[go: up one dir, main page]

JPH06188105A - Manufacture of non-linear resistor - Google Patents

Manufacture of non-linear resistor

Info

Publication number
JPH06188105A
JPH06188105A JP43A JP33689092A JPH06188105A JP H06188105 A JPH06188105 A JP H06188105A JP 43 A JP43 A JP 43A JP 33689092 A JP33689092 A JP 33689092A JP H06188105 A JPH06188105 A JP H06188105A
Authority
JP
Japan
Prior art keywords
sintered body
linear resistor
aramid resin
aramid
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Takahiko Shindou
尊彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP43A priority Critical patent/JPH06188105A/en
Publication of JPH06188105A publication Critical patent/JPH06188105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a nonlinear resistor of high power and high discharging resistance by applying aramid resin onto side faces of a sintered body and then backing it to form high-resistance layers. CONSTITUTION:A compact that is mainly formed of ZnO and is formed in the shape of a disc is burned in the air to remove an organic binder from the compact. After that, the compact is burned at high temperature to make a sintered body 1. On the side faces of the sintered body 1, meta-oriented aramid resin is applied by means of a roll applicator. In order to burn the applied aramid resin on the sintered body 1, the sintered body 1 is heated to form high-resistance layers 2. Nextly, both end faces of the sintered body 1 are ground and then aluminum is flamed to form electrodes 3 on both end faces of the sintered body 1. Thereby, the sintered body is made into a non-linear resistor. By this method, a burning temperature of the high resistance layer can be reduced and the sintered body is protected from cracked gas of SF6 gas and therefore a withstand level of the non-linear resistor can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化亜鉛を主成分とする
非直線抵抗体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-linear resistor containing zinc oxide as a main component.

【0002】[0002]

【従来の技術】一般に電力系統における異常電圧を抑制
し、電力系統を保護するために避雷器が用いられてい
る。避雷器には正常な電圧で絶縁特性を示し、異常電圧
が発生したときには低抵抗性を示し、系統を保護する非
直線抵抗体が採用されている。
2. Description of the Related Art Generally, a lightning arrester is used to suppress an abnormal voltage in a power system and protect the power system. The lightning arrester employs a non-linear resistor that exhibits insulation characteristics at normal voltage and low resistance when abnormal voltage occurs and protects the system.

【0003】この非直線抵抗体は、酸化亜鉛(ZnO)
を主成分とし、Bi,Sb,Co,Mn,Ni,Cr,
Siを副成分とする。これらの原料を水及び有機バイン
ダとともに十分混合した後、スプレードライヤ等で造粒
し、得られた造粒粉を円板状に成形し、この円板状の成
形体を焼成して焼結体を得、この焼結体の側面に沿面閃
絡を防止するためにSiO2 ,Bi2 3 ,Sb2 3
等を水及び有機バインダとともに混合した高抵抗物質を
塗布して1000〜1200℃で再焼成し高抵抗層を形成する。
さらに焼結体の両端面を研磨し、電極を取り付けて非直
線抵抗体とする。
This non-linear resistor is made of zinc oxide (ZnO).
With Bi, Sb, Co, Mn, Ni, Cr,
Si is an auxiliary component. After thoroughly mixing these raw materials with water and an organic binder, granulate with a spray dryer or the like, shape the obtained granulated powder into a disk shape, and sinter the disk-shaped molded body to obtain a sintered body. In order to prevent creeping flash on the side surface of this sintered body, SiO 2 , Bi 2 O 3 , Sb 2 O 3
A high resistance material is prepared by mixing the above materials with water and an organic binder and re-baked at 1000 to 1200 ° C to form a high resistance layer.
Further, both end surfaces of the sintered body are polished and electrodes are attached to form a non-linear resistor.

【0004】ところで、近年電力系統は大容量化、高電
圧化が進んでいる。これに伴い、避雷器を構成する非直
線抵抗体の大容量化が図られている。具体的には、非直
線抵抗体の厚さ及び面積の増量が成されている。
By the way, in recent years, electric power systems have become larger in capacity and higher in voltage. Along with this, the capacity of the non-linear resistor forming the lightning arrester is being increased. Specifically, the thickness and area of the non-linear resistor are increased.

【0005】しかしながら、こうした大型の非直線抵抗
体は焼結時に変形しやすく、また、高抵抗層を形成する
ために1000℃以上で再焼成を行っていたので所定の形状
が得られにくいという問題があった。非直線抵抗体の変
形は、非直線抵抗特性や放電耐量特性といった電気特性
の低下やバラツキを招く。また非直線抵抗体はSF6
ス中で使用されることが多く、SF6 ガスの分解ガスが
焼結体に接触すると腐食が起こり非直線抵抗体の電気特
性が低下するという問題があった。
However, such a large non-linear resistor is easily deformed at the time of sintering, and since it is re-fired at 1000 ° C. or more to form a high resistance layer, it is difficult to obtain a predetermined shape. was there. The deformation of the non-linear resistor causes deterioration or variation in electric properties such as non-linear resistance characteristics and discharge withstand voltage characteristics. The nonlinear resistor has a problem that may be used in SF 6 gas often decomposed gas of SF 6 gas corrosion upon contact with the sintered body occurs the electrical characteristics of the nonlinear resistor is degraded.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来の
非直線抵抗体は大容量化に伴い高抵抗層の形成及び分解
ガスの浸透によって電気特性の低下やバラツキの増大を
招くという問題があった。そこで本発明の目的は大容量
でしかも放電耐量特性を向上させた非直線抵抗体の製造
方法を提供することにある。
SUMMARY OF THE INVENTION As described above, the conventional non-linear resistor has a problem that the electrical resistance is deteriorated and variation is increased due to the formation of a high resistance layer and the permeation of decomposed gas as the capacity is increased. there were. Therefore, an object of the present invention is to provide a method for manufacturing a non-linear resistor having a large capacity and improved discharge withstand voltage characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明においては第一の発明として酸化亜鉛を主成分
とする成形体を焼成し、得られた焼結体の側面に高抵抗
層を形成する非直線抵抗体の製造方法において、前記焼
結体の側面にアラミド樹脂を塗布して加熱し、前記高抵
抗層を形成することを特徴とする非直線抵抗体の製造方
法を提供する。また第二の発明として酸化亜鉛を主成分
とする成形体を焼成し、得られた焼結体の側面に高抵抗
層を形成する非直線抵抗体の製造方法において、前記焼
結体の側面にアラミド樹脂とアラミドフィルムを層状に
配設して加熱し、2層の前記高抵抗層を形成することを
特徴とする非直線抵抗体の製造方法を提供する。
In order to achieve the above object, in the present invention, as a first aspect of the present invention, a molded body containing zinc oxide as a main component is fired, and a high resistance layer is formed on a side surface of the obtained sintered body. In the method for manufacturing a non-linear resistor, a method for manufacturing a non-linear resistor characterized in that the high resistance layer is formed by applying an aramid resin to the side surface of the sintered body and heating the same. . Further, as a second invention, in a method for producing a non-linear resistor in which a molded body containing zinc oxide as a main component is fired, and a high resistance layer is formed on a side surface of the obtained sintered body, the side surface of the sintered body is Provided is a method for manufacturing a non-linear resistor, characterized in that an aramid resin and an aramid film are arranged in layers and heated to form two high resistance layers.

【0008】[0008]

【作用】アラミド樹脂及びアラミドフィルムは400 ℃以
下の温度で熱硬化するため、高抵抗層を形成するための
加熱温度を従来より低くすることができる。このため所
定の形状の非直線抵抗体が得られやすくなり、放電耐量
特性が向上する。
[Function] Since the aramid resin and the aramid film are thermoset at a temperature of 400 ° C. or lower, the heating temperature for forming the high resistance layer can be made lower than before. Therefore, a non-linear resistor having a predetermined shape is easily obtained, and the discharge withstand voltage characteristic is improved.

【0009】またアラミド樹脂及びアラミドフィルムは
気体透過性が極めて小さいため、SF6 ガスの分解ガス
から焼結体の側面を保護することができ、非直線抵抗体
の電気特性の低下を防止できる。
Further, since the aramid resin and the aramid film have extremely small gas permeability, the side surface of the sintered body can be protected from the decomposition gas of SF 6 gas, and the deterioration of the electrical characteristics of the nonlinear resistor can be prevented.

【0010】[0010]

【実施例】第一の実施例[Embodiment] First embodiment

【0011】本発明の第一の実施例を図1乃至図6を参
照して説明する。主成分であるZnOに副成分としてB
2 3 ,MnO2 ,SiO2 ,Cr2 3 を夫々0.5m
ol%加え、Co2 3 ,Sb2 3 ,NiOを夫々1mo
l %加えて原料とする。この原料に水及び分散剤等の有
機バインダ類を加えて混合装置で混合し、得られた混合
物をスプレードライヤで例えば粒径100 μmに噴霧造粒
する。この造粒粉を金型に入れて加圧し、例えば円板状
に成形して得られた成形体から有機バインダ類を除去す
るため空気中で焼成し、さらに高温で焼成して図1に示
すような焼結体1を得る。次に焼結体1の側面に以下に
示すようなメタ系のアラミド樹脂をロール塗布機を用い
て塗布する。
A first embodiment of the present invention will be described with reference to FIGS. 1 to 6. ZnO, which is the main component, has B as an auxiliary component.
i 2 O 3 , MnO 2 , SiO 2 and Cr 2 O 3 are each 0.5 m
ol%, Co 2 O 3 , Sb 2 O 3 and NiO are added to 1 mol each.
Add l% as raw material. Water and an organic binder such as a dispersant are added to this raw material and mixed in a mixing device, and the resulting mixture is spray granulated with a spray dryer to a particle size of 100 μm, for example. This granulated powder is put in a mold and pressed, and for example, it is fired in air to remove organic binders from a molded body obtained by molding into a disk shape, and further fired at a high temperature to show in FIG. Such a sintered body 1 is obtained. Next, the following meta-type aramid resin is applied to the side surface of the sintered body 1 using a roll coater.

【0012】[0012]

【化1】 [Chemical 1]

【0013】塗布時のアラミド樹脂の粘度は5〜30ポイ
ズに調整し、塗布時のアラミド樹脂の厚さは50〜300 μ
mに調整する。塗布したアラミド樹脂を焼結体1に焼付
けるため図2に示した焼成パターンで焼結体1を加熱す
る。即ち略1時間かけて150℃まで加熱し、150 ℃で2
時間保持し、さらに略1時間かけて350 ℃まで徐々に温
度を上げ350 ℃で2時間保持したのち放冷する。アラミ
ド樹脂の焼付けのための加熱速度は10℃/min 以下にな
るよう制御する。こうして図1に示すように高抵抗層2
を形成した後焼結体1の両端面を研磨し、アルミニウム
を溶射して両端面に電極3を形成し非直線抵抗体とす
る。次に作用について説明する。
The viscosity of the aramid resin during coating is adjusted to 5 to 30 poises, and the thickness of the aramid resin during coating is 50 to 300 μm.
Adjust to m. In order to bake the applied aramid resin on the sintered body 1, the sintered body 1 is heated in the firing pattern shown in FIG. That is, it takes about 1 hour to heat up to 150 ℃,
The temperature is maintained for about 1 hour, the temperature is gradually raised to 350 ° C over about 1 hour, and the temperature is maintained at 350 ° C for 2 hours, and then allowed to cool. The heating rate for baking the aramid resin is controlled to be 10 ° C / min or less. Thus, as shown in FIG.
After forming, the both end surfaces of the sintered body 1 are polished and aluminum is sprayed to form the electrodes 3 on both end surfaces to form a non-linear resistor. Next, the operation will be described.

【0014】本実施例においては高抵抗層の焼付けのた
めの温度は350 ℃以下であり、従来の1000℃に比べて加
熱温度を大幅に低下させることができる。このため再焼
成による焼結体のゆがみが低減し非直線抵抗体の放電耐
量値(以下耐量値という)を向上させることができる。
図3に示すように従来の方法による非直線抵抗体の耐量
値は180J/CC であるのに対し、本実施例による非直線抵
抗体は220J/CC に向上した。
In the present embodiment, the temperature for baking the high resistance layer is 350 ° C. or less, and the heating temperature can be greatly reduced as compared with the conventional temperature of 1000 ° C. Therefore, the distortion of the sintered body due to re-firing is reduced, and the discharge withstand value (hereinafter referred to as withstand value) of the nonlinear resistor can be improved.
As shown in FIG. 3, the resistance value of the non-linear resistor according to the conventional method is 180 J / CC, whereas the non-linear resistor according to the present embodiment is improved to 220 J / CC.

【0015】アラミド樹脂の焼付け時に急激に温度を上
昇させると、アラミド樹脂中に気泡等が発生し高抵抗層
の表面に凹凸部が形成される。この凹凸部には電界が集
中しやすく、沿面閃絡を起こして耐量値が低下する可能
性がある。このため加熱速度は10℃/min 以下が望まし
い。
When the temperature is suddenly raised during baking of the aramid resin, bubbles or the like are generated in the aramid resin and an uneven portion is formed on the surface of the high resistance layer. The electric field is likely to be concentrated on this uneven portion, and there is a possibility that the flashover may occur and the withstand value may be reduced. Therefore, it is desirable that the heating rate be 10 ° C / min or less.

【0016】図4は塗布時のアラミド樹脂の厚さと耐量
値との関係を示している。本実施例においてはアラミド
樹脂の厚さは50〜300 μmの範囲であるが、比較のため
にこの範囲外の厚さのアラミド樹脂を塗布した非直線抵
抗体についても耐量値の測定を行った。図4から明らか
なように本実施例、即ち厚さ50〜300 μmの範囲で耐量
値が向上することがわかる。このような結果が得られた
理由としては、厚さが50μm末満であると高抵抗層の表
面に凹部が形成されやすく、又厚さが300 μmを越える
と高抵抗層内に含まれた10〜100 μm程度の気泡が拡散
しにくくなり高抵抗層の表面に凹凸部を生じることが挙
げられる。凹凸部や気泡の周囲には電界が集中しやすく
沿面閃絡を起こしやすくなる。
FIG. 4 shows the relationship between the thickness of the aramid resin at the time of application and the withstand value. In this example, the thickness of the aramid resin is in the range of 50 to 300 μm, but for comparison, the withstand value was also measured for the non-linear resistor coated with the aramid resin having a thickness outside this range. . As is clear from FIG. 4, the withstand value is improved in the present embodiment, that is, in the thickness range of 50 to 300 μm. The reason for obtaining such a result is that when the thickness is less than 50 μm, recesses are easily formed on the surface of the high resistance layer, and when the thickness exceeds 300 μm, it is included in the high resistance layer. The reason is that bubbles of about 10 to 100 μm are less likely to diffuse and an uneven portion is formed on the surface of the high resistance layer. The electric field is likely to be concentrated around the irregularities and the bubbles, and the surface flashover is likely to occur.

【0017】図5は塗布時のアラミド樹脂の粘度と非直
線抵抗体の耐量値との関係を示している。焼結体にアラ
ミド樹脂を塗布する際のアラミド樹脂の粘度は本実施例
のように5〜30ポイズであることが望ましい。5ポイズ
未満の粘度で塗布すると高抵抗層に凹部が形成されやす
く、アラミド樹脂の厚さも2μm以下になって沿面閃絡
が起こりやすくなる。また30ポイズよりも高粘度のアラ
ミド樹脂を塗布するとアラミド樹脂中に含まれる気泡及
び塗布時に生じた気泡がアラミド樹脂の外へ拡散しきれ
ず沿面閃絡が起こりやすくなる。
FIG. 5 shows the relationship between the viscosity of the aramid resin during coating and the withstand value of the non-linear resistor. When the aramid resin is applied to the sintered body, the viscosity of the aramid resin is preferably 5 to 30 poise as in this embodiment. If it is applied with a viscosity of less than 5 poises, a concave portion is likely to be formed in the high resistance layer, the thickness of the aramid resin is also 2 μm or less, and a creeping flashover easily occurs. Further, when an aramid resin having a viscosity higher than 30 poise is applied, the air bubbles contained in the aramid resin and the air bubbles generated at the time of application cannot be completely diffused to the outside of the aramid resin, so that the surface flashover easily occurs.

【0018】アラミド樹脂は耐熱性の樹脂として知られ
ているポリイミド樹脂と同様に、耐熱性、絶縁性及び耐
薬品性にすぐれ、しかもポリイミド樹脂に比較して気体
透過性が極めて小さく、SF6 ガスの分解ガス浸透から
焼結体を保護することができる。図6は焼結体の側面に
アラミド樹脂を塗布した本実施例の非直線抵抗体と側面
にポリイミド樹脂を塗布した非直線抵抗体の電気特性の
変化をもれ電流比を例に比較したものである。もれ電流
R と初期もれ電流IROの比であるもれ電流比IR /I
ROは非直線抵抗体が劣化すると1より小さくなってい
く。非直線抵抗体に電圧を印加し、80℃のSF6 ガス中
でのもれ電流比の変化を数千時間にわたって測定したと
ころ本実施例の非直線抵抗体のもれ電流比の低下はポリ
イミド樹脂を塗布した場合に比べて小さく、図6に示す
ように3000時間を経過してもほとんど変化しなかった。
The aramid resin has excellent heat resistance, insulation and chemical resistance like the polyimide resin known as a heat resistant resin, and has extremely low gas permeability as compared with the polyimide resin, and SF 6 gas. It is possible to protect the sintered body from permeation of decomposed gas. FIG. 6 shows a comparison of the electric current ratio of the non-linear resistor of this embodiment in which the side surface of the sintered body is coated with the aramid resin and the non-linear resistor in which the side surface of the sintered body is coated with the polyimide resin, and the current ratio is used as an example. Is. Leakage current ratio I R / I which is the ratio of leakage current I R and initial leakage current I RO
RO becomes smaller than 1 as the nonlinear resistor deteriorates. A voltage was applied to the non-linear resistor and changes in the leak current ratio in SF 6 gas at 80 ° C. were measured for several thousand hours. It was smaller than when the resin was applied, and as shown in FIG. 6, it hardly changed after 3000 hours.

【0019】以上のように本実施例によれば、高抵抗層
をアラミド樹脂で形成することによって再焼成温度を低
くでき、SF6 ガスの分解ガスから焼結体を保護するこ
とができ非直線抵抗体の耐量値が向上するという効果を
奏する。なおアラミド樹脂の塗布時の粘度は5〜30ポイ
ズ、厚さは50〜300 μm、焼付けのための加熱速度は10
℃/min 以下であることが望ましい。 第二の実施例 本発明の第二の実施例を図7乃至図9を参照して説明す
る。
As described above, according to this embodiment, by forming the high resistance layer of aramid resin, the re-firing temperature can be lowered, and the sintered body can be protected from the decomposition gas of SF 6 gas. This has the effect of improving the withstand value of the resistor. The aramid resin has a viscosity of 5 to 30 poise, a thickness of 50 to 300 μm, and a heating rate of 10 for baking.
C./min or less is desirable. Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. 7 to 9.

【0020】第一の実施例と同様に図7に示す焼結体1
を製造する。この焼結体1の側面に厚さ5〜20μmのア
ラミド樹脂を塗布し、このアラミド樹脂の表面を覆う大
きさに加工した厚さ20〜100 μmのアラミドフィルムを
アラミド樹脂の上から焼結体の側面に巻き付ける。アラ
ミド樹脂は第一の実施例に示したメタ系のアラミドから
成るものを用い、アラミドフィルムには以下に示すパラ
系のアラミドを用いる。
Similar to the first embodiment, the sintered body 1 shown in FIG.
To manufacture. A aramid resin having a thickness of 5 to 20 μm is applied to the side surface of the sintered body 1, and an aramid film having a thickness of 20 to 100 μm processed to a size to cover the surface of the aramid resin is sintered on the aramid resin. Wrap around the side of. The aramid resin is made of the meta aramid shown in the first embodiment, and the para aramid shown below is used as the aramid film.

【0021】[0021]

【化2】 [Chemical 2]

【0022】焼結体1にアラミドフィルムを巻付けた
後、図2に示した焼成パターンで焼結体1を加熱し、図
7に示すようにアラミド樹脂から成る高抵抗層2a及び
アラミドフィルムから成る高抵抗層2bを形成する。高
抵抗層2a,2bを形成した焼結体1の両端面を研磨
し、アルミニウムの溶射で電極3を形成し非直線抵抗体
とする。
After winding the aramid film around the sintered body 1, the sintered body 1 is heated in the firing pattern shown in FIG. 2, and the high resistance layer 2a and the aramid film made of aramid resin are heated as shown in FIG. The high resistance layer 2b is formed. Both ends of the sintered body 1 on which the high resistance layers 2a and 2b are formed are polished, and the electrodes 3 are formed by spraying aluminum to form a nonlinear resistor.

【0023】アラミドフィルムを焼結体1に配設する場
合、あらかじめアラミドフィルムにアラミド樹脂を塗布
しておき、この塗布面を焼結体1の側面に密着させても
よい。また焼結体1の両端面に電極3を形成した後高抵
抗層2a,2bを形成してもよい。次に作用について説
明する。
When the aramid film is provided on the sintered body 1, an aramid resin may be applied to the aramid film in advance and the applied surface may be brought into close contact with the side surface of the sintered body 1. Further, the high resistance layers 2a and 2b may be formed after forming the electrodes 3 on both end surfaces of the sintered body 1. Next, the operation will be described.

【0024】本実施例においては高抵抗層2a,2bの
焼付けのための温度は第一の実施例と同様に350 ℃以下
であり、従来に比べて大幅に焼付け温度を低下させるこ
とができる。このため再焼成による焼結体のゆがみが低
減し、耐量値が約220J/CC に向上する。高抵抗層2a,
2bの焼付け時の加熱速度は第一の実施例と同様に10℃
/min 以下が望ましい。
In this embodiment, the baking temperature of the high resistance layers 2a and 2b is 350 ° C. or less as in the case of the first embodiment, and the baking temperature can be greatly reduced compared to the conventional case. Therefore, the distortion of the sintered body due to re-firing is reduced, and the withstand value is improved to about 220 J / CC. High resistance layer 2a,
The heating rate during baking of 2b is 10 ° C. as in the first embodiment.
/ Min or less is desirable.

【0025】図8はアラミドフィルムの厚さを80μmと
したときのアラミド樹脂の厚さと耐量値の関係を示した
ものである。本実施例に示したようにアラミド樹脂の厚
さが5〜20μmの範囲にあるとき耐量値の向上が認めら
れる。一方アラミド樹脂の厚さが5μmに満たない場
合、塗布されたアラミド樹脂が焼結体表面の微小な穴に
吸収されてしまいアラミド樹脂とアラミドフィルムとの
間に空隙が生じてアラミドフィルムの密着性が悪くな
る。また厚さが20μmを越えるとアラミド樹脂中の有機
溶媒が拡散しにくく、アラミドフィルムとの間に空隙が
形成されたり高抵抗層2bの表面に凹凸部が生じたりす
る。アラミドフィルムが剥離したり、空隙や凹凸部が生
じると沿面閃絡が起こりやすくなり耐量値は低下する。
FIG. 8 shows the relationship between the thickness of the aramid resin and the withstand value when the thickness of the aramid film is 80 μm. As shown in this example, when the thickness of the aramid resin is in the range of 5 to 20 μm, the improvement of the withstand value is recognized. On the other hand, when the thickness of the aramid resin is less than 5 μm, the applied aramid resin is absorbed by the minute holes on the surface of the sintered body, and a void is generated between the aramid resin and the aramid film, resulting in the adhesion of the aramid film. Becomes worse. On the other hand, if the thickness exceeds 20 μm, the organic solvent in the aramid resin is less likely to diffuse, voids are formed between the organic solvent and the aramid film, and irregularities are formed on the surface of the high resistance layer 2b. If the aramid film is peeled off or voids or irregularities are generated, creeping flashover easily occurs and the withstand value decreases.

【0026】図9はアラミド樹脂を10μm塗布したとき
のアラミドフィルムの厚さと耐量値の関係を示したもの
である。本実施例に示したようにアラミドフィルムの厚
さが20〜100 μmの範囲にあるとき耐量値の向上が認め
られる理由としてはこの範囲外の厚さでは高抵抗層2b
の表面に凹凸部が生じやすくなり沿面閃絡が起こりやす
いことが挙げられる。
FIG. 9 shows the relationship between the thickness of the aramid film and the withstand value when the aramid resin is applied in a thickness of 10 μm. As shown in this example, the reason why the improvement of the withstand value is recognized when the thickness of the aramid film is in the range of 20 to 100 μm is that the high resistance layer 2b has a thickness outside this range.
It can be mentioned that irregularities are likely to occur on the surface of and the surface flashover is likely to occur.

【0027】第二の実施例も第一の実施例と同様に耐量
値が向上し、しかも既にィルム状に形成されたアラミド
フィルムを用いるため所定の厚さの高抵抗層をより容易
に形成することができる。
In the second embodiment, as in the first embodiment, the withstand value is improved, and since the aramid film already formed in the film shape is used, the high resistance layer having a predetermined thickness can be formed more easily. be able to.

【0028】[0028]

【発明の効果】以上のように本発明の非直線抵抗体の製
造方法によれば高抵抗層をアラミド樹脂あるいはアラミ
ド樹脂とアラミドフィルムで構成することにより高抵抗
層の焼付け温度を低下させることができ、またSF6
スの分解ガスから焼結体を保護することができるので非
直線抵抗体の耐量値を向上させることができる。
As described above, according to the method for manufacturing a non-linear resistor of the present invention, it is possible to lower the baking temperature of the high resistance layer by forming the high resistance layer with an aramid resin or an aramid resin and an aramid film. Moreover, since the sintered body can be protected from the decomposition gas of SF 6 gas, the withstand value of the non-linear resistor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例による非直線抵抗体の断
面図
FIG. 1 is a sectional view of a non-linear resistor according to a first embodiment of the present invention.

【図2】本発明の第一及び第二の実施例を示す高抵抗層
の焼成パターン
FIG. 2 is a firing pattern of a high resistance layer showing the first and second embodiments of the present invention.

【図3】本発明の第一及び第二の実施例による非直線抵
抗体と従来の非直線抵抗体の耐量値の分布
FIG. 3 is a distribution of withstand values of a non-linear resistor according to the first and second embodiments of the present invention and a conventional non-linear resistor.

【図4】本発明の第一の実施例を示すアラミド樹脂の厚
さと耐量値の関係
FIG. 4 shows the relationship between the thickness and the withstand value of the aramid resin showing the first embodiment of the present invention.

【図5】本発明の第一の実施例を示すアラミド樹脂の塗
布時の粘度と耐量値の関係
FIG. 5 shows the relationship between the viscosity at the time of application of the aramid resin showing the first embodiment of the present invention and the withstand value.

【図6】本発明の第一及び第二の実施例によるアラミド
樹脂あるいはアラミド樹脂とアラミドフィルムを焼付け
た非直線抵抗体と、ポリイミド樹脂を焼付けた非直線抵
抗体のもれ電流比の比較
FIG. 6 is a comparison of leakage current ratios of a non-linear resistor baked with an aramid resin or an aramid resin and an aramid film according to the first and second embodiments of the present invention and a non-linear resistor baked with a polyimide resin.

【図7】本発明の第二の実施例による非直線抵抗体の断
面図
FIG. 7 is a sectional view of a non-linear resistor according to a second embodiment of the present invention.

【図8】本発明の第二の実施例を示すアラミド樹脂の厚
さと耐量値の関係
FIG. 8 shows the relationship between the thickness and withstand value of the aramid resin showing the second embodiment of the present invention.

【図9】本発明の第二の実施例を示すアラミドフィルム
の厚さと耐量値の関係
FIG. 9 shows the relationship between the thickness and the withstand value of the aramid film showing the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…焼結体、2,2a,2b…高抵抗層、3…電極。 1 ... Sintered body, 2, 2a, 2b ... High resistance layer, 3 ... Electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とする成形体を焼成
し、得られた焼結体の側面に高抵抗層を形成する非直線
抵抗体の製造方法において、 前記焼結体の側面にアラミド樹脂を塗布して加熱し、前
記高抵抗層を形成することを特徴とする非直線抵抗体の
製造方法。
1. A method for producing a non-linear resistor, comprising forming a high resistance layer on a side surface of a sintered body obtained by firing a molded body containing zinc oxide as a main component, wherein aramid is formed on the side surface of the sintered body. A method for manufacturing a non-linear resistor, which comprises applying a resin and heating the resin to form the high resistance layer.
【請求項2】 酸化亜鉛を主成分とする成形体を焼成
し、得られた焼結体の側面に高抵抗層を形成する非直線
抵抗体の製造方法において、前記焼結体の側面にアラミ
ド樹脂とアラミドフィルムを層状に配設して加熱し、2
層の前記高抵抗層を形成することを特徴とする非直線抵
抗体の製造方法。
2. A method for producing a non-linear resistor, comprising forming a high resistance layer on a side surface of a sintered body obtained by firing a molded body containing zinc oxide as a main component, wherein aramid is formed on the side surface of the sintered body. Place the resin and aramid film in layers and heat
A method for manufacturing a non-linear resistor, comprising forming the high resistance layer of a layer.
JP43A 1992-12-17 1992-12-17 Manufacture of non-linear resistor Pending JPH06188105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06188105A (en) 1992-12-17 1992-12-17 Manufacture of non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06188105A (en) 1992-12-17 1992-12-17 Manufacture of non-linear resistor

Publications (1)

Publication Number Publication Date
JPH06188105A true JPH06188105A (en) 1994-07-08

Family

ID=18303599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06188105A (en) 1992-12-17 1992-12-17 Manufacture of non-linear resistor

Country Status (1)

Country Link
JP (1) JPH06188105A (en)

Similar Documents

Publication Publication Date Title
KR100377594B1 (en) Nonlinear resistor
JPH06188105A (en) Manufacture of non-linear resistor
JP2573445B2 (en) Non-linear resistor
JPS6243324B2 (en)
JP4157237B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH036801A (en) Voltage-dependent nonlinear resistor
JP2735320B2 (en) Non-linear resistor
JPH0935909A (en) Manufacture of nonlinear resistor
JP2744016B2 (en) Manufacturing method of nonlinear resistor
JP2718175B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH04296002A (en) Manufacture of non-linear resistor
JP2573446B2 (en) Non-linear resistor
JPH0529108A (en) Nonlinear resistor
JPH10321409A (en) Ceramic element
JP2800341B2 (en) Method for manufacturing voltage non-linear resistor element
JP2687470B2 (en) Manufacturing method of zinc oxide type varistor
JPH08124717A (en) Nonlinear resistor
JPH09320813A (en) Manufacture of non-linear resistor
JPH06181105A (en) Nonlinear resistor
JPH07122405A (en) Functional element and manufacture thereof
JPH07106108A (en) Nonlinear resistor
JP2621408B2 (en) Manufacturing method of zinc oxide type varistor
JPH05101906A (en) Non-linear resistor
JPH08339907A (en) Nonlinear resistor
JPS625613A (en) Manufacture of voltage non-linear resistor