[go: up one dir, main page]

JPH06198130A - Nitrogen oxide removal material and method for removing nitrogen oxide - Google Patents

Nitrogen oxide removal material and method for removing nitrogen oxide

Info

Publication number
JPH06198130A
JPH06198130A JP4360035A JP36003592A JPH06198130A JP H06198130 A JPH06198130 A JP H06198130A JP 4360035 A JP4360035 A JP 4360035A JP 36003592 A JP36003592 A JP 36003592A JP H06198130 A JPH06198130 A JP H06198130A
Authority
JP
Japan
Prior art keywords
exhaust gas
nitrogen
oxygen
oxide
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4360035A
Other languages
Japanese (ja)
Other versions
JP3371127B2 (en
Inventor
Tatsuo Miyadera
達雄 宮寺
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Riken Corp filed Critical Agency of Industrial Science and Technology
Priority to JP36003592A priority Critical patent/JP3371127B2/en
Priority to EP19930310560 priority patent/EP0605237B1/en
Priority to DE1993609245 priority patent/DE69309245T2/en
Publication of JPH06198130A publication Critical patent/JPH06198130A/en
Priority to US08/434,918 priority patent/US5714432A/en
Priority to US08/601,495 priority patent/US5656249A/en
Priority to US08/805,234 priority patent/US5772973A/en
Priority to US08/917,144 priority patent/US5801117A/en
Application granted granted Critical
Publication of JP3371127B2 publication Critical patent/JP3371127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide an NOx removal material capable of optically stable and effective removal of NOx from waste combustion gas contg. NOx and more than an amt. of oxygen reacting theoretically with unburned components such as carbon monoxide, hydrogen and hydrocarbon and to provide a method for removing NOx. CONSTITUTION:Silver chloride is carried on a porous inorg. oxide by 0.2-15wt.% (expressed in terms of elemental silver) basing on 100wt.% of the oxide to obtain the objective NOx removal material and NOx in waste gas is reduced at 200-600 deg.C with hydrocarbon or an oxygen-contg. org. compd. added to the waste gas from the outside as a reducing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に除去する
ことのできる除去材及びそれを用いた窒素酸化物除去方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scavenger capable of effectively removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a nitrogen oxides removing method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive amounts of combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, etc. Nitrogen oxides such as nitric oxide and nitrogen dioxide are contained together with oxygen. Here, "containing excess oxygen" means containing more oxygen than the theoretical oxygen amount necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. To do. Moreover, the nitrogen oxide in the following refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
This nitrogen oxide is considered to be one of the causes of acid rain and is a serious environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion devices have been studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
As a method for removing nitrogen oxides from combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used, particularly for large-scale fixed combustion devices (large combustors such as factories). It has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic, so that unreacted ammonia is discharged so that nitrogen oxides in exhaust gas are not discharged. There are problems that the amount of ammonia injection must be controlled while measuring the concentration and that the apparatus is generally large.

【0006】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号、及び日本化学会第59春季年会
(1990年)2A526、同第60秋季年会 (1990年)3L420、3L42
2 、3L423 、「触媒」vol.33 No.2 、59ページ、1991年
等) 。又、銀を担持する触媒を用いる方法が提案された
(特開平4-281844)。
Therefore, there has been proposed a method for removing nitrogen oxides by adding a reducing agent in an amount equal to or less than a theoretical reaction amount with oxygen in exhaust gas by using zeolite or a catalyst supporting a transition metal thereon (for example, a special method). Kaisho 63-100919, 63-28372
No. 7, JP-A-1-130735, and 59th Annual Meeting of the Chemical Society of Japan
(1990) 2A526, 60th Autumn Meeting (1990) 3L420, 3L42
2, 3L423, "Catalyst" vol.33 No.2, page 59, 1991 etc.). In addition, a method using a catalyst supporting silver has been proposed (JP-A-4-218844).

【0007】しかしながら、これらの方法では、水分を
含まないような模擬排ガスに対しては高い効率で窒素酸
化物を除去することはできるが、実際の排ガスでは水分
を10%程度含有するので、窒素酸化物の除去率が著し
く低下することがわかった。また、これらの方法では、
窒素酸化物の還元反応の最適温度が400 〜600 ℃程度と
高くなる不都合もある。また、銀又は酸化銀を担持した
触媒では、光に当たると触媒活性が低下し、窒素酸化物
の除去率が低下する欠点がある。
However, although these methods can remove nitrogen oxides with high efficiency from simulated exhaust gas that does not contain water, the actual exhaust gas contains about 10% of water, so It was found that the oxide removal rate was significantly reduced. Also, with these methods,
There is also the disadvantage that the optimum temperature for the reduction reaction of nitrogen oxides is as high as 400 to 600 ° C. Further, a catalyst supporting silver or silver oxide has a drawback that the catalytic activity is lowered when exposed to light and the removal rate of nitrogen oxides is lowered.

【0008】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
光学的に安定で、効果的に窒素酸化物を除去することが
できる窒素酸化物除去材、及び除去方法を提供すること
である。
Therefore, an object of the present invention is to remove nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons, etc., such as combustion exhaust gas from a fixed combustion apparatus and a gasoline engine, a diesel engine, etc. that burn under an excess oxygen condition. From the combustion exhaust gas that contains more than the theoretical reaction amount of oxygen for unburned components,
It is intended to provide a nitrogen oxide removing material which is optically stable and can effectively remove nitrogen oxides, and a removing method.

【0009】[0009]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質の無機酸化物に特定量の塩
化銀を担持してなる除去材を用い、この除去材に特定の
温度及び接触時間で排ガスを接触させて、排ガスに含ま
れる窒素酸化物の量に見合うように排ガス中に添加され
た炭化水素又は含酸素有機化合物により、水分を10%
程度含有する排ガスでも、窒素酸化物を効果的に除去す
ることができる上、触媒の光学的安定性が向上すること
を発見し、本発明を完成した。
As a result of earnest research in view of the above problems, the present inventor has used a removing material in which a specific amount of silver chloride is supported on a porous inorganic oxide, and is specified as the removing material. The exhaust gas is brought into contact with the exhaust gas at the temperature and contact time of 10%, and the water content is 10% by the hydrocarbon or oxygen-containing organic compound added to the exhaust gas so as to correspond to the amount of nitrogen oxides contained in the exhaust gas.
The present invention has been completed by discovering that nitrogen oxides can be effectively removed even with exhaust gas containing a small amount and that the optical stability of the catalyst is improved.

【0010】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を除去する本発明の窒素酸化物除去材
は、多孔質の無機酸化物100重量%に塩化銀を銀元素
に換算して0.2〜15重量%担持してなり、外部から
前記排ガス中に添加された炭化水素又は含酸素有機化合
物を還元剤として、200〜600℃で、前記排ガス中
の窒素酸化物を還元することを特徴とする。
That is, the nitrogen oxide removing material of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components is a porous inorganic oxide. 0.2 to 15% by weight of silver chloride is converted to 100% by weight as silver element, and a hydrocarbon or oxygen-containing organic compound externally added to the exhaust gas is used as a reducing agent at 200 to 600 ° C. Then, the nitrogen oxide in the exhaust gas is reduced.

【0011】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を除去する本発明の窒素酸化物除去方法
は、上記窒素酸化物除去材を排ガス導管の途中に設置
し、前記除去材の上流側で前記排ガス中に炭化水素又は
含酸素有機化合物を添加し、200〜600℃で前記排
ガスを前記除去材に接触させ、前記炭化水素又は含酸素
有機化合物と前記窒素酸化物とを反応させて前記窒素酸
化物を除去することを特徴とする。
Further, the nitrogen oxide removing method of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components is the above-mentioned nitrogen oxide removing material. Is installed in the middle of the exhaust gas conduit, a hydrocarbon or an oxygen-containing organic compound is added to the exhaust gas on the upstream side of the removing material, and the exhaust gas is brought into contact with the removing material at 200 to 600 ° C. It is characterized in that the oxygen-containing organic compound is reacted with the nitrogen oxide to remove the nitrogen oxide.

【0012】以下、本発明を詳細に説明する。本発明で
は、以下に示す除去材を用い、この除去材に排ガスを接
触させることにより、排ガス中の残留炭化水素及び/又
は除去材の設置部位より上流側で排ガスに添加された炭
化水素又は含酸素有機化合物を還元剤として排ガス中の
窒素酸化物を還元除去する。
The present invention will be described in detail below. In the present invention, a removing material shown below is used, and exhaust gas is brought into contact with this removing material to remove residual hydrocarbons in the exhaust gas and / or hydrocarbons added to the exhaust gas on the upstream side from the installation site of the removing material or the content of the hydrocarbon. Nitrogen oxides in exhaust gas are reduced and removed using an oxygen organic compound as a reducing agent.

【0013】まず、本発明の除去材は多孔質の無機酸化
物に塩化銀を担持してなる。多孔質の無機酸化物として
は、多孔質のアルミナ、チタニア、ジルコニア、及びそ
れらの複合酸化物等を使用することができるが、好まし
くはγ−アルミナ又はアルミナ系複合酸化物を用いる。
γ−アルミナ又はアルミナ系複合酸化物を用いることに
より、添加した炭化水素又は含酸素有機化合物と排ガス
中の窒素酸化物との反応が効率良く起こる。
First, the removing material of the present invention comprises silver chloride supported on a porous inorganic oxide. As the porous inorganic oxide, porous alumina, titania, zirconia, and their composite oxides can be used, but γ-alumina or alumina-based composite oxide is preferably used.
By using γ-alumina or an alumina-based composite oxide, the reaction between the added hydrocarbon or oxygen-containing organic compound and the nitrogen oxide in the exhaust gas occurs efficiently.

【0014】多孔質の無機酸化物の比表面積は10m2
/g以上であるのが好ましい。比表面積が10m2 /g
未満であると、無機酸化物への銀成分(銀活性種)の分
散が悪くなり、良好な窒素酸化物の除去が行えない。好
ましい多孔質無機酸化物の比表面積は30m2 /g以上
とする。
The specific surface area of the porous inorganic oxide is 10 m 2
/ G or more is preferable. Specific surface area of 10 m 2 / g
If it is less than the above range, the dispersion of the silver component (silver active species) in the inorganic oxide becomes poor, and the nitrogen oxide cannot be removed well. The specific surface area of the porous inorganic oxide is preferably 30 m 2 / g or more.

【0015】本発明の除去材はペレット状、粉末状、ハ
ニカム状、フォーム状、板状等の形態で用いることがで
きる。本発明の除去材の好ましい形態は多孔質無機酸化
物に塩化銀を担持した触媒を、セラミック製又は金属製
ハニカム状、発泡状等の三次元構造体の表面にコートす
るか、上記三次元構造体に無機酸化物をコートしたあ
と、塩化銀を担持して調製する。セラミック材として耐
熱性の優れたコージェライト、ムライトなどが挙げられ
る。三次元構造体への無機酸化物のコートは公知のウォ
ッシュコート法などにより行なう。本発明の除去材のも
う一つの好ましい形態はペレット状の多孔質無機酸化物
に塩化銀を担持して用いる。
The removing material of the present invention can be used in the form of pellets, powder, honeycomb, foam, plate or the like. A preferred form of the removing material of the present invention is to coat the surface of a three-dimensional structure such as a ceramic or metal honeycomb-like or foam-like one with a catalyst in which silver chloride is supported on a porous inorganic oxide, or the above three-dimensional structure. It is prepared by coating the body with an inorganic oxide and then supporting silver chloride. Examples of the ceramic material include cordierite and mullite, which have excellent heat resistance. The inorganic oxide is coated on the three-dimensional structure by a known wash coating method or the like. Another preferred form of the removing material of the present invention is a pellet-like porous inorganic oxide loaded with silver chloride.

【0016】上記したγ−アルミナ等の無機酸化物に塩
化銀を担持する場合の担持量は、無機酸化物を100重
量%として、その0.2〜15重量%(銀元素換算値)
とする。塩化銀成分が0.2重量%(銀元素換算値)未
満では低温側での窒素酸化物の除去率が低下する。ま
た、15重量%(銀元素換算値)を超す量の銀を担持す
ると炭化水素自身の燃焼が起きやすく、窒素酸化物の除
去率はかえって低下する。好ましくは、銀の担持量を無
機酸化物100重量%に対して、5重量%を越えて15
重量%以下(銀元素換算値)とする。銀又は銀酸化物を
担持した除去材は、明るいところに置くと銀が還元され
て活性が低下するのに対して、塩化銀が担持された除去
材は光還元を受けにくく、明るいところでも活性が低下
しない。
The amount of silver chloride supported on the above-mentioned inorganic oxide such as γ-alumina is 0.2 to 15% by weight (in terms of silver element), with 100% by weight of the inorganic oxide.
And When the content of silver chloride is less than 0.2% by weight (converted to silver element), the removal rate of nitrogen oxides on the low temperature side decreases. Further, when the amount of silver that exceeds 15% by weight (converted to silver element) is carried, the hydrocarbon itself is easily burned, and the nitrogen oxide removal rate is rather lowered. Preferably, the supported amount of silver exceeds 15% by weight with respect to 100% by weight of the inorganic oxide.
Weight% or less (converted to silver element). The removal material loaded with silver or silver oxide reduces the activity when placed in a bright place and the activity decreases, whereas the removal material loaded with silver chloride is less susceptible to photoreduction and is active even in bright places. Does not decrease.

【0017】γ−アルミナ等の無機酸化物に銀成分を担
持する方法としては、公知の含浸法や、混練法等を用い
ることができる。担持後の除去材の調整は、50〜15
0℃程度で乾燥後、100〜600℃で段階的に昇温し
て焼成するのが好ましい。焼成は、空気中又は窒素流通
下、あるいは水素ガス流通下、もしくは真空排気しなが
ら行うのが好ましい。なお、窒素ガスまたは水素ガス流
通下で焼成した除去材は、最後に酸化処理を行うことが
好ましい。
As a method for supporting the silver component on the inorganic oxide such as γ-alumina, a known impregnation method, a kneading method or the like can be used. Adjustment of the removing material after loading is 50 to 15
After drying at about 0 ° C., it is preferable to raise the temperature stepwise at 100 to 600 ° C. and bake. The firing is preferably performed in air or under nitrogen flow, or under hydrogen gas flow, or while evacuating. It is preferable that the removal material fired under the flow of nitrogen gas or hydrogen gas is finally subjected to an oxidation treatment.

【0018】次に、本発明の方法について説明する。ま
ず、上述した除去材を排ガス導管の途中に設置する。
Next, the method of the present invention will be described. First, the above-mentioned removal material is installed in the middle of the exhaust gas conduit.

【0019】排ガス中には、残留炭化水素としてアセチ
レン、メタン、エタン、プロピレン等が含まれるが、排
ガス中のNOx を還元するのに十分な量の残留炭化水素が
含まれていない場合には、外部から炭化水素又は含酸素
有機化合物を排ガス中に導入する。炭化水素又は含酸素
有機化合物の導入位置は、除去材を設置した位置より上
流側である。
The exhaust gas contains acetylene, methane, ethane, propylene and the like as residual hydrocarbons, but when the residual hydrocarbons are not contained in an amount sufficient to reduce NOx in the exhaust gas, A hydrocarbon or an oxygen-containing organic compound is introduced into the exhaust gas from the outside. The introduction position of the hydrocarbon or the oxygen-containing organic compound is upstream of the position where the removing material is installed.

【0020】外部から導入する炭化水素としては、プロ
ピレン、アセチレン、プロパン等の標準状態でガス状の
炭化水素の他に、標準状態で液体状の炭化水素も用いる
ことができる。標準状態で液体状の炭化水素としては、
具体的には、軽油、セタン、ヘプタン、灯油等が挙げら
れる。含酸素有機化合物として、エタノール等のアルコ
ール類が好ましい。これらの添加物は、噴霧等の方法で
排ガス中に導入することができる。
As the hydrocarbon introduced from the outside, in addition to the gaseous hydrocarbon in the standard state such as propylene, acetylene, propane, etc., a hydrocarbon in the liquid state in the standard state can be used. As a liquid hydrocarbon in the standard state,
Specific examples include light oil, cetane, heptane, and kerosene. As the oxygen-containing organic compound, alcohols such as ethanol are preferable. These additives can be introduced into the exhaust gas by a method such as spraying.

【0021】外部から導入する炭化水素又は含酸素有機
化合物の量は、排ガス中の窒素酸化物の重量の5倍以下
とするのが好ましい。添加量が5倍を超えると、燃費の
悪化を招く。より好ましくは0.2〜4倍とする。
The amount of hydrocarbon or oxygen-containing organic compound introduced from the outside is preferably not more than 5 times the weight of nitrogen oxide in the exhaust gas. If the addition amount exceeds 5 times, the fuel efficiency is deteriorated. It is more preferably 0.2 to 4 times.

【0022】本発明では、炭化水素または含酸素有機化
合物を含む排ガスが上記した除去材と接触する時間を調
節し、添加物と窒素酸化物との反応を効率良く進行させ
る。実用的な立場で考えて、炭化水素又は含酸素有機化
合物を含む排ガスと除去材との接触時間は0.006g
・秒/ml以上とする。好ましい接触時間は0.007g
・秒/ml以上とする。
In the present invention, the time during which the exhaust gas containing the hydrocarbon or the oxygen-containing organic compound is in contact with the above-mentioned removing material is adjusted so that the reaction between the additive and the nitrogen oxides proceeds efficiently. From a practical standpoint, the contact time between the exhaust gas containing hydrocarbons or oxygen-containing organic compounds and the removal material is 0.006 g.
・ Seconds / ml or more. Preferred contact time is 0.007g
・ Seconds / ml or more.

【0023】また、本発明では、炭化水素又は含酸素有
機化合物と窒素酸化物とが反応する部位である除去材設
置部位における排ガスの温度を200〜600℃に保
つ。排ガスの温度が200℃未満であると窒素酸化物の
還元反応が進行せず、良好な窒素酸化物の除去を行うこ
とができない。一方、600℃を超す温度とすると炭化
水素又は含酸素有機化合物自身の燃焼が始まり、窒素酸
化物の還元除去が行えない。好ましい排ガス温度は30
0〜550℃である。
Further, in the present invention, the temperature of the exhaust gas at the site where the removing material is installed, which is the site where the hydrocarbon or the oxygen-containing organic compound reacts with the nitrogen oxide, is maintained at 200 to 600 ° C. If the temperature of the exhaust gas is less than 200 ° C., the reduction reaction of nitrogen oxides does not proceed, and good removal of nitrogen oxides cannot be performed. On the other hand, if the temperature exceeds 600 ° C., the combustion of the hydrocarbon or the oxygen-containing organic compound itself starts, and the nitrogen oxide cannot be reduced and removed. Preferred exhaust gas temperature is 30
It is 0-550 degreeC.

【0024】[0024]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のγ−アルミナ成形体(直径1.5mm 、長さ約6mm、
比表面積260m2 /g)10gを20分間硝酸銀水溶
液(水20mlに硝酸銀0.67gを溶かした溶液)に
浸漬したあと、空気中、80℃で2時間と、乾燥窒素気
流下、180℃で2時間乾燥し、硝酸銀を成形体に担持
した。次に、乾燥窒素気流下、室温まで冷却したあと、
上記γ−アルミナ成形体を塩化アンモニウム水溶液(水
20mlに塩化アンモニウム0.5gを溶かした溶液)
に12時間浸漬し、硝酸銀を塩化銀に変換した。そし
て、上記γ−アルミナ成形体を塩化アンモニウム溶液か
ら取り出し、空気中、80℃で2時間乾燥後、酸素10
%を含む窒素気流下、毎分2.5℃で550℃まで昇温
したあと、550℃で5時間焼成し、γ−アルミナ成形
体に対して2.1重量%(元素換算値)の銀を塩化銀の
形で担持した。
The present invention will be described in more detail by the following specific examples. Example 1 Commercially available γ-alumina molded body (diameter 1.5 mm, length about 6 mm,
After immersing 10 g of a specific surface area of 260 m 2 / g) in an aqueous solution of silver nitrate (a solution of 0.67 g of silver nitrate in 20 ml of water) for 20 minutes, 2 hours at 80 ° C. in air and 2 hours at 180 ° C. under a dry nitrogen stream. After drying for an hour, silver nitrate was supported on the molded body. Next, after cooling to room temperature under a stream of dry nitrogen,
An aqueous solution of ammonium chloride (a solution prepared by dissolving 0.5 g of ammonium chloride in 20 ml of water) was added to the γ-alumina molded body.
The silver nitrate was converted to silver chloride by immersing in silver chloride for 12 hours. Then, the γ-alumina molded body was taken out of the ammonium chloride solution, dried in air at 80 ° C. for 2 hours, and then oxygen 10
% Nitrogen at 2.5 ° C./min to 550 ° C., and then baked at 550 ° C. for 5 hours to obtain 2.1% by weight (elemental conversion value) of silver with respect to the γ-alumina compact. Was supported in the form of silver chloride.

【0025】実施例2 触媒化成(株)製のアルミナゾル(カタロイドAS−
3)200gに塩化銀粉末0.4gを懸濁させ、撹拌し
ながら、水浴上で水分を蒸発させた。半乾燥の状態で加
熱を止め、ペレット状に成形したあと、空気中、110
℃で2時間乾燥し、酸素10%を含む窒素気流下、20
0℃で2時間、300℃で2時間、400℃で2時間、
550℃で5時間焼成し、アルミナに対して2.1重量
%(元素換算値)の銀を塩化銀の形で担持した。焼成後
のペレット触媒の大きさは1〜2mmφ×2〜3mmで
あった。
Example 2 Alumina sol (Cataloid AS- manufactured by Catalyst Kasei Co., Ltd.)
3) 0.4 g of silver chloride powder was suspended in 200 g, and water was evaporated on a water bath while stirring. Stop heating in a semi-dried state and mold into pellets, then
Dry for 2 hours at ℃, under a nitrogen stream containing 10% oxygen, 20
2 hours at 0 ° C, 2 hours at 300 ° C, 2 hours at 400 ° C,
It was calcined at 550 ° C. for 5 hours, and 2.1% by weight (elemental conversion value) of silver was supported on alumina in the form of silver chloride. The size of the pellet catalyst after calcination was 1-2 mmφ × 2-3 mm.

【0026】実施例3、4 実施例1、2で作成した除去材を日光に1時間さらした
あと、反応管内に設置し、表1に示す組成のガス(一酸
化窒素、二酸化炭素、酸素、プロピレン、及び窒素から
なる乾燥成分の合計100容量%に、さらに水分10容
量%を添加したもの)を毎分2リットル(標準状態)の
流量で流して(接触時間0.3g・秒/ml、空間速度6
400hr-1)、反応管内の排ガス温度を300〜55
0℃の範囲の保ち、プロピレンと窒素酸化物とを反応さ
せた。
Examples 3 and 4 The removing materials prepared in Examples 1 and 2 were exposed to sunlight for 1 hour and then placed in a reaction tube, and the gas having the composition shown in Table 1 (nitrogen monoxide, carbon dioxide, oxygen, A total of 100% by volume of dry components consisting of propylene and nitrogen, to which 10% by volume of water was added, was flowed at a flow rate of 2 liters per minute (standard state) (contact time: 0.3 g · sec / ml, Space velocity 6
400 hr -1 ), the temperature of the exhaust gas in the reaction tube is 300 to 55
Propylene was reacted with nitrogen oxides while maintaining the range of 0 ° C.

【0027】反応管通過後のガスの窒素酸化物(一酸化
窒素、二酸化窒素の合計量)の濃度を化学発光式窒素酸
化物分析計により測定し、窒素酸化物の除去率を求め
た。結果を表2に示す。
The concentration of nitrogen oxides (total amount of nitric oxide and nitrogen dioxide) of the gas after passing through the reaction tube was measured by a chemiluminescence type nitrogen oxide analyzer to determine the removal rate of nitrogen oxides. The results are shown in Table 2.

【0028】 表1 成分 濃度 一酸化窒素 500 ppm 二酸化炭素 10 容量% 酸素 10 容量% プロピレン 500 ppm 窒素 残部 水分 上記した成分からなるガス量に対して10容量%Table 1 Component Concentration Nitric oxide 500 ppm Carbon dioxide 10% by volume Oxygen 10% by volume Propylene 500 ppm Nitrogen balance Moisture 10% by volume based on the amount of gas composed of the components

【0029】比較例1 実施例1で用いたγ−アルミナペレットと同一のものに
硝酸銀水溶液を用いて硝酸銀を2.0重量%(銀元素換
算)担持して、実施例1と同様の方法で調製したあと、
日光下に1時間さらし、担持されている銀を光還元した
ものを除去材として用い、他は実施例3と同様な条件で
窒素酸化物の除去試験を行った。結果を表2に示す。
Comparative Example 1 The same method as in Example 1 was carried out by carrying 2.0 wt% (in terms of silver element) of silver nitrate on the same γ-alumina pellets used in Example 1 using an aqueous solution of silver nitrate. After preparing
A test for removing nitrogen oxides was performed under the same conditions as in Example 3 except that one obtained by photoreducing the carried silver was used as a removing material after being exposed to sunlight for 1 hour. The results are shown in Table 2.

【0030】 表2 窒素酸化物の除去率(%) 温度(℃) 実施例3 実施例4 比較例1 300 0.0 0.0 0.0 350 5.8 5.0 2.0 400 27.5 25.8 10.4 450 63.3 60.5 43.2 500 60.5 57.7 45.0 550 27.6 22.9 10.5 Table 2 Nitrogen oxide removal rate (%) Temperature (° C.) Example 3 Example 4 Comparative Example 1 300 0.0 0.0 0.0 0.0 350 350 5.8 5.0 2.0 2.0 400 27. 5 25.8 10.4 450 63.3 60.5 43.2 500 60.5 57.7 45.0 550 27.6 22.9 10.5

【0031】表2からわかるように、塩化銀を用いた実
施例では、400〜550℃の排ガス温度で窒素酸化物
の良好な除去がみられた。一方、光還元を受けた銀触媒
の比較例1では、全温度範囲にわたって窒素酸化物除去
率の低下がみられた。
As can be seen from Table 2, in the examples using silver chloride, good removal of nitrogen oxides was observed at the exhaust gas temperature of 400 to 550 ° C. On the other hand, in Comparative Example 1 of the silver catalyst subjected to photoreduction, the nitrogen oxide removal rate was decreased over the entire temperature range.

【0032】[0032]

【発明の効果】以上詳述したように、本発明の方法によ
れば、過剰の酸素を含む排ガス中の窒素酸化物を効率良
く除去することができる。また、本発明の方法では、排
ガス中に水分が10%程度含まれている場合でも窒素酸
化物の除去を効率良く行うことができる。
As described in detail above, according to the method of the present invention, nitrogen oxides in exhaust gas containing excess oxygen can be efficiently removed. Further, according to the method of the present invention, nitrogen oxides can be efficiently removed even when the exhaust gas contains about 10% of water.

【0033】本発明の窒素酸化物除去方法は、各種燃焼
機、自動車等の排ガスに含まれる窒素酸化物の除去に広
く利用することができる。
The nitrogen oxide removing method of the present invention can be widely used for removing nitrogen oxides contained in exhaust gas from various combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 清英 埼玉県熊谷市末広四丁目14番1号 株式会 社リケン熊谷事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyohide Yoshida 4-1-1 Suehiro, Kumagaya-shi, Saitama Stock company Riken Kumagaya Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する除去材において、多孔質の無機酸化
物100重量%に塩化銀を銀元素に換算して0.2〜1
5重量%担持してなり、外部から前記排ガス中に添加さ
れた炭化水素又は含酸素有機化合物を還元剤として、2
00〜600℃で、前記排ガス中の窒素酸化物を還元す
ることを特徴とする窒素酸化物除去材。
1. A removal material for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount with respect to coexisting unburned components, wherein silver chloride is added to 100% by weight of a porous inorganic oxide. Is converted to elemental silver and 0.2 to 1
5% by weight is loaded, and the hydrocarbon or oxygen-containing organic compound externally added to the exhaust gas is used as a reducing agent.
A nitrogen oxide removing material, which reduces nitrogen oxides in the exhaust gas at a temperature of 00 to 600 ° C.
【請求項2】 請求項1に記載の窒素酸化物除去材にお
いて、前記多孔質の無機酸化物がアルミナ又はアルミナ
系複合酸化物であることを特徴とする窒素酸化物除去
材。
2. The nitrogen oxide removing material according to claim 1, wherein the porous inorganic oxide is alumina or an alumina-based composite oxide.
【請求項3】 請求項1又は2に記載の窒素酸化物除去
材において、前記除去材はさらにセラミック製又は金属
製三次元構造体を含有し、前記多孔質無機酸化物が前記
三次元構造体にコートされていることを特徴とする窒素
酸化物除去材。
3. The nitrogen oxide removing material according to claim 1 or 2, wherein the removing material further contains a ceramic or metal three-dimensional structure, and the porous inorganic oxide is the three-dimensional structure. Nitrogen oxide removing material characterized by being coated on.
【請求項4】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する方法において、請求項1〜3のいず
れかに記載の窒素酸化物除去材を排ガス導管の途中に設
置し、前記除去材の上流側で前記排ガス中に炭化水素又
は含酸素有機化合物を添加し、200〜600℃で前記
排ガスを前記除去材に接触させ、前記炭化水素又は含酸
素有機化合物と前記窒素酸化物とを反応させて前記窒素
酸化物を除去することを特徴とする窒素酸化物除去方
法。
4. A method for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in a larger amount than the theoretical reaction amount for coexisting unburned components, the nitrogen oxidation according to claim 1. Substance removal material is installed in the middle of the exhaust gas conduit, hydrocarbons or oxygen-containing organic compounds are added to the exhaust gas on the upstream side of the removal material, and the exhaust gas is contacted with the removal material at 200 to 600 ° C., A method for removing nitrogen oxide, which comprises reacting a hydrocarbon or an oxygen-containing organic compound with the nitrogen oxide to remove the nitrogen oxide.
JP36003592A 1992-12-28 1992-12-28 Exhaust gas purification method Expired - Lifetime JP3371127B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP36003592A JP3371127B2 (en) 1992-12-28 1992-12-28 Exhaust gas purification method
DE1993609245 DE69309245T2 (en) 1992-12-28 1993-12-24 Exhaust gas cleaner
EP19930310560 EP0605237B1 (en) 1992-12-28 1993-12-24 Exhaust gas cleaner
US08/434,918 US5714432A (en) 1992-12-28 1995-05-04 Exhaust gas cleaner comprising supported silver or silver oxide particles
US08/601,495 US5656249A (en) 1992-12-28 1996-02-14 Exhaust gas cleaner and method for removing nitrogen oxides
US08/805,234 US5772973A (en) 1992-12-28 1997-02-24 Exhaust gas cleaner and method for removing nitrogen oxides
US08/917,144 US5801117A (en) 1992-12-28 1997-08-25 Comprising supported silver sulfate or silver chloride or silver with sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36003592A JP3371127B2 (en) 1992-12-28 1992-12-28 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH06198130A true JPH06198130A (en) 1994-07-19
JP3371127B2 JP3371127B2 (en) 2003-01-27

Family

ID=18467568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36003592A Expired - Lifetime JP3371127B2 (en) 1992-12-28 1992-12-28 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3371127B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780002A (en) * 1994-11-04 1998-07-14 Jiro Hiraishi, Director-General Of Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
JP2006320893A (en) * 2005-04-18 2006-11-30 Tokyo Univ Of Agriculture & Technology Nitrogen oxide selective reduction catalyst
CN114100641A (en) * 2021-12-14 2022-03-01 宁波市海智材料产业创新研究院 AgCl/Al2O3Preparation method of catalyst, catalyst and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780002A (en) * 1994-11-04 1998-07-14 Jiro Hiraishi, Director-General Of Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
US5882607A (en) * 1994-11-04 1999-03-16 Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
JP2006320893A (en) * 2005-04-18 2006-11-30 Tokyo Univ Of Agriculture & Technology Nitrogen oxide selective reduction catalyst
CN114100641A (en) * 2021-12-14 2022-03-01 宁波市海智材料产业创新研究院 AgCl/Al2O3Preparation method of catalyst, catalyst and application

Also Published As

Publication number Publication date
JP3371127B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JP3440290B2 (en) Exhaust gas purification method
JP3371127B2 (en) Exhaust gas purification method
JPH06198131A (en) Material for removing nitrogen oxide and method for removing nitrogen oxide
JP3520311B2 (en) Nitrogen oxide removal method
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2631814B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
JPH06178937A (en) Catalyst for removing nitrogen oxides and method of removing the same
JPH06262078A (en) Exhaust gas purification material and method of exhaust gas purification
JPH06154607A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH0975739A (en) Waste gas purification material and method for purifying waste gas
JPH09248459A (en) Material and method for exhaust gas-purifying
JPH06238164A (en) Catalyst and method for removing nitrogen oxides
JPH07163878A (en) Nitrogen oxide removing catalyst and method
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH09262439A (en) Nitrogen oxide removing material and removing method of nitrogen oxide
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH10165816A (en) Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol
JP2516145B2 (en) Nitrogen oxide removal method
JP3509152B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0857263A (en) Exhaust gas purifying material and method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term