[go: up one dir, main page]

JPH06231766A - Negative electrode for non-aqueous secondary battery - Google Patents

Negative electrode for non-aqueous secondary battery

Info

Publication number
JPH06231766A
JPH06231766A JP5017328A JP1732893A JPH06231766A JP H06231766 A JPH06231766 A JP H06231766A JP 5017328 A JP5017328 A JP 5017328A JP 1732893 A JP1732893 A JP 1732893A JP H06231766 A JPH06231766 A JP H06231766A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
battery
aqueous secondary
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5017328A
Other languages
Japanese (ja)
Other versions
JP3444616B2 (en
Inventor
Takayuki Nakajima
孝之 中島
Fumiaki Kawakami
文明 川上
Yoshio Suzuki
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP01732893A priority Critical patent/JP3444616B2/en
Publication of JPH06231766A publication Critical patent/JPH06231766A/en
Application granted granted Critical
Publication of JP3444616B2 publication Critical patent/JP3444616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a negative electrode, which is good on an output characteristic and a low temperature characteristic, for non-aqueous secondary battery. CONSTITUTION:In a porous negative electrode mainly consisting of carbonaceous material grains, the carbonaceous material grain mainly consists of a graphitic grain whose spacing d002 of a carbon network face is less than 0.337nm. The porous negative electrode whose percentage of the volume occupied by the holes, whose porosity is 10% or more and less than 60% while its hole diameter ranges from 0.1mum to 10mum, to the whole porous volume is 80% or more is used. Therefore, a high capacity non-aqueous secondary battery, which is good on an output characteristic and a low temperature characteristic, can be obtained by employing this porous negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素質材料粒子から主と
して構成される負極と充放電可能な正極と有機溶媒系電
解液からなる非水二次電池に用いられる負極に関し、特
に、主として黒鉛粒子からなる負極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode composed mainly of carbonaceous material particles, a negative electrode composed of a chargeable / dischargeable positive electrode and an organic solvent-based electrolytic solution, and particularly graphite particles. Of the negative electrode structure.

【0002】[0002]

【従来の技術】近年、携帯用電子機器の小型化に伴い、
その電源として、軽量・小型かつ高容量な二次電池が要
望されている。有機溶媒を電解液とした非水二次電池の
負極として金属リチウムを用いると高容量になることが
知られている。しかしながら、金属リチウム負極では、
充放電の繰り返しに伴って生成する樹枝状のリチウム
(リチウムデンドライト)による内部短絡や電流効率の
低下などが、高容量かつ長寿命な電池の実用化の大きな
障害となっている。また、金属リチウムを用いる電池で
は、短絡時の発熱などで電池が高温状態になると、金属
リチウムの高い反応性のため、発火や電池缶の破裂の危
険を含んでおり、安全性の点でも大きな問題を残してい
る。
2. Description of the Related Art In recent years, with the miniaturization of portable electronic devices,
A light-weight, small-sized and high-capacity secondary battery has been demanded as the power source. It is known that high capacity is obtained by using metallic lithium as a negative electrode of a non-aqueous secondary battery using an organic solvent as an electrolytic solution. However, in the metallic lithium negative electrode,
Internal short circuit due to dendritic lithium (lithium dendrite) generated by repeated charging / discharging and reduction in current efficiency are major obstacles to commercialization of high-capacity and long-life batteries. Also, in the case of a battery using metallic lithium, when the battery becomes a high temperature state due to heat generation at the time of a short circuit, because of the high reactivity of metallic lithium, there is a risk of ignition and rupture of the battery can, which is also a great safety point. I have a problem.

【0003】このような欠点の改善を目的に、有機溶媒
を電解液とした非水二次電池に用いられる負極として、
電気化学的にリチウムイオンを吸蔵・放出可能な炭素質
材料が注目されている。このような負極に用いられる炭
素質材料として、活性炭のように非晶質を多く含むもの
からグラファイトに代表されるように結晶の発達したも
のに到るまで、種々の材料が検討されている。
For the purpose of improving such drawbacks, as a negative electrode used in a non-aqueous secondary battery using an organic solvent as an electrolytic solution,
Attention has been focused on carbonaceous materials that can electrochemically store and release lithium ions. As a carbonaceous material used for such a negative electrode, various materials have been studied, from a material containing a large amount of amorphous material such as activated carbon to a material having a well-developed crystal represented by graphite.

【0004】非晶質を多く含む炭素質材料は、通常、き
わめて表面積(SA >100m2/g)が大きく炭素網面
の間隔も広く(d002 >0.337nm)、結晶化の進
んでいないものである。このタイプのものは表面吸着量
が多いために炭素原子当りのリチウム吸蔵量は大きいが
電流効率が低く、サイクル性も低い。炭素網面がある程
度成長しているが完全には黒鉛化していない、いわゆ
る、擬黒鉛構造を有する炭素質材料は、従来より金属リ
チウム負極やリチウム合金負極で使用される電解液を用
いてリチウムを吸蔵・放出可能である。
A carbonaceous material containing a large amount of amorphous material usually has a very large surface area (S A > 100 m 2 / g) and a wide spacing between carbon mesh planes (d 002 > 0.337 nm), and crystallization progresses. It is not. Since this type has a large amount of adsorbed on the surface, the amount of lithium absorbed per carbon atom is large, but the current efficiency is low and the cycleability is also low. A carbonaceous material having a so-called pseudo-graphite structure, in which the carbon network surface has grown to some extent but is not completely graphitized, is a lithium-based material that has been conventionally used in metal lithium negative electrodes and lithium alloy negative electrodes. Can store and release.

【0005】一方、グラファイトは、炭素網面の間隔が
狭く(d002 <0.337nm)、炭素網面方向及び網
面の積層方向結晶子の成長したものである。このような
炭素材料は陽イオン、陰イオンどちらもその炭素網面間
にインターカレーションし、層間化合物を形成すること
が知られており、導電材料、有機合成反応触媒や電池と
しての応用も考えられている。このようなグラファイト
を電池の負極として用いることは特開昭57−2080
79号公報、特開昭58−192266号公報、特開昭
59−143280号公報、特開昭60−54181号
公報、特開昭60−182670号公報、特開昭60−
221973号公報、特開昭61−7567号公報、特
開平1−311565号公報、特開平4−171677
号公報などに提案されている。
On the other hand, graphite has a narrow spacing between carbon net planes (d 002 <0.337 nm), and is a growth of crystallites in the carbon net plane direction and the laminating direction of the net plane. It is known that such a carbon material intercalates both cations and anions between the carbon network planes to form an intercalation compound, and is considered to be applied as a conductive material, an organic synthesis reaction catalyst or a battery. Has been. The use of such graphite as the negative electrode of a battery is disclosed in JP-A-57-2080.
79, JP-A-58-192266, JP-A-59-143280, JP-A-60-54181, JP-A-60-182670, and JP-A-60-.
221973, JP 61-7567, JP 1-311565, and JP 4-171677.
It is proposed in the Gazette and the like.

【0006】これらの特許には使用できる有機溶媒とし
てプロピレンカーボネート(以下PCと略記する。)、
テトラヒドロフラン(以下THFと略記する。)、γ−
ブチロラクトン(以下γ−BLと略記する。)、1,2
−ジメトキシエタン(以下DMEと略記する。)、スル
ホラン、エチレンカーボネート(以下ECと略記す
る。)などが記載されている。実施例としてはLiCl
4 あるいはLiBF4 を用い、代表的溶媒としてPC
あるいはTHFを用いている。PCを溶媒とする電解液
では、J.Electrochem.Soc.,117
P.222(1970)に記載のごとく、グラファイ
トにリチウムイオンが吸蔵された層間化合物は有機溶媒
に対する反応性が高く、電解液を分解し負極とはなり得
なかったが、PC/EC、PC/DME、あるいは、γ
−BLを含有してなる混合溶媒系など、グラファイトに
適した電解液を用いると、吸蔵されるリチウム量の大き
い負極になる。
In these patents, propylene carbonate (hereinafter abbreviated as PC) as an organic solvent that can be used,
Tetrahydrofuran (hereinafter abbreviated as THF), γ-
Butyrolactone (hereinafter abbreviated as γ-BL), 1,2
-Dimethoxyethane (hereinafter abbreviated as DME), sulfolane, ethylene carbonate (hereinafter abbreviated as EC) and the like are described. Examples include LiCl
PC using O 4 or LiBF 4 as a typical solvent
Alternatively, THF is used. In the electrolytic solution using PC as a solvent, J. Electrochem. Soc. , 117
P. 222 (1970), the intercalation compound in which lithium ions are occluded in graphite has a high reactivity with an organic solvent and cannot decompose the electrolytic solution to form a negative electrode, but PC / EC, PC / DME, Or γ
When an electrolytic solution suitable for graphite such as a mixed solvent system containing -BL is used, the negative electrode has a large amount of stored lithium.

【0007】しかしながら、炭素質材料粒子から主とし
て構成される多孔質負極では、充放電サイクルの繰り返
しにより、内部抵抗が増大し、高率放電が出来ない、低
温での放電で著しく容量が低下するなどの問題があっ
た。
However, in a porous negative electrode composed mainly of carbonaceous material particles, the internal resistance increases due to repeated charging / discharging cycles, high rate discharge cannot be performed, and the capacity remarkably decreases due to discharge at low temperature. There was a problem.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は二次電
池の高容量化のために利用率、充填密度が大きく、サイ
クル性に優れ、かつ、出力特性に優れる特定の空隙構造
を有する負極を提供することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide a negative electrode having a specific void structure, which has a high utilization factor and a high packing density for a high capacity secondary battery, is excellent in cycleability, and is excellent in output characteristics. Is to provide.

【0009】[0009]

【課題を解決するための手段】本発明者等は前記課題を
解決するために、多孔質負極に用いる炭素質材料粒子と
負極の空隙構造を鋭意検討したところ、特定の空隙構造
を有する負極を用いることで、二次電池の高容量化のた
めに利用率が大きく、サイクル性に優れ、かつ、高率放
電特性、低温特性に優れることを見いだし、本発明を完
成するに至った。
In order to solve the above problems, the inventors of the present invention have made extensive studies on the void structure of the carbonaceous material particles and the negative electrode used for the porous negative electrode, and found that the negative electrode having a specific void structure was used. It has been found that, by using it, the secondary battery has a high utilization factor for high capacity, is excellent in cycleability, and is excellent in high-rate discharge characteristics and low-temperature characteristics, and has completed the present invention.

【0010】すなわち、本発明は、炭素質材料粒子から
主として構成される非水二次電池用負極において、上記
炭素質材料粒子が主として炭素網面の面間隔d002
0.337nm未満の黒鉛質粒子からなり、かつ上記非
水二次電池用負極の空孔率が10〜60%で、空孔径
0.1〜10μmの範囲にある空孔の占める体積が全空
孔体積に対して80%以上であることを特徴とする非水
二次電池用負極を提供するものである。
That is, according to the present invention, in a negative electrode for a non-aqueous secondary battery mainly composed of carbonaceous material particles, the carbonaceous material particles are mainly graphite having a carbon mesh plane spacing d 002 of less than 0.337 nm. The porosity of the negative electrode for a non-aqueous secondary battery composed of particles is 10 to 60%, and the volume occupied by pores in the pore diameter range of 0.1 to 10 μm is 80% with respect to the total pore volume. The present invention provides a negative electrode for a non-aqueous secondary battery characterized by the above.

【0011】以下、本発明を詳細に説明する。本発明で
いう炭素網面の面間隔d002 が0.337nm未満の黒
鉛質粒子とは、炭素網面の層が規則正しく積層されたグ
ラファイト構造の発達した炭素質材料である。炭素質材
料はその出発原料及びその処理(製造)方法により種々
の構造を取るが、いずれの材料も高温処理によりその炭
素網面の面間隔d002 は小さくなり、炭素網面の積層厚
みLcは大きくなる傾向にあり、グラファイトは最も小
さい面間隔d002 =0.3354nmを持つ。このd
002 の減少及びLcの増加、すなわち、黒鉛化のし易さ
はは出発原料により大きく異なり、高温処理(〜300
0℃)で容易にグラファイト化する易黒鉛化物質とグラ
ファイト化が進行しにくい(d002 が小さくなりにく
い)難黒鉛化物質とに分類される。この炭素質材料のグ
ラファイト化の際、前記のd002 、Lcの他に真密度、
比表面積、電気抵抗等も大きく変化するが、層間化合物
の形成には特に面間隔が重要である。
The present invention will be described in detail below. The graphite particles having a carbon mesh plane spacing d 002 of less than 0.337 nm as referred to in the present invention is a carbonaceous material having a well-developed graphite structure in which carbon mesh plane layers are regularly stacked. The carbonaceous material has various structures depending on its starting material and its treatment (manufacturing) method. However, in any material, the interplanar spacing d 002 of the carbon mesh plane becomes small due to the high temperature treatment, and the laminated thickness Lc of the carbon mesh plane is Graphite tends to be large, and graphite has the smallest facet spacing d 002 = 0.3354 nm. This d
The decrease of 002 and the increase of Lc, that is, the easiness of graphitization greatly depends on the starting material, and the high temperature treatment (up to 300
It is classified into a graphitizable substance that easily graphitizes at 0 ° C. and a non-graphitizable substance that does not easily graphitize (d 002 does not easily decrease). When graphitizing this carbonaceous material, in addition to the above d 002 and Lc, the true density,
The specific surface area, electric resistance, etc. also change greatly, but the interplanar spacing is particularly important for the formation of intercalation compounds.

【0012】本発明に用いられるd002 が0.337n
m未満の黒鉛質粒子は、人造黒鉛、天然に産する黒鉛、
いずれのものであってもよく、また、両者を混合したも
のであってもよい。人造黒鉛は、石油ピッチ、コールタ
ールピッチ、熱分解炭素、ニードルコークス、フリュー
ドコークス、メソフェーズマイクロビーズ、縮合多環炭
化水素などに代表される易黒鉛化性物質を一般に250
0℃以上、より好ましくは2800℃以上で熱処理する
ことで得られる。
D 002 used in the present invention is 0.337n
Graphite particles less than m are artificial graphite, naturally occurring graphite,
Any of these may be used, or a mixture of both may be used. Artificial graphite is generally a graphitizable substance typified by petroleum pitch, coal tar pitch, pyrolytic carbon, needle coke, fluid coke, mesophase microbeads, condensed polycyclic hydrocarbon, etc.
It can be obtained by heat treatment at 0 ° C. or higher, more preferably 2800 ° C. or higher.

【0013】本発明の炭素質材料はd002 が0.337
nm未満のものが炭素原子当りのリチウム吸蔵量(利用
率)が高く、特に有効であり、d002 が0.337nm
以上であると電流効率が低くなったり、利用率が低くな
ったりするので好ましくない。電流効率の幾分かの低下
を伴うこともあるが、本発明の負極は、上記黒鉛質粒子
と50重量%以下であれば他の炭素質材料とを併用して
作成することもでき、例えばこのような炭素質材料とし
てコークス、アセチレンブラック、活性炭、メソフェー
ズマイクロビーズの炭化物、フリュードコークス、ギル
ソナイトコークス、ニードルコークス等が挙げられる。
また、炭素繊維、黒鉛繊維を粉砕したいわゆるミルドフ
ァイバーを用いることも出来る。
The carbonaceous material of the present invention has a d 002 of 0.337.
Those having a size of less than nm have a high lithium absorption amount (utilization rate) per carbon atom and are particularly effective, and have a d 002 of 0.337 nm.
The above is not preferable because the current efficiency is lowered and the utilization rate is lowered. Although the current efficiency may be somewhat lowered, the negative electrode of the present invention can be produced by using the above-mentioned graphite particles and other carbonaceous materials in combination at 50% by weight or less. Examples of such carbonaceous materials include coke, acetylene black, activated carbon, carbide of mesophase microbeads, flue coke, gilsonite coke, needle coke and the like.
Further, so-called milled fiber obtained by crushing carbon fiber or graphite fiber can also be used.

【0014】本発明に用いられる黒鉛質粒子は、その粒
子径が0.1〜100μmの範囲に含まれる粒子が95
重量%以上、好ましくは1〜50μmの範囲に含まれる
粒子が95重量%以上のものが好適に用いられる。0.
1μm未満の粒子が含まれていると、表面積が大きくな
り、表面で起こる副反応の量が大きくなり、電流効率の
低下を伴い、電池容量が小さくなる。また、100μm
を越える粗大粒子が含まれると、後述する電極の空隙構
造が適さなくなり、充放電サイクルにより容量低下を起
こす。
The graphite particles used in the present invention include 95 particles having a particle diameter in the range of 0.1 to 100 μm.
Particles containing 95% by weight or more of particles contained in the range of 1% to 50 μm are preferably used. 0.
When the particles having a particle size of less than 1 μm are included, the surface area is increased, the amount of side reaction occurring on the surface is increased, the current efficiency is reduced, and the battery capacity is reduced. Also, 100 μm
If coarse particles exceeding the above range are contained, the void structure of the electrode described later becomes unsuitable, and the capacity decreases due to charge / discharge cycles.

【0015】本発明で用いる黒鉛質粒子の炭素網面の積
層厚みLcは特に限定するものではないがグラファイト
化および粒子形状に関してLcも重要なパラメータであ
り、好ましくは30nm以上、更に好ましくは50nm
以上がよい。30nm未満ではリチウム吸蔵・放出量
(利用率)が低くなり、好ましくない。またその表面積
も特に限定するものではないが、表面積が大きいと副反
応が多く起こり易くなるため、50m2 /g以下がよ
く、好ましくは25m2 /g以下、さらに好ましくは1
5m2 /gがよい。但し、1m2 /g未満では、Liイ
オンの出は入りする界面の面積が少なくなり、電極活物
質あたりの電流密度が大きくなるため好ましくない。
The layer thickness Lc on the carbon network surface of the graphite particles used in the present invention is not particularly limited, but Lc is also an important parameter for graphitization and particle shape, and is preferably 30 nm or more, more preferably 50 nm.
The above is good. If it is less than 30 nm, the amount of lithium absorbed and released (utilization rate) becomes low, which is not preferable. The surface area is also not particularly limited, but if the surface area is large, side reactions are more likely to occur, so 50 m 2 / g or less is preferable, preferably 25 m 2 / g or less, more preferably 1 m 2 / g or less.
5 m 2 / g is good. However, if it is less than 1 m 2 / g, the area of the interface where Li ions come in and out becomes small, and the current density per electrode active material becomes large, which is not preferable.

【0016】本発明でいう負極の空孔率および空孔体積
とは水銀圧入法ポロシメータにより求めらた値である。
炭素質材料の充填密度を上げ電池容量を高める観点か
ら、この空孔率は低く抑えるほうが良いと考えられる
が、炭素質材料粒子を用いて空孔率を60%以下とした
負極では、低温放電時や高率放電時の電池容量が低下す
る問題が起こる。
The porosity and the pore volume of the negative electrode in the present invention are values determined by a mercury porosimetry porosimeter.
From the viewpoint of increasing the packing density of the carbonaceous material and increasing the battery capacity, it is thought that this porosity should be kept low. However, in the negative electrode with carbonaceous material particles having a porosity of 60% or less, low temperature discharge There is a problem that the battery capacity decreases at high time or high rate discharge.

【0017】しかしながら、負極空孔径0.1〜10μ
mの範囲にある空孔体積の全空孔体積に対する百分率を
80%以上とした本発明の負極を用いると、空孔率を6
0%以下とした負極であっても低温放電時や高率放電時
の電池容量の低下が起こりにくいことを見い出した。こ
の理由は定かではないが、空孔径の小さい部分の電極で
は、初期の充放電サイクルの充電時に副反応で形成され
る生成物が表面に付着あるいは表面近傍の電解液中にあ
り、微細な穴を塞ぎ、リチウムイオンの移動を妨げてい
るのではないかと推定している。また、空孔径10μm
以上の部分が多くなると、電解液の保液性が悪くなるせ
いか、充放電サイクルにより容量が低下するので、好ま
しくない。このような観点から、、空孔径0.1〜10
μmの範囲にある空孔の占める体積の全空孔体積に対す
る百分率が80%以上、かつ、空孔率が10〜60%で
ある負極とすると低温放電時や高率放電時の電池容量の
低下を起こすことなく、容量の大きな二次電池となる。
好ましくは、空孔径0.5〜10μmの範囲にある空孔
の占める体積の全空孔体積に対する百分率が80%以上
かつ空孔率が10〜50%、さらに好ましくは、空孔径
0.5〜10μmの範囲にある空孔の占める体積の全空
孔体積に対する百分率が90%以上かつ空孔率が25〜
40%である。
However, the pore diameter of the negative electrode is 0.1 to 10 μm.
When the negative electrode of the present invention in which the percentage of the void volume in the range of m to the total void volume is 80% or more, the void ratio is 6%.
It has been found that even with a negative electrode of 0% or less, the battery capacity does not easily decrease during low temperature discharge or high rate discharge. The reason for this is not clear, but in the electrode where the pore size is small, the products formed by the side reaction during charging in the initial charge / discharge cycle are attached to the surface or in the electrolyte solution near the surface, and there are fine holes. It is presumed that it may be blocking the movement of lithium ions by blocking. Also, the pore diameter is 10 μm
If the number of the above-mentioned portions is large, the capacity may decrease due to charge / discharge cycles, probably because the liquid retaining property of the electrolytic solution deteriorates. From such a viewpoint, the pore diameter is 0.1 to 10.
If the percentage of the volume occupied by the pores in the range of μm to the total volume of the pores is 80% or more and the porosity is 10 to 60% for the negative electrode, the battery capacity will decrease during low temperature discharge or high rate discharge. The secondary battery has a large capacity without causing
Preferably, the volume ratio of the pores in the pore diameter range of 0.5 to 10 μm with respect to the total pore volume is 80% or more and the porosity is 10 to 50%, more preferably the pore diameter is 0.5 to The percentage of the volume occupied by the pores in the range of 10 μm to the total pore volume is 90% or more and the porosity is 25 to
40%.

【0018】限られた容積のケースに電極を詰め込む電
池では、この負極の空孔率を低く抑え電極活物質の充填
密度を上げることは電池の容量に大きく影響する。本発
明の主に黒鉛質粒子を用いて電極を構成する際、集電
体、合材等を用いることがあるが、集電体としてはC
u、Ni等が、合材としてはテフロン、ポリエチレン、
ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチ
レン、スチレン/ブタジエンゴム、多硫化ゴム、ニトロ
セルロース、シアノエチルセルロース及びアクリロニト
リル、フッ化ビニル、フッ化ビニリデン、クロロプレン
等の重合体などが、炭素質材料粒子に対して20重量%
未満の範囲で用いられる。
In a battery in which an electrode is packed in a case with a limited volume, increasing the packing density of the electrode active material by suppressing the porosity of the negative electrode greatly affects the capacity of the battery. When the electrode is mainly composed of the graphite particles of the present invention, a current collector, a composite material, etc. may be used, and the current collector is C
u, Ni, etc. are mixed materials such as Teflon, polyethylene,
Polymers such as nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose and acrylonitrile, vinyl fluoride, vinylidene fluoride, chloroprene, etc. are added to the carbonaceous material particles in an amount of 20. weight%
Used in the range of less than.

【0019】またこの電極を形成する方法として電極活
物質と有機重合体を混合し、圧縮成型する方法、有機重
合体の溶剤溶液に電極活物質を分散したのち、塗工乾燥
する方法、有機重合体の水性あるいは油性分散体に電極
活物質を分散した後、塗工乾燥する方法等が知られてい
るが、特に限定するものではないが、バインダーの分布
が不均一になると好ましくないので、好ましくは有機重
合体の水性あるいは油性分散体に電極活物質を分散した
後、塗工乾燥する方法、更に好ましくは有機重合体に
0.5μm以下の粒子を含む非フッ素系有機重合体を用
いるのがよい。
As a method of forming this electrode, a method of mixing an electrode active material and an organic polymer and compression molding, a method of dispersing the electrode active material in a solvent solution of the organic polymer, followed by coating and drying, and an organic polymer After the electrode active material is dispersed in the combined aqueous or oily dispersion, a method of coating and drying is known, but it is not particularly limited, but it is not preferable if the distribution of the binder becomes nonuniform, and thus it is preferable. Is a method of dispersing an electrode active material in an aqueous or oily dispersion of an organic polymer and then coating and drying, more preferably using a non-fluorine-containing organic polymer containing particles of 0.5 μm or less in the organic polymer. Good.

【0020】塗工乾燥する方法では、分散体の抜けた部
分で空隙を生じ、電極活物質の充填密度が低くなり易
い。このような欠点を解消する方法として、塗工液の固
形分の割合を高くし、分散体の割合を減らして塗工乾燥
時の電極活物質の充填密度を上げたり、要すれば、塗工
乾燥後の電極をプレスしてもよい。但し、プレスをし過
ぎると本発明の空孔分布が不適になるため、適度なプレ
スをすることが重要であることは言うまでもない。
In the method of coating and drying, voids are generated in the part where the dispersion is removed, and the packing density of the electrode active material tends to be low. As a method of eliminating such a drawback, the solid content of the coating liquid is increased and the proportion of the dispersion is reduced to increase the packing density of the electrode active material at the time of coating drying, or if necessary, the coating. The dried electrode may be pressed. However, it is needless to say that proper pressing is important because the pore distribution of the present invention becomes unsuitable if too much pressing is performed.

【0021】本発明の電解液は、プロピレンカーボネー
ト単一溶媒系の電解液では前述の如く黒鉛質負極で分解
されるので用いることはできないが、グラファイト負極
に用いられるものであれば特に限定されるものではな
い。例えば、カーボネート類、エーテル類、ケトン類、
ニトリル類、アミド類、スルホン系化合物、エステル
類、などが挙げられる。また、これらの溶媒の2種以上
を混合して用いることもできる。これらの中でも、γ−
BLを10%以上含有する混合溶媒系電解液を用いるこ
とが好ましい。このγ−BLと組み合わせる有機溶媒と
して、例えば、カーボネート類、エーテル類、ケトン
類、ニトリル類、アミド類、スルホン系化合物、エステ
ル類、芳香族炭化水素類などが挙げられる。また、これ
らの溶媒の2種以上を混合して用いることもできる。こ
れらのうちでもカーボネート類、エーテル類、ケトン
類、ニトリル類、エステル類などが好ましく、カーボネ
ート類がさらに好適に用いられる。
The electrolytic solution of the present invention cannot be used with a propylene carbonate single solvent type electrolytic solution because it is decomposed by the graphite negative electrode as described above, but is not particularly limited as long as it is used for the graphite negative electrode. Not a thing. For example, carbonates, ethers, ketones,
Examples thereof include nitriles, amides, sulfone compounds, esters, and the like. Further, two or more kinds of these solvents may be mixed and used. Among these, γ-
It is preferable to use a mixed solvent electrolyte containing 10% or more of BL. Examples of the organic solvent to be combined with γ-BL include carbonates, ethers, ketones, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons and the like. Further, two or more kinds of these solvents may be mixed and used. Among these, carbonates, ethers, ketones, nitriles, esters and the like are preferable, and carbonates are more preferably used.

【0022】具体例としては、プロピレンカーボネート
(PC)、エチレンカーボネート(EC)、ブチレンカ
ーボネート、ジメトキシエタン、テトラヒドロフラン、
2−メチル−テトラヒドロフラン、アニソール、1,4
−ジオキサン、4−メチル−2−ペンタノン、シクロヘ
キサノン、アセトニトリル、プロピオニトリル、ブチロ
ニトリル、ジエチルカーボネート、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシド、ス
ルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸
エチル、酢酸プロピル、プロピオン酸エチルなどを挙げ
ることができ、これらの中でもPC、ECが好適に用い
られる。
Specific examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, dimethoxyethane, tetrahydrofuran,
2-methyl-tetrahydrofuran, anisole, 1,4
-Dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, propionitrile, butyronitrile, diethyl carbonate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, Examples thereof include ethyl propionate, and among these, PC and EC are preferably used.

【0023】本発明に用いられる電解質は特に限定する
ものではないが、LiBF4 、LiAsF6 、LiPF
6 、LiClO4 、CF3 SO3 Li、LiI、LiA
lCl4 、NaClO4 、NaBF4 、NaI、(n−
Bu)4 NClO4 、(n−Bu)4 NBF4 、KPF
6 等が用いられる。また、これらの電解質を混合して用
いてもよい。電池性能及び取扱上の安全性や毒性などの
観点からLiBF4 、LiPF6 が好ましい。
The electrolyte used in the present invention is not particularly limited, but LiBF 4 , LiAsF 6 and LiPF 4 are used.
6 , LiClO 4 , CF 3 SO 3 Li, LiI, LiA
lCl 4, NaClO 4, NaBF 4 , NaI, (n-
Bu) 4 NClO 4 , (n-Bu) 4 NBF 4 , KPF
6 grade is used. Moreover, you may mix and use these electrolytes. LiBF 4 and LiPF 6 are preferable from the viewpoints of battery performance, handling safety, toxicity and the like.

【0024】本発明の負極と組み合わされる正極として
は特に限定される物ではないが、MnO2 、MoO3
2 5 、V6 13、Fe2 3 、Fe3 4 、リチウ
ム含有遷移金属カルコゲン化合物、TiS2 、Mo
3 、FeS2 、CuF2 、NiF2 等の無機化合物、
フッ化カーボン、グラファイト、気相成長炭素繊維及び
/またはその粉砕物、ピッチ系炭素繊維及び/またはそ
の粉砕物等の炭素材料、ポリアセチレン、ポリ−p−フ
ェニレン等の導電性高分子等があげられる。
The positive electrode to be combined with the negative electrode of the present invention is not particularly limited, but MnO 2 , MoO 3 ,
V 2 O 5 , V 6 O 13 , Fe 2 O 3 , Fe 3 O 4 , lithium-containing transition metal chalcogen compound, TiS 2 , Mo
Inorganic compounds such as S 3 , FeS 2 , CuF 2 , and NiF 2 ,
Carbon materials such as carbon fluoride, graphite, vapor-grown carbon fibers and / or pulverized products thereof, pitch-based carbon fibers and / or pulverized products thereof, and conductive polymers such as polyacetylene and poly-p-phenylene. .

【0025】リチウムを含まない正極に対しては本発明
の負極にリチウムを吸蔵させて用いる、あるいは本発明
の負極に必要量の金属リチウムを接合して用いるなどし
て電池を組むことが出来る。しかし、このような電池は
組立時に不活性ガス下で組み立てることが必要になるな
ど、組立工程が煩雑となる。リチウムを含有する遷移金
属カルコゲン化合物を用いた場合、正極、負極共に空気
中で安定な放電状態で電池を組み立てることができ、加
工、組立の制約が少なく、更に電池の短絡等による発
熱、爆発等の危険性がなく、安全上からも好ましい。
For a positive electrode containing no lithium, the negative electrode of the present invention can be used by occluding lithium, or the negative electrode of the present invention can be used by bonding a required amount of metallic lithium to a battery. However, such a battery complicates the assembling process such that it is necessary to assemble under an inert gas at the time of assembling. When a transition metal chalcogen compound containing lithium is used, the battery can be assembled in a stable discharge state in the positive and negative electrodes in the air, there are few restrictions on processing and assembly, and heat generation and explosion due to short circuit of the battery etc. There is no danger of, and it is preferable from the viewpoint of safety.

【0026】このようなリチウム含有遷移金属カルコゲ
ン化合物としては、たとえばLi(1 -X) CoO2 、Li
(1-x) NiO2 、Li(1-x) Co(1-y) Niy 2 、L
iMn2 4 、Li(1-X) Co(1-Y) Y 2 (MはC
o、Ni以外の遷移金属、Al、In、Sn等を表
す)、Li(1-X) Z Co(1-Y) Y 2 (AはLi以
外のアルカリ金属)が挙げられる。
Examples of such lithium-containing transition metal chalcogen compounds include, for example, Li (1- X) CoO 2 and Li.
(1-x) NiO 2 , Li (1-x) Co (1-y) Ni y O 2 , L
iMn 2 O 4, Li (1 -X) Co (1-Y) M Y O 2 (M is C
o, represents a transition metal other than Ni, Al, In, Sn, etc.), Li (1-X) A Z Co (1-Y) M Y O 2 (A is alkali metal) other than Li.

【0027】又、電池の構成要素として、要すればセパ
レーター、端子、絶縁板等の部品が用いられる。電池構
造は特に限定されるものではないが、高率放電時、低温
放電時の容量低下を少なくするためには、スパイラル構
造や積層構造とし、電極面積を大きくして、単位電極面
積あたりの電流密度を小さくする抑えることが好まし
い。
If necessary, components such as a separator, a terminal and an insulating plate are used as the constituent elements of the battery. The battery structure is not particularly limited, but in order to reduce the capacity decrease during high-rate discharge and low-temperature discharge, use a spiral structure or a laminated structure and increase the electrode area to increase the current per unit electrode area. It is preferable to suppress the density to be small.

【0028】[0028]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するがこれに限定されるものではない。炭素質材
料のd002 、Lcは「日本学術振興会法」に準じてX線
回折の002ピークより求めた。尚、電流効率は放電電
気量/充電電気量、利用率は放電電気量/負極活物質重
量当りの電気量(12gを96485クーロンとす
る)、として算出した。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the invention is not limited thereto. The d 002 and Lc of the carbonaceous material were determined from the 002 peak of X-ray diffraction according to the "Japan Society for the Promotion of Science". The current efficiency was calculated as discharge electricity quantity / charge electricity quantity, and the utilization rate was discharge electricity quantity / electric quantity per weight of negative electrode active material (12 g is 96485 coulomb).

【0029】[0029]

【実施例1】鱗状の人造黒鉛(d002 =0.3355n
m、平均粒径15μm、粒度範囲1〜50μm、Lc>
100nm、N2 吸着によるBET表面積=15m2
g)100重量部に対し、スチレン/ブタジエンラテッ
クス(旭化成工業(株)製L1571)(固形分48重
量%)4.17重量部、増粘剤としてカルボキシメチル
セルロース(第一工業製薬社製 BSH12)水溶液
(固形分1重量%)130重量部、水25重量部を加え
混合し、塗工液とした。18μmの銅箔を基材としてこ
の塗工液を塗布乾燥し、厚さ110μm、塗工部目付け
90g/m2 の負極を得た。この負極の空孔率、空孔径
分布を水銀圧入式のポロシメータ(島津製作所(株)
製、ポアサイザ9320)を用いて測定したところ、空
孔率は49%、空孔径0.1〜10μmの範囲にある空
孔の体積百分率は94%、空孔径0.5〜10μmの範
囲にある空孔の体積百分率は88%であった。
Example 1 Scale-shaped artificial graphite (d 002 = 0.3355n)
m, average particle size 15 μm, particle size range 1 to 50 μm, Lc>
100 nm, BET surface area by N 2 adsorption = 15 m 2 /
g) 100 parts by weight of styrene / butadiene latex (L1571 manufactured by Asahi Kasei Kogyo Co., Ltd.) (solid content 48% by weight) 4.17 parts by weight, carboxymethylcellulose (BSH12 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) aqueous solution as a thickener 130 parts by weight (solid content 1% by weight) and 25 parts by weight of water were added and mixed to obtain a coating liquid. This coating liquid was applied and dried using a 18 μm copper foil as a base material to obtain a negative electrode having a thickness of 110 μm and a coating weight of 90 g / m 2 . The porosity and pore size distribution of this negative electrode can be measured by mercury porosimetry (Shimadzu Corporation).
Manufactured by Poisizer 9320), the porosity is 49%, the volume percentage of the pores having a pore diameter of 0.1 to 10 μm is 94%, and the pore diameter is 0.5 to 10 μm. The volume percentage of pores was 88%.

【0030】平均粒径3μmのLiCoSn0.022
00重量部に対し、導電フィラーとしてグラファイト
(Lontz社製 商品名KS6)20重量部、バイン
ダーとしてポリフッカビニリデン5重量%ジメチルホル
ムアミド溶液100重量部を加え混合して調製した塗工
液を用い、15μmAl箔を基材としてこの塗工液を塗
布乾燥し、厚さ120μmの正極電極を得た。
LiCoSn 0.02 O 2 1 having an average particle size of 3 μm
A coating liquid prepared by adding 20 parts by weight of graphite (trade name: KS6, manufactured by Lontz Co.) as a conductive filler and 100 parts by weight of a 5% by weight dimethylformamide solution of polyfuccavinylidene as a binder to 100 parts by weight, and using a coating solution of 15 μm Al This coating liquid was applied and dried using a foil as a base material to obtain a positive electrode having a thickness of 120 μm.

【0031】上記負極、正極をポリエチレン製微多孔膜
を介してスパイラル状に捲回し、1MのLiBF4 をγ
−BL+EC+PC(容積比50:25:25)混合溶
媒に溶解した電解液を含浸させて図1に示す電池を組み
立てた。この電池を室温において0.5Aで4.2Vま
で定電流/定電圧充電し、0.5Aで2.7Vまで定電
流で放電するサイクルを繰り返した。この電池の初回充
放電における電流効率、および負極利用率はそれぞれ8
7%、15.2%であった。2サイクルめ以降の電流効
率は97%を越え、10サイクルめの電流効率は99.
6%であった。途中30サイクルめで、電流値を1Aに
上げて放電したところ、放電容量は初回の80%以上を
保持していた。さらに、室温での充放電サイクルを繰り
返し、35サイクルめで、温度を−10℃に下げて放電
したところ、その放電容量は初回の約60%であった。
The negative electrode and the positive electrode were spirally wound with a polyethylene microporous film interposed therebetween, and 1M LiBF 4 was added to γ.
The battery shown in FIG. 1 was assembled by impregnating an electrolytic solution dissolved in a mixed solvent of -BL + EC + PC (volume ratio 50:25:25). This battery was repeatedly charged at room temperature with constant current / constant voltage up to 4.2 V at 0.5 A and discharged with constant current up to 2.7 V at 0.5 A. The current efficiency and the negative electrode utilization rate in the first charge / discharge of this battery were 8 each.
It was 7% and 15.2%. The current efficiency after the second cycle exceeds 97%, and the current efficiency after the 10th cycle is 99.
It was 6%. When the current value was raised to 1 A and discharged in the 30th cycle on the way, the discharge capacity was maintained at 80% or more of the initial value. Furthermore, when the charge and discharge cycle at room temperature was repeated and the temperature was lowered to −10 ° C. at the 35th cycle for discharging, the discharge capacity was about 60% of the initial value.

【0032】[0032]

【比較例1】実施例1で得られた負極を油圧50kg/
cm3 に設定したカレンダーロールに3回通してプレス
成形し、厚さ70μの多孔質負極を得た。この負極の空
孔率は14%であり、空孔径0.1〜10μmまでの範
囲にある空孔の体積百分率は78%、空孔径0.5〜1
0μmの範囲にある空孔の体積百分率は69%であっ
た。この負極を用いて実施例1と同様な電池を組み立
て、充放電させたところ、初回の電流効率、負極利用率
はそれぞれ75%、13.3%であった。10サイクル
めで実施例1と同様に室温1A放電させたところ、放電
容量は1サイクルめの容量の50%以下であった。ま
た、15サイクルめで、実施例1と同様に−10℃放電
させたところ、その放電容量は1サイクルめの容量の3
0%未満であった。
Comparative Example 1 The negative electrode obtained in Example 1 was operated at a hydraulic pressure of 50 kg /
It was passed through a calender roll set to cm 3 three times and press-molded to obtain a porous negative electrode having a thickness of 70 μm. The porosity of this negative electrode is 14%, the volume percentage of the pores in the range of pore diameter 0.1 to 10 μm is 78%, and the pore diameter is 0.5 to 1.
The volume percentage of pores in the range of 0 μm was 69%. When this negative electrode was used to assemble and charge a battery similar to that of Example 1, the initial current efficiency and negative electrode utilization rate were 75% and 13.3%, respectively. When the battery was discharged at room temperature for 1A for the 10th cycle in the same manner as in Example 1, the discharge capacity was 50% or less of the capacity for the 1st cycle. Further, when discharged at −10 ° C. in the 15th cycle in the same manner as in Example 1, the discharge capacity was 3 times the capacity of the first cycle.
It was less than 0%.

【0033】[0033]

【実施例2】実施例1で用いた鱗状の人造黒鉛50重量
部にニードルコークス(d002 =0.345nm、平均
粒径10μm、粒度範囲2〜30μm、Lc>5nm、
2吸着によるBET表面積=5m2 /g)の粉砕物5
0重量部からなる炭素質粒子を用い実施例1と同様にし
て多孔質負極を得た。この多孔質負極を油圧50kg/
cm3 に設定したカレンダーロールに3回通してプレス
成形し、厚さ85μ、塗工部目付け93g/m2 の負極
を得た。この負極を用いて実施例1と同様に電池を作成
し、充放電サイクル試験を行った。尚、この負極の空孔
率は28%であり、空孔径0.1〜10μmまでの範囲
にある空孔の体積百分率は88%、空孔径0.5〜10
μmの範囲にある空孔の体積百分率は81%であった。
この電池の初回の電流効率、負極利用率はそれぞれ84
%、14.3%であった。100サイクルめで実施例1
と同様に室温1A放電させたところ、放電容量は1サイ
クルめの容量の70%以上を保持していた。また、15
0サイクルめで、実施例1と同様に−10℃放電させた
ところ、その放電容量は1サイクルめの容量の約50%
であった。
Example 2 50 parts by weight of the scaly artificial graphite used in Example 1 was mixed with needle coke (d 002 = 0.345 nm, average particle size 10 μm, particle size range 2 to 30 μm, Lc> 5 nm,
Ground product 5 with BET surface area = 5 m 2 / g) by N 2 adsorption
A porous negative electrode was obtained in the same manner as in Example 1 using 0 part by weight of carbonaceous particles. This porous negative electrode has a hydraulic pressure of 50 kg /
It was passed through a calender roll set to cm 3 three times and press-molded to obtain a negative electrode having a thickness of 85 μm and a coating weight of 93 g / m 2 . A battery was prepared using this negative electrode in the same manner as in Example 1, and a charge / discharge cycle test was performed. The porosity of this negative electrode was 28%, the volume percentage of the pores in the pore diameter range of 0.1 to 10 μm was 88%, and the pore diameter of 0.5 to 10 μm.
The volume percentage of pores in the range of μm was 81%.
The initial current efficiency and negative electrode utilization rate of this battery are 84
% And 14.3%. Example 1 at the 100th cycle
When discharged at room temperature for 1 A in the same manner as above, the discharge capacity retained 70% or more of the capacity in the first cycle. Also, 15
When discharged at -10 ° C in the 0th cycle in the same manner as in Example 1, the discharge capacity was about 50% of the capacity in the 1st cycle.
Met.

【0034】[0034]

【発明の効果】本発明の炭素質材料粒子が主として炭素
網面の面間隔d002 が0.337nm未満の黒鉛質粒子
からなり、かつ、該多孔質負極の空孔率が10〜60
%、かつ、空孔径0.1〜10μmの範囲にある空孔の
占める体積の全空孔体積に対する百分率が80%以上で
ある多孔質負極を用いると、電流効率、利用率が大き
く、かつサイクル性、出力特性、低温特性の優れた二次
電池用負極が得られる。
The carbonaceous material particles of the present invention are composed mainly of graphite particles having a carbon mesh plane spacing d 002 of less than 0.337 nm, and the porosity of the porous negative electrode is 10 to 60.
%, And a porous negative electrode in which the percentage of the volume of pores in the pore diameter range of 0.1 to 10 μm with respect to the total pore volume is 80% or more, the current efficiency and the utilization rate are large, and the cycle is large. A negative electrode for a secondary battery having excellent properties, output characteristics and low temperature characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の電池の構成例の説明図である。FIG. 1 is an explanatory diagram of a configuration example of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 ケース(負極) 5 ハーメチックピン(正極) 6 レーザー封口 1 Positive electrode 2 Negative electrode 3 Separator 4 Case (negative electrode) 5 Hermetic pin (positive electrode) 6 Laser sealing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料粒子から主として構成される
非水二次電池用負極において、上記炭素質材料粒子が主
として炭素網面の面間隔d002 が0.337nm未満の
黒鉛質粒子からなり、かつ上記非水二次電池用負極の空
孔率が10〜60%で、空孔径0.1〜10μmの範囲
にある空孔の占める体積が全空孔体積に対して80%以
上であることを特徴とする非水二次電池用負極。
1. A negative electrode for a non-aqueous secondary battery, which is mainly composed of carbonaceous material particles, wherein the carbonaceous material particles are mainly graphite particles having a carbon mesh plane spacing d 002 of less than 0.337 nm, Further, the porosity of the negative electrode for a non-aqueous secondary battery is 10 to 60%, and the volume occupied by pores in the pore diameter range of 0.1 to 10 μm is 80% or more based on the total pore volume. A negative electrode for a non-aqueous secondary battery, which is characterized by:
JP01732893A 1993-02-04 1993-02-04 Negative electrode for non-aqueous secondary batteries Expired - Lifetime JP3444616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01732893A JP3444616B2 (en) 1993-02-04 1993-02-04 Negative electrode for non-aqueous secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01732893A JP3444616B2 (en) 1993-02-04 1993-02-04 Negative electrode for non-aqueous secondary batteries

Publications (2)

Publication Number Publication Date
JPH06231766A true JPH06231766A (en) 1994-08-19
JP3444616B2 JP3444616B2 (en) 2003-09-08

Family

ID=11940989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01732893A Expired - Lifetime JP3444616B2 (en) 1993-02-04 1993-02-04 Negative electrode for non-aqueous secondary batteries

Country Status (1)

Country Link
JP (1) JP3444616B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997603A (en) * 1995-09-29 1997-04-08 Toray Ind Inc Manufacture of electrode sheet for battery
JP2001043899A (en) * 1999-07-29 2001-02-16 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005267953A (en) * 2004-03-17 2005-09-29 Ngk Insulators Ltd Lithium secondary battery
JP2007042525A (en) * 2005-08-05 2007-02-15 Hitachi Vehicle Energy Ltd Lithium ion battery
JP2010534397A (en) * 2007-07-25 2010-11-04 エルジー・ケム・リミテッド Electrochemical element and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236039B2 (en) 2020-01-31 2023-03-09 トヨタ自動車株式会社 NONAQUEOUS ELECTROLYTE ELECTRIC STORAGE DEVICE AND METHOD FOR MANUFACTURING NONAQUEOUS ELECTROLYTE ELECTRIC STORAGE DEVICE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997603A (en) * 1995-09-29 1997-04-08 Toray Ind Inc Manufacture of electrode sheet for battery
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2001043899A (en) * 1999-07-29 2001-02-16 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005267953A (en) * 2004-03-17 2005-09-29 Ngk Insulators Ltd Lithium secondary battery
JP2007042525A (en) * 2005-08-05 2007-02-15 Hitachi Vehicle Energy Ltd Lithium ion battery
JP4688604B2 (en) * 2005-08-05 2011-05-25 日立ビークルエナジー株式会社 Lithium ion battery
JP2010534397A (en) * 2007-07-25 2010-11-04 エルジー・ケム・リミテッド Electrochemical element and manufacturing method thereof
US9799866B2 (en) 2007-07-25 2017-10-24 Lg Chem, Ltd. Electrochemical device and its manufacturing method

Also Published As

Publication number Publication date
JP3444616B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
JP3492173B2 (en) Non-aqueous battery
KR20060091486A (en) Cathode active material, manufacturing method thereof, and cathode and lithium battery employing the same
US9673446B2 (en) Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
CN102893430A (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
KR100975875B1 (en) Cathode active material, manufacturing method thereof, cathode and lithium battery employing the same
JP5031065B2 (en) Lithium ion secondary battery
JPH05121066A (en) Negative electrode for nonaqueous battery
JP5523506B2 (en) Method for producing lithium ion secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JP3140880B2 (en) Lithium secondary battery
JP3444616B2 (en) Negative electrode for non-aqueous secondary batteries
JPH0636760A (en) Nonaqueous electrolyte secondary battery
JP3178730B2 (en) Non-aqueous secondary battery
JPH06333564A (en) Nonaqueous electrolytic secondary battery
JP3406843B2 (en) Lithium secondary battery
JPH0589879A (en) Lithium secondary battery
JPH0620721A (en) Nonaqueous secondary battery
JPH06267590A (en) High performance nonaqueous secondary battery
JPH0652896A (en) Nonaqueous secondary battery
JPH0652897A (en) Nonaqueous carbonaceous secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JPH06267589A (en) Electrolyte for organic solvent battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10