[go: up one dir, main page]

JPH09262439A - Nitrogen oxide removing material and removing method of nitrogen oxide - Google Patents

Nitrogen oxide removing material and removing method of nitrogen oxide

Info

Publication number
JPH09262439A
JPH09262439A JP9013342A JP1334297A JPH09262439A JP H09262439 A JPH09262439 A JP H09262439A JP 9013342 A JP9013342 A JP 9013342A JP 1334297 A JP1334297 A JP 1334297A JP H09262439 A JPH09262439 A JP H09262439A
Authority
JP
Japan
Prior art keywords
silver
catalyst
nitrogen oxide
oxide
removing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9013342A
Other languages
Japanese (ja)
Inventor
Katsuji Kouchi
勝次 小内
Naoko Aoyama
直子 青山
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP9013342A priority Critical patent/JPH09262439A/en
Publication of JPH09262439A publication Critical patent/JPH09262439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrogen oxide removing material capable of efficiently reducing and removing the nitrogen oxide from a combustion waste gas containing the nitrogen oxide and an oxygen more than theoretical reacting weight to an unburned combustibles content such as carbon monoxide, hydrogen and hydrocarbon and containing water content and to provide a removing method of the nitrogen oxide. SOLUTION: The material is abtd, by mixing the first catalyst constituted by depositing 0.2-15wt.% (in terms of metallic element) more than one kind element and/or compd. selected from a group consisting of silver and silver compd. on a porous inorg. oxide and zirconia or the second catalyst constituted by depositing <=5wt.% (in terms of metallic element) more than one kind element and/or compd. selected from the group consisting of silver and silver compd. on the zirconia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒素酸化物と過剰の
酸素を含む燃焼排ガスから、窒素酸化物を効果的に還元
除去することのできる窒素酸化物除去材及びそれを用い
た除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen oxide removing material capable of effectively reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a method for removing the same using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーター等から排出される各種の燃焼
排ガス中には、過剰の酸素とともに一酸化窒素、二酸化
窒素等の窒素酸化物が含まれている。ここで、「過剰の
酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive combustion exhaust gas emitted from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, and the like is excessive. It contains nitrogen oxides such as nitric oxide and nitrogen dioxide together with oxygen. Here, "containing excess oxygen" means that the exhaust gas contains more oxygen than the theoretical amount of oxygen necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons. I do. In the following, nitrogen oxide refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
As another method, there is a non-selective catalytic reduction method in which a nitrogen oxide is reduced by using a gas such as hydrogen, carbon monoxide, or a hydrocarbon as a reducing agent. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or more than a theoretical reaction amount with oxygen in exhaust gas, and there is a disadvantage that a large amount of the reducing agent is consumed. For this reason, the non-selective catalytic reduction method is practically effective only for exhaust gas having a low residual oxygen concentration burned near the stoichiometric air-fuel ratio, and is not practical because of poor versatility.

【0007】そこで、チタニア、アルミナなどの金属酸
化物と希土類酸化物とRu、Rh、Pd、銀、Ptの内
の少なくとも一種とからなる炭化水素による窒素酸化物
接触還元用触媒が提案された(特開平4-27431 号) 。し
かしながら、本発明者等の実験結果によると、この触媒
では高い空間速度における窒素酸化物除去率が低く、特
に排ガス温度が400℃以下の低温領域では窒素酸化物
の除去が低い。また、水分を含むような排ガスでは、窒
素酸化物の除去率が著しく低下する。
Therefore, a catalyst for catalytic reduction of nitrogen oxides by a hydrocarbon comprising a metal oxide such as titania or alumina, a rare earth oxide and at least one of Ru, Rh, Pd, silver and Pt has been proposed ( JP-A-4-27431). However, according to the experimental results of the present inventors, this catalyst has a low nitrogen oxide removal rate at a high space velocity, and particularly in a low temperature region where the exhaust gas temperature is 400 ° C. or lower, the nitrogen oxide removal is low. Further, in an exhaust gas containing water, the removal rate of nitrogen oxides is significantly reduced.

【0008】したがって、本発明の目的は、固定燃焼装
置及び酸素過剰条件で燃焼するガソリンエンジン、ディ
ーゼルエンジン等からの燃焼排ガスのように、窒素酸化
物や、一酸化炭素、水素、炭化水素等の未燃焼分に対す
る理論反応量以上の酸素を含有し、水分を含有する燃焼
排ガスから、効率良く窒素酸化物を還元除去することが
できる窒素酸化物除去材及び窒素酸化物除去方法を提供
することである。
Accordingly, it is an object of the present invention to provide a method for producing nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons, and the like, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine, or the like, which burns under oxygen excess conditions. By providing a nitrogen oxide removing material and a nitrogen oxide removing method capable of efficiently reducing and removing nitrogen oxides from flue gas containing moisture, which contains oxygen in excess of the theoretical reaction amount with respect to unburned components. is there.

【0009】[0009]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、アルミナに銀を担持した触媒とジ
ルコニア又はジルコニアに銀を担持した触媒とを混合し
てなる除去材を用い、排ガス中に炭化水素を添加し、上
記の除去材に排ガスを接触させれば、水分を10%程度
含有する排ガスでも、広い温度領域で窒素酸化物を効果
的に除去することができることを発見し、本発明を完成
した。
Means for Solving the Problems In view of the above-mentioned problems, as a result of intensive studies, the present inventor has found that a removing material obtained by mixing a catalyst carrying silver on alumina and zirconia or a catalyst carrying silver on zirconia is used. Discovered that nitrogen oxides can be effectively removed over a wide temperature range by adding hydrocarbons to the exhaust gas and bringing the exhaust gas into contact with the above-mentioned removal material, even in an exhaust gas containing about 10% of water. Thus, the present invention has been completed.

【0010】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を還元除去する本発明の窒素酸化物除
去材は、多孔質の無機酸化物に銀及び銀化合物からなる
群より選ばれる一種以上の元素及び/又は化合物0.2
〜15重量%(金属元素換算値)を担持してなる第一の
触媒と、ジルコニア又はジルコニアに銀及び銀化合物か
らなる群より選ばれる一種以上の元素及び/又は化合物
5重量%以下(金属元素換算値)を担持してなる第二の
触媒とを混合してなることを特徴とする。
That is, the nitrogen oxide removing material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount for coexisting unburned components is a porous inorganic oxide. One or more elements and / or compounds 0.2 selected from the group consisting of silver and silver compounds
And at least one element selected from the group consisting of zirconia or silver and a silver compound on zirconia and / or a compound of 5% by weight or less (metal element). (Converted value) is mixed with a second catalyst carrying the same.

【0011】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を還元除去する本発明の窒素酸化物除去方
法は、上記の窒素酸化物除去材を用い、前記窒素酸化物
除去材を排ガス導管の途中に設置し、前記除去材の上流
側でガス状炭化水素と、灯油、軽油、ガソリンを含む液
状炭化水素とからなる群より選ばれた一種以上を添加し
た排ガスを、200〜600℃において前記除去材に接
触させ、もって前記排ガス中の炭化水素との反応により
前記窒素酸化物を除去することを特徴とする。
Further, the method for removing nitrogen oxides of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount of coexisting unburned components, Using a removing material, the nitrogen oxide removing material is installed in the middle of an exhaust gas conduit, and is selected from the group consisting of gaseous hydrocarbons, kerosene, light oil, and liquid hydrocarbons including gasoline on the upstream side of the removing material. An exhaust gas to which at least one of the above-mentioned additives has been added is brought into contact with the removing material at 200 to 600 ° C., whereby the nitrogen oxides are removed by a reaction with hydrocarbons in the exhaust gas.

【0012】[0012]

【発明の実施の態様】以下、本発明を詳細に説明する。 [1]窒素酸化物除去材 本発明の窒素酸化物除去材は、後述の第一の触媒と第二
の触媒とを混合した混合触媒からなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. [1] Nitrogen oxide removing material The nitrogen oxide removing material of the present invention comprises a mixed catalyst obtained by mixing a first catalyst and a second catalyst described below.

【0013】本発明では、上記除去材を排ガス導管中に
設置し、除去材の設置位置より上流側で炭化水素を添加
した排ガスをこの除去材に接触させて、排ガス中の窒素
酸化物を還元除去する。
[0013] In the present invention, the above-mentioned removal material is installed in an exhaust gas conduit, and the exhaust gas to which hydrocarbons are added upstream of the installation position of the removal material is brought into contact with the removal material to reduce nitrogen oxides in the exhaust gas. Remove.

【0014】本発明の窒素酸化物除去材の第一の好まし
い形態は、上記混合触媒を除去材基体にコートしてなる
除去材である。除去材の基体を形成するセラミックス材
料としては、アルミナ、ジルコニア、チタニア−ジルコ
ニア等の多孔質で表面積の大きい耐熱性のものが挙げら
れる。高耐熱性が要求される場合、コージェライト、ム
ライト、アルミナ及びその複合物等を用いるのが好まし
い。また、窒素酸化物除去材の基体に公知の金属材料を
用いることもできる。
A first preferred form of the nitrogen oxide removing material of the present invention is a removing material obtained by coating the above-mentioned mixed catalyst on a removing material substrate. Examples of the ceramic material forming the substrate of the removing material include heat-resistant porous materials having a large surface area such as alumina, zirconia, and titania-zirconia. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and a composite thereof. Further, a known metal material can be used for the substrate of the nitrogen oxide removing material.

【0015】窒素酸化物除去材の基体の形状及び大きさ
は、目的に応じて種々変更できる。またその構造として
は、ハニカム構造型、フォーム型、繊維状耐火物からな
る三次元網目構造型、あるいは顆粒状、ペレット状等が
挙げられる。ウォッシュコート法、ゾル−ゲル法、粉末
法等を用いて上記基体に混合触媒をコートした後、焼結
することにより窒素酸化物除去材を製造することができ
る。
The shape and size of the substrate of the nitrogen oxide removing material can be variously changed depending on the purpose. Examples of the structure include a honeycomb structure type, a foam type, a three-dimensional network structure type formed of a fibrous refractory, a granular shape, a pellet shape, and the like. The nitrogen oxide-removing material can be manufactured by coating the above-mentioned substrate with the mixed catalyst using a wash coat method, a sol-gel method, a powder method or the like, and then sintering.

【0016】本発明の窒素酸化物除去材の第二の好まし
い形態は、上記混合触媒をハニカム構造型、フォーム
型、板状、ペレット状又は顆粒状に成形したものを焼結
した後、所望形状のケーシングに充填してなる除去材で
ある。
In a second preferred embodiment of the nitrogen oxide removing material of the present invention, the mixed catalyst is formed into a honeycomb structure, a foam, a plate, a pellet or a granule, and then sintered to a desired shape. It is a removing material that is filled in the casing.

【0017】本発明の除去材には以下の触媒が形成され
ている。 (1)第一の触媒 第一の触媒は、多孔質無機酸化物に銀及び銀化合物から
なる群より選ばれる一種以上の元素及び/又は化合物を
担持してなり、広い温度領域での窒素酸化物除去に作用
する。多孔質の無機酸化物としては、アルミナ単独、又
はチタニア、シリカ、ジルコニア、酸化亜鉛、酸化錫、
酸化マグネシウム、ゼオライトのいずれかとアルミナと
の複合又は混合酸化物を用いることができる。アルミナ
含有複合又は混合酸化物を用いる場合、アルミナの含有
率を50重量%以上とするのが好ましい。アルミナ又は
アルミナの複合又は混合酸化物を用いることにより、触
媒の耐熱性及び耐久性が向上する。なお、本発明でいう
酸化錫は各種酸化状態の錫の酸化物を含み、例えば酸化
第一錫、酸化第二錫等が挙げられる。
The following catalyst is formed on the removing material of the present invention. (1) First catalyst The first catalyst comprises a porous inorganic oxide carrying one or more elements and / or compounds selected from the group consisting of silver and silver compounds, and performs nitrogen oxidation in a wide temperature range. Acts on object removal. As the porous inorganic oxide, alumina alone, or titania, silica, zirconia, zinc oxide, tin oxide,
A composite or mixed oxide of either magnesium oxide or zeolite and alumina can be used. When an alumina-containing composite or mixed oxide is used, the alumina content is preferably 50% by weight or more. The use of alumina or a composite or mixed oxide of alumina improves the heat resistance and durability of the catalyst. The tin oxide referred to in the present invention includes tin oxide in various oxidation states, such as stannous oxide and stannic oxide.

【0018】第一の触媒で用いるアルミナ等の多孔質無
機酸化物の粒径が0.1mm以下であるのが好ましい。
粒径が0.1mmを越えると、触媒と排ガスの接触面積
が低くなり、触媒活性種の効果が十分に発揮できない。
第一の触媒で用いるアルミナ等の多孔質の無機酸化物の
比表面積は10m2 /g以上であるのが好ましい。比表
面積が10m2 /g未満であると、銀成分の分散が低下
し、良好な窒素酸化物の除去が行えない。より好ましい
多孔質無機酸化物の比表面積は30m2 /g以上であ
る。
The particle size of the porous inorganic oxide such as alumina used for the first catalyst is preferably 0.1 mm or less.
When the particle size exceeds 0.1 mm, the contact area between the catalyst and the exhaust gas is reduced, and the effect of the catalytically active species cannot be sufficiently exhibited.
The specific surface area of the porous inorganic oxide such as alumina used for the first catalyst is preferably 10 m 2 / g or more. If the specific surface area is less than 10 m 2 / g, the dispersion of the silver component is reduced, and good removal of nitrogen oxides cannot be performed. More preferred specific surface area of the porous inorganic oxide is 30 m 2 / g or more.

【0019】銀化合物は銀の酸化物、ハロゲン化銀、硫
酸銀及び燐酸銀等からなる群より選ばれた少なくとも一
種であり、好ましくは銀の酸化物、塩化銀及び硫酸銀の
いずれか一種以上であり、更に好ましくは銀の酸化物及
び/又は塩化銀である。銀成分の担持量は、多孔質無機
酸化物100重量%に対して0.2〜15重量%(銀元
素換算値)とする。0.2重量%未満では窒素酸化物の
除去率が低下する。また、15重量%を超す量の銀成分
を担持すると炭化水素が起きやすく、窒素酸化物の除去
率はかえって低下する。好ましい銀成分の担持量は0.
5〜12重量%である。
The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate and silver phosphate, and preferably at least one of silver oxide, silver chloride and silver sulfate. And more preferably silver oxide and / or silver chloride. The supported amount of the silver component is 0.2 to 15% by weight (in terms of silver element) based on 100% by weight of the porous inorganic oxide. If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. When the silver component is carried in an amount exceeding 15% by weight, hydrocarbons are easily generated, and the nitrogen oxide removal rate is rather lowered. The preferred amount of the silver component is 0.1.
5 to 12% by weight.

【0020】アルミナ等の無機酸化物に銀を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸
塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質
無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機
酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸ア
ンモニウムの水溶液に再び浸漬する。沈澱法でハロゲン
化銀を調製するには硝酸銀とハロゲン化アンモニウムと
を反応させて、ハロゲン化銀として多孔質無機酸化物上
に沈澱させる。これを50〜150℃、特に70℃程度
で乾燥後、100〜600℃で段階的に昇温して焼成す
るのが好ましい。焼成は、空気中、酸素を含む窒素気流
下や水素ガス気流下で行うのが好ましい。水素ガス気流
下で行う場合には、最後に300〜650℃で酸化処理
するのが好ましい。アルミナ、アルミナ系混合又は複合
酸化物への銀の担持では、ベーマイト等のアルミナ水和
物を出発物質として利用すると効果的である。
As a method for supporting silver on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate, or the like, or an aqueous ammonia solution. Alternatively, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. To prepare silver halide by the precipitation method, silver nitrate and ammonium halide are reacted to precipitate silver halide on the porous inorganic oxide. After drying at 50 to 150 ° C., particularly at about 70 ° C., it is preferable to raise the temperature stepwise at 100 to 600 ° C. for firing. The calcination is preferably performed in air, under a stream of nitrogen containing oxygen or under a stream of hydrogen gas. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last. In carrying silver on alumina, an alumina-based mixed or composite oxide, it is effective to use alumina hydrate such as boehmite as a starting material.

【0021】(2)第二の触媒 第二の触媒は、ジルコニア単独又はジルコニアに銀及び
銀化合物からなる群より選ばれる一種以上の元素及び/
又は化合物を担持してなる。第一の触媒と同様に、ジル
コニアの粒径が0.1mm以下であるのが好ましく、比
表面積は10m2 /g以上であることが好ましい。
(2) Second Catalyst The second catalyst is composed of zirconia alone or one or more elements selected from the group consisting of silver and silver compounds and / or zirconia.
Alternatively, a compound is supported. As with the first catalyst, the particle size of zirconia is preferably 0.1 mm or less, and the specific surface area is preferably 10 m 2 / g or more.

【0022】銀成分を担持する場合、銀化合物は銀の酸
化物、ハロゲン化銀、硫酸銀及び燐酸銀等からなる群よ
り選ばれた少なくとも一種であり、好ましくは銀の酸化
物、塩化銀及び硫酸銀のいずれか一種以上であり、更に
好ましくは銀の酸化物及び/又は塩化銀である。銀成分
の担持量は、ジルコニア100重量%に対して5重量%
以下(銀元素換算値)とする。5重量%を超す量の銀成
分を担持すると炭化水素自身の燃焼が起きやすく、窒素
酸化物の除去率はかえって低下する。好ましい銀成分の
担持量は3重量%以下である。
When a silver component is supported, the silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, silver phosphate, and the like, preferably silver oxide, silver chloride and silver chloride. It is at least one of silver sulfates, and more preferably silver oxide and / or silver chloride. The loading amount of the silver component is 5% by weight with respect to 100% by weight of zirconia.
The following (silver element conversion value) is used. If the silver component is supported in an amount exceeding 5% by weight, combustion of the hydrocarbon itself tends to occur, and the nitrogen oxide removal rate is rather lowered. The preferred amount of the silver component is 3% by weight or less.

【0023】ジルコニアに銀成分を担持する方法は、前
記(1)第一の触媒で記載した方法と同じである。
The method of supporting the silver component on zirconia is the same as the method described in the above (1) First catalyst.

【0024】本発明では、第一の触媒と第二の触媒とを
混合した混合触媒を用いる。第一の触媒と第二の触媒と
の重量比(多孔質無機酸化物と触媒活性種との合計重量
の比)は、1:1〜100:1とするのが好ましい。よ
り好ましい第一触媒と第二の触媒との重量比は10:9
〜80:1である。
In the present invention, a mixed catalyst obtained by mixing the first catalyst and the second catalyst is used. The weight ratio of the first catalyst to the second catalyst (the ratio of the total weight of the porous inorganic oxide and the catalytically active species) is preferably 1: 1 to 100: 1. More preferably, the weight ratio of the first catalyst to the second catalyst is 10: 9.
8080: 1.

【0025】なお、除去材の形態を上述した第一の好ま
しい形態とする場合、除去材基体上に設ける混合触媒の
厚さは、一般に、基体材と、この触媒との熱膨張特性の
違いから制限される場合が多い。除去材基体上に設ける
触媒の厚さを300μm以下とするのがよい。このよう
な厚さとすれば、使用中に熱衝撃等で除去材が破損する
ことを防ぐことができる。除去材基体の表面に混合触媒
を形成する方法は公知のウォッシュコート法等によって
行われる。
In the case where the form of the removing material is the first preferred embodiment described above, the thickness of the mixed catalyst provided on the removing material base is generally determined by the difference in thermal expansion characteristics between the base material and this catalyst. Often restricted. It is preferable that the thickness of the catalyst provided on the removing material substrate is 300 μm or less. With such a thickness, it is possible to prevent the removal material from being damaged by a thermal shock or the like during use. The method of forming the mixed catalyst on the surface of the removing material substrate is performed by a known wash coat method or the like.

【0026】また、除去材基体の表面上に設ける混合触
媒の量は、除去材基体の20〜300g/リットルとす
るのが好ましい。触媒の量が20g/リットル未満では
良好なNOx の除去が行えない。一方、触媒の量が300
g/リットルを超えると除去特性はそれほど上がらず、
圧力損失が大きくなる。より好ましくは、除去材基体の
表面上に設ける混合触媒を除去材基体の50〜200g
/リットルとする。
The amount of the mixed catalyst provided on the surface of the substrate for removing material is preferably 20 to 300 g / liter of the substrate for removing material. If the amount of the catalyst is less than 20 g / liter, good NOx removal cannot be performed. On the other hand, when the amount of the catalyst is 300
When the amount exceeds g / liter, the removal characteristics do not increase so much.
Pressure loss increases. More preferably, the mixed catalyst provided on the surface of the removing material substrate is 50 to 200 g of the removing material substrate.
/ Liter.

【0027】上述した構成の除去材を用いれば、150
〜600℃の広い温度領域において、水分10%程度を
含む排ガスでも、良好な窒素酸化物の除去を行うことが
できる。
If the removing material having the above-described structure is used, 150
In a wide temperature range of up to 600 ° C., good removal of nitrogen oxides can be performed even with exhaust gas containing about 10% of water.

【0028】[2]窒素酸化物除去方法 次に、本発明の方法について説明する。まず、上記第一
の触媒と第二の触媒との混合触媒からなる窒素酸化物除
去材を排ガス導管の途中に設置する。
[2] Method for Removing Nitrogen Oxide Next, the method of the present invention will be described. First, a nitrogen oxide removing material comprising a mixed catalyst of the first catalyst and the second catalyst is provided in the middle of an exhaust gas conduit.

【0029】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれるが、一般に排ガ
ス中のNOx を還元するのに十分な量ではないので、外部
から炭化水素を還元剤として排ガス中に導入する。還元
剤の導入位置は、除去材を設置した位置より上流側であ
る。
The exhaust gas contains ethylene, propylene and the like to some extent as residual hydrocarbons. However, the amount is generally not enough to reduce NOx in the exhaust gas. To be introduced. The introduction position of the reducing agent is on the upstream side of the position where the removing material is installed.

【0030】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカン又はア
ルケンの場合では炭素数2以上が好ましい。標準状態で
液体状の炭化水素としては、具体的に、軽油、セタン、
ヘプタン、灯油、ガソリン等の炭化水素が挙げられる。
その中でも、沸点50〜350℃の炭化水素が特に好ま
しい。
As the hydrocarbons introduced from the outside, gaseous or liquid alkanes, alkenes and / or alkynes can be used under standard conditions. In particular, in the case of an alkane or alkene, it preferably has 2 or more carbon atoms. Specific examples of hydrocarbons that are liquid in the standard state include gas oil, cetane,
Examples include hydrocarbons such as heptane, kerosene, gasoline and the like.
Among them, hydrocarbons having a boiling point of 50 to 350 ° C are particularly preferable.

【0031】外部から導入する炭化水素の量は、重量比
(添加する還元剤の重量/排ガス中の窒素酸化物の重
量)が0.1〜5となるようにするのが好ましい。この
重量比が0.1未満であると、窒素酸化物の除去率が大
きくならない。一方、5を超えると、燃費悪化につなが
る。
The amount of hydrocarbons introduced from the outside is preferably such that the weight ratio (weight of added reducing agent / weight of nitrogen oxides in the exhaust gas) is 0.1 to 5. If the weight ratio is less than 0.1, the removal rate of nitrogen oxides does not increase. On the other hand, if it exceeds 5, fuel efficiency will be degraded.

【0032】本発明では、炭化水素による窒素酸化物の
還元除去を効率的に進行させるために、第一の触媒と第
二の触媒との混合触媒の空間速度は 300,000h-1以下、
好ましくは 200,000h-1以下とする。
In the present invention, the space velocity of the mixed catalyst of the first catalyst and the second catalyst is 300,000 h -1 or less in order to efficiently promote the reduction and removal of nitrogen oxides by hydrocarbons.
Preferably, it is 200,000h -1 or less.

【0033】また、本発明では、炭化水素と窒素酸化物
とが反応する部位である除去材設置部位における排ガス
の温度を200〜600℃に保つ。排ガスの温度が20
0℃未満であると還元剤と窒素酸化物との反応が進行せ
ず、良好な窒素酸化物の除去を行うことができない。一
方、600℃を超す温度とすると炭化水素自身の燃焼が
始まり、窒素酸化物の還元除去が行えない。好ましい排
ガス温度は250〜550℃であり、より好ましくは3
00〜550℃である。
Further, in the present invention, the temperature of the exhaust gas is maintained at 200 to 600 ° C. at the removal material installation site where the hydrocarbon reacts with the nitrogen oxide. Exhaust gas temperature is 20
When the temperature is lower than 0 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and good removal of the nitrogen oxide cannot be performed. On the other hand, if the temperature exceeds 600 ° C., combustion of the hydrocarbon itself starts, and reduction and removal of nitrogen oxides cannot be performed. The preferred exhaust gas temperature is from 250 to 550 ° C, more preferably from 3 to 5 ° C.
00-550 ° C.

【0034】[0034]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のγ−アルミナ粉末(比表面積200m2 /g)に
硝酸銀水溶液を用いて3.0重量%(金属元素換算値)
の銀を担持し、乾燥後、空気中で段階的に600℃まで
焼成して、第一の触媒を調製した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A commercially available γ-alumina powder (specific surface area: 200 m 2 / g) using an aqueous solution of silver nitrate was 3.0% by weight (in terms of a metal element).
After drying, the mixture was dried and calcined in air stepwise to 600 ° C. to prepare a first catalyst.

【0035】第一触媒と市販のジルコニア(住友大阪セ
メント(株)製、比表面積20m2/g、第二の触媒)
とを40:1の重量比で混合して、バインダー(アルミ
ナゾルバインダー)を加えて混練し、乾燥させた後空気
中で600℃まで段階的に焼成した後、粉砕し、平均粒
径3mmのペレットに成形し、窒素酸化物除去材を調製
した。
First catalyst and commercially available zirconia (manufactured by Sumitomo Osaka Cement Co., Ltd., specific surface area 20 m 2 / g, second catalyst)
Are mixed in a weight ratio of 40: 1, a binder (alumina sol binder) is added and kneaded, dried and then fired in air in a stepwise manner up to 600 ° C., pulverized, and pellets having an average particle diameter of 3 mm. And a material for removing nitrogen oxides was prepared.

【0036】反応管内に上記窒素酸化物除去材1.5g
をセットし、表1に示す組成のガス(一酸化窒素、酸
素、プロピレン、窒素及び水分)を毎分1.8リットル
(標準状態)の流量で流して(除去材の接触時間は0.
05g・sec/mlであり、見かけ空間速度は約3
0,000h-1である。)、反応管内の排ガス温度を3
00〜600℃の範囲に保ち、プロピレンと窒素酸化物
とを反応させた。
1.5 g of the above-mentioned nitrogen oxide removing material is placed in a reaction tube.
And a gas having the composition shown in Table 1 (nitrogen monoxide, oxygen, propylene, nitrogen, and moisture) was flowed at a flow rate of 1.8 liters per minute (standard condition) (the contact time of the removing material was 0.1 mm).
05g · sec / ml and apparent space velocity is about 3
It is 0000h- 1 . ), The temperature of the exhaust gas in the reaction tube is 3
While maintaining the temperature in the range of 00 to 600 ° C, propylene was reacted with nitrogen oxide.

【0037】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表3に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured with a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 3 shows the results.

【0038】 表1 成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% プロピレン 1714 ppm (窒素酸化物の質量の3倍) 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 1 Component concentration Nitric oxide 800 ppm Oxygen 10% by volume Propylene 1714 ppm (3 times the mass of nitrogen oxide) Nitrogen Residual moisture 10% by volume (based on the total volume of the above components)

【0039】実施例2〜4 実施例1と同じ方法でそれぞれ市販のジルコニアに銀を
0.5重量%(実施例2)、1重量%(実施例3)、3
重量%(実施例4)(共に金属元素換算値)を担持し
て、第二の触媒を作製した。実施例1の第一の触媒と上
記各第二の触媒を40:1の重量比で混合して、実施例
1と同じ方法でそれぞれ除去材を作製した。
Examples 2 to 4 In the same manner as in Example 1, 0.5% by weight (Example 2), 1% by weight (Example 3) and 3% by weight of silver were added to commercially available zirconia.
A second catalyst was prepared by supporting the weight% (Example 4) (both in terms of metal element). The first catalyst of Example 1 and each of the second catalysts were mixed at a weight ratio of 40: 1, and the respective removal materials were prepared in the same manner as in Example 1.

【0040】反応管内に実施例2〜4の除去材をそれぞ
れセットした。実施例1と同様の反応条件(除去材の接
触時間は約0.05g・sec/mlであり、見かけ空
間速度は約30,000h-1である。)で、表1に示す
組成のガスを用いて評価を行った。結果を表3に示す。
The removing materials of Examples 2 to 4 were set in the reaction tubes. Under the same reaction conditions as in Example 1 (the contact time of the removing material is about 0.05 g · sec / ml, and the apparent space velocity is about 30,000 h −1 ), the gas having the composition shown in Table 1 was used. The evaluation was carried out. Table 3 shows the results.

【0041】実施例5 実施例1と同じ方法で、硝酸銀水溶液を用いて粉末状γ
−アルミナ・シリカ(シリカ含有率3重量%、比表面積
350m2 /g)に3重量%(金属元素換算値)の銀を
担持して第一の触媒を作製した。次に同じ方法にジルコ
ニア(住友大阪セメント(株)製、比表面積20m2
g)に1重量%(金属元素換算値)の銀を担持し、第二
の触媒を作製した。
Example 5 In the same manner as in Example 1, powdery γ was prepared using an aqueous solution of silver nitrate.
- Alumina Silica (silica content of 3% by weight, a specific surface area of 350 meters 2 / g) carrying the silver to 3 wt% (in terms of metal element value) to produce a first catalyst. Next, zirconia (Sumitomo Osaka Cement Co., Ltd., specific surface area 20 m 2 /
g) was loaded with 1% by weight (in terms of metal element) of silver to prepare a second catalyst.

【0042】第一の触媒と第二の触媒とを10:1の重
量比で混合した。混合触媒1gをスラリー化した後、市
販のコージェライト製ハニカム状成形体(直径30m
m、長さ12.6mm、400セル/インチ2 )にコー
トし、乾燥後600℃まで段階的に焼成し、窒素酸化物
除去材(混合触媒をコートした除去材)を調製した。
The first catalyst and the second catalyst were mixed at a weight ratio of 10: 1. After slurrying 1 g of the mixed catalyst, a commercially available cordierite honeycomb-shaped formed body (30 m in diameter)
m, length 12.6 mm, 400 cells / inch 2 ), dried and baked stepwise to 600 ° C to prepare a nitrogen oxide removing material (a removing material coated with a mixed catalyst).

【0043】反応管内に窒素酸化物除去材をセットし
た。実施例1と同様の反応条件(流速4.4リットル/
分、除去材の見かけ空間速度は約30,000h-1であ
る)で、表1に示す組成のガスを用いて評価を行った。
結果を表3に示す。
A nitrogen oxide removing material was set in the reaction tube. The same reaction conditions as in Example 1 (flow rate 4.4 liter /
And the apparent space velocity of the removing material was about 30,000 h -1 ), and the evaluation was performed using a gas having a composition shown in Table 1.
Table 3 shows the results.

【0044】実施例6 実施例5の窒素酸化物除去材を反応管内にセットし、実
施例5と同様の反応条件(流速4.4リットル/分、除
去材の見かけ空間速度は約30,000h-1である)
で、表2に示す組成のガスを用いて評価を行った。結果
を表3に示す。
Example 6 The nitrogen oxide removing material of Example 5 was set in a reaction tube, and the same reaction conditions as in Example 5 (flow rate 4.4 liter / min, apparent space velocity of the removing material was about 30,000 h). -1 )
The evaluation was performed using a gas having a composition shown in Table 2. Table 3 shows the results.

【0045】 表2 成分 濃度 一酸化窒素 800 ppm 酸素 10容量% 軽油 窒素酸化物の質量の3倍 窒素 残部 水分 10容量%(上記成分の総体積に対して)Table 2 Component concentration Nitric oxide 800 ppm Oxygen 10% by volume Light oil 3 times the mass of nitrogen oxides Nitrogen Residual water 10% by volume (based on the total volume of the above components)

【0046】実施例7 実施例1と同じ方法で、硝酸銀水溶液を用いて粉末状酸
化第二錫(比表面積71m2 /g)に3重量%(金属元
素換算値)の銀を担持して第一の触媒を作製した。次に
同じ方法にジルコニア(住友大阪セメント(株)製、比
表面積20m2/g)に1重量%(金属元素換算値)の
銀を担持し、第二の触媒を作製した。
Example 7 In the same manner as in Example 1, 3% by weight (in terms of metal element) of silver was supported on powdered stannic oxide (specific surface area: 71 m 2 / g) using an aqueous silver nitrate solution. One catalyst was made. Next, 1% by weight (in terms of metal element) of silver was supported on zirconia (manufactured by Sumitomo Osaka Cement Co., Ltd., specific surface area: 20 m 2 / g) by the same method to prepare a second catalyst.

【0047】第一の触媒と第二の触媒とを10:1の重
量比で混合した。混合触媒1gをスラリー化した後、市
販のコージェライト製ハニカム状成形体(直径30m
m、長さ12.6mm、400セル/インチ2 )にコー
トし、乾燥後600℃まで段階的に焼成し、窒素酸化物
除去材(混合触媒をコートした除去材)を調製した。
The first catalyst and the second catalyst were mixed at a weight ratio of 10: 1. After slurrying 1 g of the mixed catalyst, a commercially available cordierite honeycomb-shaped formed body (30 m in diameter)
m, length 12.6 mm, 400 cells / inch 2 ), dried and baked stepwise to 600 ° C to prepare a nitrogen oxide removing material (a removing material coated with a mixed catalyst).

【0048】反応管内に窒素酸化物除去材をセットし
た。実施例1と同様の反応条件(流速4.4リットル/
分、除去材の見かけ空間速度は約30,000h-1であ
る)で、表1に示す組成のガスを用いて評価を行った。
結果を表3に示す。
A nitrogen oxide removing material was set in the reaction tube. The same reaction conditions as in Example 1 (flow rate 4.4 liter /
And the apparent space velocity of the removing material was about 30,000 h -1 ), and the evaluation was performed using a gas having a composition shown in Table 1.
Table 3 shows the results.

【0049】比較例1 実施例1の第一の触媒にバインダー(アルミナゾルバイ
ンダー)を加えて混合した後600℃まで焼成して、銀
系触媒を調製した。この銀系触媒を平均粒径3mmのペ
レットに成形し、銀系窒素酸化物除去材を調製した。
Comparative Example 1 A binder (alumina sol binder) was added to the first catalyst of Example 1 and mixed, followed by firing to 600 ° C. to prepare a silver-based catalyst. This silver-based catalyst was formed into a pellet having an average particle diameter of 3 mm to prepare a silver-based nitrogen oxide removing material.

【0050】銀系窒素酸化物除去材1.5gを排ガスの
導管にセットし、実施例1と同様の反応条件(見かけ空
間速度は約30,000h-1である)で、表1に示す組
成のガスを用いて評価を行った。結果を表3に示す。
1.5 g of the silver-based nitrogen oxide-removing material was set in the exhaust gas conduit, and under the same reaction conditions as in Example 1 (apparent space velocity was about 30,000 h -1 ), the composition shown in Table 1 was obtained. The evaluation was performed using the following gases. Table 3 shows the results.

【0051】比較例2 比較例1の銀系除去材1.5gを排ガスの導管にセット
し、実施例6と同様の反応条件(見かけ空間速度は約3
0,000h-1である)で、表2に示す組成のガスを用
いて評価を行った。結果を表3に示す。
COMPARATIVE EXAMPLE 2 1.5 g of the silver-based removing material of Comparative Example 1 was set in an exhaust gas conduit, and reacted under the same reaction conditions as in Example 6 (apparent space velocity was about 3).
(Equivalent to 3,000 h −1 )), and evaluation was performed using a gas having a composition shown in Table 2. Table 3 shows the results.

【0052】 表3 排ガス温度(℃) 例No. 300 350 400 450 500 550 600 実施例1 5 28 68 92 92 60 18 実施例2 6 32 76 90 88 60 18 実施例3 6 33 78 90 89 58 16 実施例4 6 33 80 90 88 56 15 実施例5 6 22 68 85 78 52 15 実施例6 4 18 72 82 65 34 16 実施例7 5 22 69 86 78 50 15 比較例1 2 10 50 90 90 78 18 比較例2 1 7 45 70 54 26 16Table 3 Exhaust gas temperature (° C.) Example No. 300 350 400 450 500 550 600 Example 1 5 28 68 92 92 60 18 Example 2 6 32 76 76 88 88 60 18 Example 3 6 33 78 90 90 58 58 16 Example 4 6 33 80 90 88 56 15 Example 5 6 22 68 85 78 52 15 Example 6 4 18 72 82 65 34 16 16 Example 7 5 22 69 86 78 50 50 Comparative Example 1 2 10 50 90 90 78 18 18 Comparative Example 2 17 45 70 54 26 16

【0053】表3からわかるように、第一の触媒である
銀触媒のみを用いた比較例1及び比較例2に比べて、本
発明による第一の触媒と第二の触媒とを混合して用いた
実施例1〜7では広い排ガス温度領域で窒素酸化物の良
好な除去がみられた。
As can be seen from Table 3, the first catalyst and the second catalyst according to the present invention were mixed in comparison with Comparative Examples 1 and 2 using only the silver catalyst as the first catalyst. In Examples 1 to 7 used, good removal of nitrogen oxides was observed in a wide exhaust gas temperature range.

【0054】[0054]

【発明の効果】以上詳述したように、本発明の窒素酸化
物除去材を用いれば、広い温度領域において過剰の酸素
を含む排ガス中の窒素酸化物を効率良く除去することが
できる。本発明の窒素酸化物除去材及び除去方法は、各
種燃焼機、自動車等の排ガス中の窒素酸化物除去に広く
利用することができる。
As described above in detail, the use of the nitrogen oxide removing material of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The nitrogen oxide removing material and the removing method of the present invention can be widely used for removing nitrogen oxides from exhaust gas from various combustors, automobiles and the like.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する窒素酸化物除去材において、多
孔質の無機酸化物に銀及び銀化合物からなる群より選ば
れる一種以上の元素及び/又は化合物0.2〜15重量
%(金属元素換算値)を担持してなる第一の触媒と、ジ
ルコニア又はジルコニアに銀及び銀化合物からなる群よ
り選ばれる一種以上の元素及び/又は化合物5重量%以
下(金属元素換算値)を担持してなる第二の触媒とを混
合してなることを特徴とする窒素酸化物除去材。
1. A nitrogen oxide removing material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of a theoretical reaction amount for coexisting unburned components. And a first catalyst supporting 0.2 to 15% by weight (in terms of metal element) of one or more elements and / or compounds selected from the group consisting of silver and silver compounds, and zirconia or zirconia from silver and silver compounds. A nitrogen oxide removing material obtained by mixing a second catalyst supporting at least one element and / or a compound selected from the group consisting of 5% by weight or less (in terms of metal element).
【請求項2】 請求項1に記載の窒素酸化物除去材にお
いて、前記銀化合物は銀の酸化物、ハロゲン化銀、硫酸
銀及び燐酸銀からなる群より選ばれた少なくとも一種で
あることを特徴とする窒素酸化物除去材。
2. The nitrogen oxide removing material according to claim 1, wherein the silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate and silver phosphate. Nitrogen oxide removing material.
【請求項3】 請求項1又は2に記載の窒素酸化物除去
材において、前記第一の触媒の多孔質無機酸化物は、ア
ルミナ単独、又はチタニア、シリカ、ジルコニア、酸化
亜鉛、酸化錫、酸化マグネシウム、ゼオライトのいずれ
かとアルミナとの複合又は混合酸化物であることを特徴
とする窒素酸化物除去材。
3. The nitrogen oxide removing material according to claim 1, wherein the porous inorganic oxide of the first catalyst is alumina alone, or titania, silica, zirconia, zinc oxide, tin oxide, or oxide. A nitrogen oxide removing material, which is a composite or mixed oxide of either magnesium or zeolite and alumina.
【請求項4】 請求項1〜3のいずれかに記載の窒素酸
化物除去材において、前記第一の触媒と第二の触媒とが
混合された混合触媒がセラミックス製又は金属製の基体
の表面にコートされていることを特徴とする窒素酸化物
除去材。
4. The nitrogen oxide removing material according to claim 1, wherein the mixed catalyst obtained by mixing the first catalyst and the second catalyst is a surface of a ceramic or metal substrate. A material for removing nitrogen oxides, which is coated on a substrate.
【請求項5】 請求項1〜3のいずれかに記載の窒素酸
化物除去材において、前記第一の触媒と第二の触媒とが
混合された混合触媒がハニカム型、フォーム型、板状、
ペレット状、顆粒状のいずれかに成形されていることを
特徴とする窒素酸化物除去材。
5. The nitrogen oxide removing material according to claim 1, wherein the mixed catalyst obtained by mixing the first catalyst and the second catalyst is a honeycomb type, a foam type, a plate type,
A nitrogen oxide removing material, which is formed into a pellet or a granule.
【請求項6】 請求項1〜5のいずれかに記載の窒素酸
化物除去材を用い、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を還元除去する窒素酸化物除去方法におい
て、前記窒素酸化物除去材を排ガス導管の途中に設置
し、前記除去材の上流側でガス状炭化水素と、灯油、軽
油、ガソリンを含む液状炭化水素とからなる群より選ば
れた一種以上を添加した排ガスを、200〜600℃に
おいて前記除去材に接触させ、もって前記排ガス中の炭
化水素との反応により前記窒素酸化物を除去することを
特徴とする窒素酸化物除去方法。
6. A method for removing nitrogen oxides from a combustion exhaust gas containing the nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for the co-existing unburned components, using the nitrogen oxides removing material according to any one of claims 1 to 5. In the nitrogen oxide removal method of reducing and removing, the nitrogen oxide removal material is installed in the middle of an exhaust gas conduit, gaseous hydrocarbons upstream of the removal material, kerosene, light oil, liquid hydrocarbons including gasoline and Exhaust gas to which at least one selected from the group consisting of is added, is brought into contact with the removing material at 200 to 600 ° C., thereby removing the nitrogen oxides by reaction with hydrocarbons in the exhaust gas. Nitrogen oxide removal method.
JP9013342A 1996-01-24 1997-01-09 Nitrogen oxide removing material and removing method of nitrogen oxide Pending JPH09262439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9013342A JPH09262439A (en) 1996-01-24 1997-01-09 Nitrogen oxide removing material and removing method of nitrogen oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2995796 1996-01-24
JP8-29957 1996-01-24
JP9013342A JPH09262439A (en) 1996-01-24 1997-01-09 Nitrogen oxide removing material and removing method of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH09262439A true JPH09262439A (en) 1997-10-07

Family

ID=26349119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9013342A Pending JPH09262439A (en) 1996-01-24 1997-01-09 Nitrogen oxide removing material and removing method of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH09262439A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145145A1 (en) * 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha Inorganic oxide and exhaust gas purification catalyst made by using the same
WO2007145146A1 (en) * 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha Inorganic oxide and exhaust gas purification catalyst made by using the same
US8242046B2 (en) 2004-07-22 2012-08-14 Toyota Jidosha Kabushiki Kaisha Inorganic oxide, exhaust gas purifying catalyst carrier, and exhaust gas purifying catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242046B2 (en) 2004-07-22 2012-08-14 Toyota Jidosha Kabushiki Kaisha Inorganic oxide, exhaust gas purifying catalyst carrier, and exhaust gas purifying catalyst
WO2007145145A1 (en) * 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha Inorganic oxide and exhaust gas purification catalyst made by using the same
WO2007145146A1 (en) * 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha Inorganic oxide and exhaust gas purification catalyst made by using the same
JP2007331991A (en) * 2006-06-16 2007-12-27 Toyota Central Res & Dev Lab Inc Inorganic oxide and exhaust gas purifying catalyst using the same
JP2007331992A (en) * 2006-06-16 2007-12-27 Toyota Central Res & Dev Lab Inc Inorganic oxide and exhaust gas purifying catalyst using the same
JP4726714B2 (en) * 2006-06-16 2011-07-20 株式会社豊田中央研究所 Inorganic oxide and exhaust gas purifying catalyst using the same
JP4726713B2 (en) * 2006-06-16 2011-07-20 株式会社豊田中央研究所 Inorganic oxide and exhaust gas purifying catalyst using the same

Similar Documents

Publication Publication Date Title
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH09262439A (en) Nitrogen oxide removing material and removing method of nitrogen oxide
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
JPH09248459A (en) Material and method for exhaust gas-purifying
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP2992629B2 (en) Exhaust gas purification material and exhaust gas purification method using ethanol
JPH09313892A (en) Cleaning method of exhaust gas
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH10165816A (en) Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol
JPH10128116A (en) Material for purification of exhaust gas and method therefor
JPH10328567A (en) Waste gas purifying material and waste gas purifying method
JPH09267029A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH0975739A (en) Waste gas purification material and method for purifying waste gas
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH08168650A (en) Material and method for purifying exhaust gas
JPH0970522A (en) Purifying material for exhaust gas and purifying method of exhaust gas
JP3509152B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0857263A (en) Exhaust gas purifying material and method therefor
JPH0852327A (en) Exhaust gas purifying material and method
JPH0852326A (en) Exhaust gas purifying material and method
JPH1028840A (en) Method for removing nitrogen oxide
JPH0985057A (en) Exhaust gas purifying material and method for purifying exhaust gas