, and fine crystals of the metal salt component were precipitated in the gel. By doing so, the precipitate is fixed in the gel pores, but the solubility of the lead component (specifically lead acetate) in the sparingly soluble solvent is slight but not zero, so the lead component when the solvent dries It was also concluded that the direct cause of this problem is that it moves simultaneously with the solvent toward the gel surface in the state of being dissolved in the solvent.

【0012】例えば鉛成分の固定のために難溶性溶媒と
して用いているアセトンは、アセトン置換の前工程で使
用したIPAなどの溶媒や、もともとゲル内に含んでい
た溶媒、溶媒交換中にも進行するゲル内の反応によって
生成する水やアルコールをも含んでおり、実際にはアセ
トンの溶解度以上に酢酸鉛を溶解してしまう。したがっ
て、きれいな放物線状の濃度分布を形成しても、溶媒の
乾燥工程で鉛を含有した溶媒がゲル外周部に移動し、ゲ
ル表面で溶媒のみが蒸発乾燥し、鉛成分はゲル内部に濃
縮される結果となる。この現象によって、鉛の濃度分布
は放物線形状から崩れ、結果としてゲル外周部に跳ね上
がりを形成するのである。
For example, acetone, which is used as a poorly soluble solvent for fixing the lead component, progresses during the solvent exchange such as the solvent such as IPA used in the previous step of acetone substitution, the solvent originally contained in the gel, and the solvent exchange. It also contains water and alcohol produced by the reaction in the gel, and actually dissolves lead acetate more than the solubility of acetone. Therefore, even if a clean parabolic concentration distribution is formed, the solvent containing lead moves to the outer periphery of the gel in the solvent drying step, only the solvent evaporates and dries on the gel surface, and the lead component is concentrated inside the gel. Result. Due to this phenomenon, the lead concentration distribution collapses from the parabolic shape, and as a result, a jump is formed on the outer periphery of the gel.

【0013】このことから、きれいな濃度分布形状を保
ちたい方向に溶媒の乾燥による鉛成分の移動が起こらな
いように、乾燥の際の溶媒の移動方向を制御することが
できれば、前述の問題点が解決できるわけである。本発
明者は、そのためにゲルの表面にマスクを設けて乾燥中
の溶媒の移動方向を制御することによって、跳ね上がり
のない屈折率分布形状を実現することに成功した。
From the above, if the movement direction of the solvent during the drying can be controlled so that the lead component does not move due to the drying of the solvent in the direction in which a clean concentration distribution shape is desired to be maintained, the above-mentioned problems occur. It can be solved. Therefore, the present inventors have succeeded in realizing a refractive index profile without jumping by providing a mask on the surface of the gel and controlling the moving direction of the solvent during drying.

【0014】ここで、ゲルにマスクをする場合について
具体的に説明する。ラジアル型屈折率分布型光学素子で
は、半径方向の分布が光学特性上特に重要なので、半径
方向に溶媒を移動させないように、濃度分布を有する半
径方向に垂直な面、すなわち、ゲルロッドの円筒面をマ
スクして乾燥させる。このようにすると、ゲル中にある
溶媒は、ゲル円筒面方向に移動することなく、マスクの
ないゲルの端面部に向かって軸方向にのみ移動して乾燥
が進行する。したがって、ゲルの半径方向には溶媒の移
動がないために、鉛成分の濃度分布が跳ね上がることは
なく、屈折率分布形状が崩れることはない。ただし、ゲ
ルは、乾燥に従って、若干の収縮をするため、ゲルの円
筒面に設けるマスクの材質は、ウェットゲル内などに存
在する有機溶媒に対しての化学的耐久性を有するととも
に、ゲル収縮に追従するような弾性を持ったもの、例え
ば、乾燥前のウェットゲル内に存在する溶媒がアセトン
であれば、天然ゴム(ポリイソプレン)やブチルゴム等
が望ましい。
Here, the case where the gel is masked will be specifically described. In the radial type gradient index optical element, since the distribution in the radial direction is particularly important in terms of optical characteristics, in order to prevent the solvent from moving in the radial direction, the surface perpendicular to the radial direction having the concentration distribution, that is, the cylindrical surface of the gel rod is Mask and dry. By doing so, the solvent in the gel does not move in the direction of the cylindrical surface of the gel, but moves only in the axial direction toward the end surface portion of the gel without the mask, and the drying progresses. Therefore, since the solvent does not move in the radial direction of the gel, the lead component concentration distribution does not jump up and the refractive index distribution shape does not collapse. However, since the gel shrinks slightly as it dries, the material of the mask provided on the cylindrical surface of the gel has chemical resistance to organic solvents present in the wet gel and also causes gel shrinkage. Natural rubber (polyisoprene), butyl rubber, or the like is desirable if the solvent present in the wet gel before drying is acetone, which has elasticity to follow.

【0015】一方、アキシャル型屈折率分布型光学素子
では、光学軸方向の分布が光学特性上特に重要なので、
光学軸方向に溶媒を移動させないように、濃度分布を有
する光学軸方向に重要な、すなわち、板状ゲルの板面を
マスクして乾燥させることによって同様な効果が得られ
る。アキシャル型の場合は、マスクする面が平面である
ために、ゴム系の弾性材料でなくとも耐溶媒性のある材
料で板状マスクとすればよい。
On the other hand, in the axial type gradient index optical element, since the distribution in the optical axis direction is particularly important in terms of optical characteristics,
The same effect can be obtained by masking and drying the plate surface of the plate-like gel, which is important in the optical axis direction having the concentration distribution, so as not to move the solvent in the optical axis direction. In the case of the axial type, since the masking surface is a flat surface, a plate-shaped mask may be made of a solvent-resistant material instead of a rubber-based elastic material.

【0016】[0016]

【実施例1】テトラメチルシリケート30ml、テトラ
エチルシリケート30ml、トリエチルボレート12.
4mlを混合し、これに1/100規定の塩酸25ml
を加えて室温で1時間撹拌し、部分加水分解反応を行っ
た。ここに、1.25mol/lの酢酸鉛水溶液10
7.63mlと酢酸15.35mlとを混合したものを
添加した。これをさらに室温で激しく3分撹拌した後、
2分間静置し、φ35mmのポリプロピレン製容器に分
注し、室温でゲル化させた。得られたゲルを30℃で5
日間の熟成を行い、さらに60℃のIPA(イソプロピ
ルアルコール):水=8:2の混合溶媒を用いた酢酸鉛
の0.61mol/l溶液中に浸漬し、酢酸の除去およ
びゲルの熟成を行った。このゲルを、IPA、IPA:
アセトン=8:2、5:5、アセトンの順に各2日間ず
つ浸漬することにより、ゲル細孔中に酢酸鉛の微結晶を
析出、固定させた。
Example 1 Tetramethyl silicate 30 ml, tetraethyl silicate 30 ml, triethyl borate 12.
4 ml are mixed, and 1 / 100N hydrochloric acid 25 ml is mixed with this.
Was added and stirred at room temperature for 1 hour to carry out a partial hydrolysis reaction. Here, a 1.25 mol / l lead acetate aqueous solution 10
A mixture of 7.63 ml and 15.35 ml acetic acid was added. After further stirring this for 3 minutes at room temperature,
The mixture was allowed to stand for 2 minutes, dispensed in a polypropylene container of φ35 mm, and gelled at room temperature. The obtained gel is 5 at 30 ° C.
Aging is carried out for one day, and further immersion in a 0.61 mol / l solution of lead acetate using a mixed solvent of IPA (isopropyl alcohol): water = 8: 2 at 60 ° C. is carried out to remove acetic acid and age the gel. It was This gel was labeled with IPA, IPA:
By dipping acetone in the order of 8: 2, 5: 5, and acetone for 2 days each, fine crystals of lead acetate were deposited and fixed in the gel pores.

【0017】得られた均質ゲルを0.305mol/l
の酢酸カリウムのエタノール溶液であり、かつ0.15
3mol/lの酢酸のエタノール溶液となるように調節
した溶液150mlに16時間浸漬して分布付与させた
後、IPA:アセトン=5:5,アセトン、アセトンの
順に各2日間ずつ浸漬することにより、酢酸鉛および酢
酸カリウムの微結晶をゲル細孔中に析出、固定させた。
The obtained homogeneous gel was treated with 0.305 mol / l.
Solution of potassium acetate in ethanol, and 0.15
After dipping in 150 ml of a solution adjusted to be an ethanol solution of acetic acid of 3 mol / l for 16 hours to impart distribution, IPA: acetone = 5: 5, acetone, and then by immersing in acetone for 2 days each, Fine crystals of lead acetate and potassium acetate were deposited and fixed in the gel pores.

【0018】このゲルの円筒面にφ18mmの筒状天然
ゴム製のマスクをかぶせてから、30℃で5日間乾燥さ
せ、ドライゲルとした。乾燥中、ゲルはφ32mmから
φ22mmに収縮したが、筒状マスクはゲルの収縮とと
もに収縮して円筒面から離れることなく、無事乾燥を終
了した。得られたドライゲルからマスクを外し、570
℃まで昇温して焼結することにより、亀裂のない無色透
明のガラス体を得た。ガラス体の屈折率分布を調べたと
ころ、図1に示すような外周部に跳ね上がりのない放物
線分布に近い屈折分布であった。
A cylindrical natural rubber mask having a diameter of 18 mm was covered on the cylindrical surface of this gel and dried at 30 ° C. for 5 days to obtain a dry gel. During the drying, the gel shrank from φ32 mm to φ22 mm, but the tubular mask shrank as the gel shrank and did not separate from the cylindrical surface, and the drying was completed successfully. Remove the mask from the resulting dry gel 570
By heating up to ℃ and sintering, a colorless transparent glass body without cracks was obtained. When the refractive index distribution of the glass body was examined, the refractive index distribution was close to a parabolic distribution with no jumping to the outer peripheral portion as shown in FIG.

【0019】[0019]

【実施例2】実施例1と同様にして作製したゾルをφ8
0mmのポリプロピレン製容器に高さ30mmまで注
ぎ、室温でゲル化させた。得られたゲルを熟成の後、さ
らに酢酸の除去および熟成を行った。このゲルを、IP
A、IPA:アセトン=8:2、5:5、アセトンの順
に浸漬することにより、ゲル細孔中に酢酸鉛の微結晶を
析出、固定させた。
Example 2 A sol prepared in the same manner as in Example 1 was used as φ8.
It was poured into a 0 mm polypropylene container to a height of 30 mm and gelled at room temperature. After aging the obtained gel, acetic acid was further removed and aged. IP this gel
By immersing A, IPA: acetone = 8: 2, 5: 5, and acetone in this order, lead acetate microcrystals were deposited and fixed in the gel pores.

【0020】得られた均質ゲルを酢酸ナトリウムのエタ
ノール溶液に1時間浸漬して分布付与させた後、IP
A:アセトン=5:5、アセトン、アセトンの順に浸漬
することにより、酢酸鉛、酢酸ナトリウムをゲル細孔中
に固定させた。こうして得られたウェットゲルをテフロ
ン板で挟んで乾燥した後、焼結することにより無色透明
のガラス板が得られた。このガラス板の軸方向屈折率分
布を調べたところ、ガラスの表面から3mm程の深さま
で屈折率の単調な増加がみられ、ガラス表面部での屈折
率の崩れはなかった。
The obtained homogeneous gel was immersed in an ethanol solution of sodium acetate for 1 hour to give a distribution, and then IP
Lead acetate and sodium acetate were fixed in the gel pores by immersing A: acetone = 5: 5, acetone, and acetone in this order. The wet gel thus obtained was sandwiched between Teflon plates, dried, and then sintered to obtain a colorless and transparent glass plate. When the refractive index distribution in the axial direction of this glass plate was examined, a monotonic increase in the refractive index was observed from the surface of the glass to a depth of about 3 mm, and the refractive index did not collapse at the glass surface portion.

【0021】[0021]

【発明の効果】以上のように、本発明の製造方法によれ
ば、表面部付近での屈折率分布の跳ね上がりを防止で
き、光学的に用途の広い屈折率分布型多成分系ガラスを
容易に製造することが可能となる。
As described above, according to the manufacturing method of the present invention, it is possible to prevent the refractive index distribution from jumping up in the vicinity of the surface portion, and to easily provide a refractive index distribution type multi-component glass which is optically versatile. It becomes possible to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1によって作製した径方向屈折
率分布型光学素子の屈折率分布を示すグラフである。
FIG. 1 is a graph showing a refractive index distribution of a radial-direction gradient index optical element manufactured according to Example 1 of the present invention.

【図2】従来の製造方法によって作製した径方向屈折率
分布型光学素子の屈折率分布を示すグラフである。
FIG. 2 is a graph showing a refractive index distribution of a radial direction gradient index optical element manufactured by a conventional manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゾルゲル法による屈折率分布型光学素子
の製造方法において、ウェットゲル中に屈折率に寄与す
る成分の濃度分布を付与する工程の後、該ウェットゲル
中の濃度分布方向に対して垂直なウェットゲル表面をマ
スクで覆いながら乾燥することを特徴とする屈折率分布
型多成分系ガラスの製造方法。
1. A method of manufacturing a gradient index optical element by a sol-gel method, after the step of imparting a concentration distribution of a component that contributes to the refractive index to the wet gel, with respect to the concentration distribution direction in the wet gel. A method for producing a gradient index multi-component glass, which comprises drying a vertical wet gel surface with a mask.
JP5301093A 1993-02-18 1993-02-18 Production of refractive index distribution type multicomponent-based glass Withdrawn JPH06239621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301093A JPH06239621A (en) 1993-02-18 1993-02-18 Production of refractive index distribution type multicomponent-based glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301093A JPH06239621A (en) 1993-02-18 1993-02-18 Production of refractive index distribution type multicomponent-based glass

Publications (1)

Publication Number Publication Date
JPH06239621A true JPH06239621A (en) 1994-08-30

Family

ID=12930945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301093A Withdrawn JPH06239621A (en) 1993-02-18 1993-02-18 Production of refractive index distribution type multicomponent-based glass

Country Status (1)

Country Link
JP (1) JPH06239621A (en)

Similar Documents

Publication Publication Date Title
JP3708238B2 (en) Manufacturing method of gradient index optical element
JP3206997B2 (en) Refractive index distribution type silicate glass
JPH06239621A (en) Production of refractive index distribution type multicomponent-based glass
JPH06299091A (en) Reflection-preventive film-forming coating composition
JP4468630B2 (en) Spin-on glass material for anodic bonding of spacers and its blending method
JP3209534B2 (en) Method of manufacturing refractive index distribution type optical element
JPH0977518A (en) Production of distributed index optical element
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JPH09202652A (en) Production of refractive distribution type optical element
JPS62226840A (en) Reflection preventive film and its production
JP3477225B2 (en) Glass manufacturing method
JPH08133752A (en) Production of refractive index distribution type optical element
JP2000007384A (en) Production of refractive index distribution type optical element
JPH10245234A (en) Production of refractive index distribution type optical element
JPH09301775A (en) Production of ceramics
JPH0421526A (en) Method for manufacturing quartz-based glass body with refractive index distribution
JP3670682B2 (en) Manufacturing method of gradient index optical element
JP3668374B2 (en) Method for cleaning instruments in the production of multi-component gels
JPH09263413A (en) Production of glass
JP3290714B2 (en) Method of manufacturing refractive index distribution type optical element
JPH05116956A (en) Production of distributed index optical element
JPH07333408A (en) Lens and its production
JPH0543254A (en) Production of glass
JPH09263412A (en) Production of distributed refractive index glass
JPH04108626A (en) Manufacture of distributed index optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509