[go: up one dir, main page]

JPH0618552A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH0618552A
JPH0618552A JP4174593A JP17459392A JPH0618552A JP H0618552 A JPH0618552 A JP H0618552A JP 4174593 A JP4174593 A JP 4174593A JP 17459392 A JP17459392 A JP 17459392A JP H0618552 A JPH0618552 A JP H0618552A
Authority
JP
Japan
Prior art keywords
semiconductor
acceleration
mass
electrode layer
lower semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4174593A
Other languages
Japanese (ja)
Inventor
Osamu Sasaki
修 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4174593A priority Critical patent/JPH0618552A/en
Publication of JPH0618552A publication Critical patent/JPH0618552A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Pressure Sensors (AREA)

Abstract

(57)【要約】 【目的】簡単な構造の単一の半導体加速度センサにより
複数方向から受ける加速度を検出できるようにする。 【構成】加速度センサを絶縁膜30により相互に絶縁した
下側半導体部分10と上側半導体部分20から構成し、上側
半導体部分20に下側半導体部分20に固定した支承部25と
それからダイアフラム部26や棒状の懸垂部27を介して振
り子状にかつ弾性的に懸垂された質量部21を設け、下側
半導体部分10の上面に質量部21と狭い間隙を介して対向
する複数個の電極膜14,15a,15b,16a,16bを不純物拡散に
よって作り込み、加速度をz方向やx方向あるいは紙面
に直角なy方向から受けたとき質量部21を変位させてそ
れと各電極膜との間の静電容量の変化から2方向ないし
3方向の加速度を検出できるようにする。
(57) [Abstract] [Purpose] A single semiconductor acceleration sensor having a simple structure can detect accelerations received from a plurality of directions. [Structure] An acceleration sensor is composed of a lower semiconductor portion 10 and an upper semiconductor portion 20 which are insulated from each other by an insulating film 30, and a support portion 25 fixed to the lower semiconductor portion 20 on the upper semiconductor portion 20 and a diaphragm portion 26 and A mass portion 21 suspended elastically in a pendulum shape via a rod-shaped suspension portion 27 is provided, and a plurality of electrode films 14 facing the mass portion 21 with a narrow gap on the upper surface of the lower semiconductor portion 10. 15a, 15b, 16a, 16b are created by impurity diffusion, and when the acceleration is received from the z direction, the x direction, or the y direction perpendicular to the paper surface, the mass part 21 is displaced and the capacitance between each of them and each electrode film. It is possible to detect acceleration in two or three directions from the change of.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1対の半導体部分から構
成されるいわゆる静電容量形の加速度センサであって、
互いに直角な少なくとも2方向の成分からなる加速度の
検出に適する半導体加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called capacitance type acceleration sensor composed of a pair of semiconductor parts,
The present invention relates to a semiconductor acceleration sensor suitable for detecting acceleration composed of components in at least two directions perpendicular to each other.

【0002】[0002]

【従来の技術】半導体装置を利用するセンサは数mm角以
下の極小形に構成できるほか関連回路とともに共通の半
導体チップに作り込める利点があり、圧力や加速度の検
出用の量産センサに適している。ところで、かかる物理
量の検出にはセンサに可動部を作り込む必要があり、こ
のため従来からダイアフラム形やカンチレバー形構造が
主に採用されて来ているが、ここでは加速度の検出感度
を高めるために可動部の変位量を大きくとる上で有利な
カンチレバー形の半導体センサの代表例を図5を参照し
ながら簡単に説明する。
2. Description of the Related Art A sensor using a semiconductor device has an advantage that it can be formed in a very small size of several mm square or less and can be built in a common semiconductor chip together with related circuits, and is suitable as a mass production sensor for detecting pressure and acceleration. . By the way, in order to detect such a physical quantity, it is necessary to build a movable part in the sensor.Therefore, diaphragm type and cantilever type structures have been mainly adopted from the past, but here, in order to increase the acceleration detection sensitivity, A representative example of a cantilever type semiconductor sensor which is advantageous in increasing the displacement of the movable part will be briefly described with reference to FIG.

【0003】図5の半導体板51が可動部側であり、それ
用の薄い単結晶シリコン等の基板にフォトエッチングを
施して溝51aを切ることにより可撓性のカンチレバー部
52とそれにより支承された質量部53が形成される。もう
一方の半導体板54にもフォトエッチングを施して質量部
53に対応する個所に凹所54aを形成する。図の例では半
導体板51の下面と半導体板54の上面にそれぞれ電極膜55
と56を付けてそれらを介して両板51と52を相互に接合
し、かつ電極膜55と56からセンサ用の端子をそれぞれ導
出する。質量部53の下面の電極膜55と凹所54aの底面上
の電極膜56の間に狭い間隙Gをもつ静電容量が形成され
る。かかる構造の半導体加速度センサ50において、質量
部53に対して加速度がzで示す方向に掛かるとカンチレ
バー部52が撓んで間隙Gが変化するので、これに伴う静
電容量の変化から加速度を電気的に検出することができ
る。
A semiconductor plate 51 shown in FIG. 5 is a movable portion side, and a flexible cantilever portion is formed by cutting a groove 51a by photoetching a substrate made of thin single crystal silicon or the like.
52 and the mass 53 supported thereby are formed. The other semiconductor plate 54 is also photo-etched to
A recess 54a is formed at a location corresponding to 53. In the illustrated example, the electrode films 55 are formed on the lower surface of the semiconductor plate 51 and the upper surface of the semiconductor plate 54, respectively.
And 56 are attached to both plates 51 and 52 to each other through them, and the terminals for the sensor are led out from the electrode films 55 and 56, respectively. A capacitance having a narrow gap G is formed between the electrode film 55 on the lower surface of the mass portion 53 and the electrode film 56 on the bottom surface of the recess 54a. In the semiconductor acceleration sensor 50 having such a structure, when the acceleration is applied to the mass portion 53 in the direction indicated by z, the cantilever portion 52 is bent and the gap G is changed. Can be detected.

【0004】[0004]

【発明が解決しようとする課題】上述の半導体加速度セ
ンサ50はごく小形に構成できかつ関連回路とともに集積
回路チップに組み込みが可能であるが、加速度が図5の
z方向から掛かった時に比べて斜め方向から掛かった時
の検出感度がかなり低下するので、例えばそれを自動車
に組み込んで衝突を検出する際に正面からの衝突に対す
る感度は高くても斜め方向ないし側方からの衝突に対し
ては検出感度が不足して人身保護を充分にできない問題
がある。
The above-mentioned semiconductor acceleration sensor 50 can be constructed in a very small size and can be incorporated in an integrated circuit chip together with related circuits, but the acceleration is oblique compared to when acceleration is applied from the z direction in FIG. Since the detection sensitivity when it is applied from the direction decreases considerably, for example, when incorporating it into an automobile to detect a collision, even if the sensitivity to a frontal collision is high, it can detect a diagonal or lateral collision. There is a problem that the sensitivity is insufficient and personal protection cannot be adequately achieved.

【0005】この問題の解決には、感度が鋭敏な方向が
互いに直交する加速度センサを2個ないし3個組み合わ
せてそれらの検出信号を電気的に合成すればよいが、図
5のような構造では複数個の加速度センサを感度方向を
異ならせて同じチップに組み込むのは非常に困難なので
チップ数ないしはセンサ数が増えてしまい、それだけ実
装や相互間の配線に手間が掛かるほか、ノイズを拾いや
すくなるので誤検出のおそれが高くなって信頼性が著し
く低下する。かかる事情から、本発明の目的は単一の簡
単な構造の加速度センサにより2方向ないし3方向から
掛かる加速度を検出できるようにすることにある。
To solve this problem, it is sufficient to combine two or three acceleration sensors whose sensitive directions are orthogonal to each other and electrically combine their detection signals. With the structure shown in FIG. Since it is very difficult to incorporate multiple acceleration sensors in the same chip with different sensitivity directions, the number of chips or sensors will increase, which makes mounting and wiring between them much easier, and makes it easier to pick up noise. Therefore, the risk of erroneous detection is increased and the reliability is significantly reduced. Under such circumstances, it is an object of the present invention to be able to detect acceleration applied from two or three directions with a single acceleration sensor having a simple structure.

【0006】[0006]

【課題を解決するための手段】本発明では加速度センサ
を相互に絶縁した上下1対の半導体部分から構成し、上
側半導体部分には下側半導体部分に固定された支承部と
それから振り子状かつ弾性的に懸垂された質量部とを設
け、下側半導体部分にはその表面部に質量部と間隙を介
して対向する複数個の電極層を不純物拡散によって作り
込み、加速度を受けたとき質量部を変位させて各電極層
との間の静電容量の変化から懸垂方向とそれに直角方向
の加速度を検出することより上記目的を達成する。
According to the present invention, an acceleration sensor is composed of a pair of upper and lower semiconductor parts which are insulated from each other, and a support part fixed to the lower semiconductor part is provided in the upper semiconductor part and a pendulum-like and elastic part. And a plurality of electrode layers facing each other with a gap between them are formed on the surface of the lower semiconductor part by impurity diffusion, and the mass part is subjected to acceleration when subjected to acceleration. The above object is achieved by displacing and detecting the acceleration in the suspending direction and the direction perpendicular thereto from the change in capacitance between each electrode layer.

【0007】なお、下側半導体部分に質量部の下側の中
央に配設された電極層とその周囲の向き合う位置に対を
なすように配設された電極層を設け、質量部と中央電極
層の間の静電容量の変化から質量部に懸垂方向から掛か
る加速度を検出し、質量部と周囲の電極層対の間の静電
容量の差動的な変化から懸垂とは直角な方向に掛かる加
速度を検出するようにするのが、センサが受ける加速度
を互いに独立な方向の複数個の成分に分離して検出する
上で有利である。またこの実施態様において、下側半導
体部分の表面部に凹所を設けるとともに上側半導体部分
の質量部をこの凹所の表面に沿いかつそれと狭い間隙を
置いて対向する形状に形成して、凹所の底面には中央電
極層を,凹所の側面には周囲の電極層対をそれぞれ配設
するのが検出感度を高める上でとくに望ましい。なお、
上側半導体部分側の凹所の縦断面形状は例えば深い皿状
や矩形状に形成することでよい。
The lower semiconductor portion is provided with an electrode layer disposed in the center of the lower side of the mass portion and an electrode layer disposed so as to make a pair at the opposite positions around the mass portion, and the mass portion and the central electrode are provided. The acceleration applied to the mass part from the suspension direction is detected from the change in the capacitance between the layers, and from the differential change in the capacitance between the mass part and the surrounding electrode layer pairs, the direction perpendicular to the suspension is detected. It is advantageous to detect the applied acceleration in order to separate and detect the acceleration received by the sensor into a plurality of components in mutually independent directions. Further, in this embodiment, a recess is provided in the surface portion of the lower semiconductor portion, and the mass portion of the upper semiconductor portion is formed in a shape that faces the surface of the recess portion and is opposed to the recess portion with a narrow gap. It is particularly desirable to dispose the central electrode layer on the bottom surface of the and the peripheral electrode layer pair on the side surface of the recess in order to enhance the detection sensitivity. In addition,
The vertical cross-sectional shape of the recess on the upper semiconductor portion side may be formed in a deep dish shape or a rectangular shape, for example.

【0008】このように中央の電極層と周囲の電極層対
を設ける場合、前者用の端子を下側半導体部分の裏面側
に設けてもよいが、加速度センサを集積回路に組み込む
には端子を表面側に設けるのが有利である。このために
は、下側半導体部分を一方の導電形の基板上に他方の導
電形のエピタキシャル層を成長させて両者間に他方の導
電形の埋込層を設けた構成とし、エピタキシャル層の表
面から中央の電極層と端子用接続層を他方の導電形で埋
込層に達するよう拡散して、中央の電極層用の端子を後
者の接続層の表面に設けるのがよい。
When the central electrode layer and the peripheral electrode layer pair are provided in this way, the former terminal may be provided on the back surface side of the lower semiconductor portion, but the terminal is required to incorporate the acceleration sensor into the integrated circuit. It is advantageous to provide it on the front side. To this end, the lower semiconductor portion is configured such that an epitaxial layer of the other conductivity type is grown on a substrate of one conductivity type and a buried layer of the other conductivity type is provided between the two, and the surface of the epitaxial layer is formed. It is preferable that the central electrode layer and the terminal connection layer are diffused with the other conductivity type so as to reach the buried layer, and the terminal for the central electrode layer is provided on the surface of the latter connection layer.

【0009】本発明センサに加速度が掛かった際の上側
半導体部分の質量部の変位を大きくかつ円滑にするに
は、支承部を円筒状に形成するとともに、周縁がこの支
承部に固定された円形のダイアフラム部とその中央に固
定された棒状の懸垂部を介して質量部を支承部に懸垂す
る構造とするのが有利である。かかる態様において検出
感度を高めるために質量部の変位を極力増加させるに
は、懸垂部を細いめに形成するのがよいが強度上の問題
が若干あるので、ダイアフラム部を薄いめに形成しさら
にはそれに窓を設けて可撓性を増加させる方が有利であ
る。
In order to make the displacement of the mass part of the upper semiconductor part large and smooth when acceleration is applied to the sensor of the present invention, the support part is formed in a cylindrical shape, and the periphery is fixed to this support part. It is advantageous to adopt a structure in which the mass portion is suspended on the support portion via the diaphragm portion and the rod-shaped suspension portion fixed to the center thereof. In this mode, in order to increase the displacement of the mass part as much as possible in order to increase the detection sensitivity, it is preferable to form the suspension part to be thin, but there are some problems in strength, so the diaphragm part should be formed to be thin. It is advantageous to provide the window with it to increase its flexibility.

【0010】本発明の半導体加速度センサの製造面で
は、下側半導体部分を単結晶半導体により構成し、上側
半導体部分をその上に絶縁膜を介し成長させた多結晶半
導体により構成するのが有利である。この場合の製造方
法としては、下側半導体部分の上面を薄い酸化膜で覆い
かつ要所には上側半導体部分との絶縁用に絶縁膜を被着
する工程と,薄い酸化膜の上に多結晶半導体の質量部を
配設する工程と,全面に厚い酸化膜を堆積しかつ支承部
と懸垂部用に溝を切る工程と,この溝内を充填しかつ厚
い酸化膜を覆うように多結晶半導体を成長させる工程
と、多結晶半導体の厚い酸化膜の上側部にエッチング用
の窓を開口した上でこの窓を介する化学的なエッチング
により厚い酸化膜と薄い酸化膜を除去する工程を経由す
るのが有利である。酸化膜が酸化シリコンの場合、最後
の工程におけるエッチングはふっ酸を用いて容易に行な
うことができ、両半導体部分の相互間の絶縁膜にはこれ
によりエッチングされない窒化シリコン等を用いるのが
よい。
In terms of manufacturing the semiconductor acceleration sensor of the present invention, it is advantageous that the lower semiconductor portion is made of a single crystal semiconductor and the upper semiconductor portion is made of a polycrystalline semiconductor grown on the insulating semiconductor film via an insulating film. is there. The manufacturing method in this case is to cover the upper surface of the lower semiconductor part with a thin oxide film and to attach an insulating film for insulation with the upper semiconductor part where necessary, and to deposit a polycrystal film on the thin oxide film. A step of arranging a mass part of the semiconductor, a step of depositing a thick oxide film on the entire surface and cutting a groove for a supporting part and a suspension part, and a polycrystalline semiconductor so as to fill the groove and cover the thick oxide film. And a step of opening an etching window on the upper side of the thick oxide film of the polycrystalline semiconductor and removing the thick oxide film and the thin oxide film by chemical etching through this window. Is advantageous. When the oxide film is silicon oxide, the etching in the final step can be easily performed using hydrofluoric acid, and it is preferable to use silicon nitride or the like which is not etched by the insulating film between the two semiconductor portions.

【0011】[0011]

【作用】本発明は前項の構成にいうように上側半導体部
分の質量部を下側半導体部分に固定された支承部から振
り子状に,かつ弾性的に懸垂することにより、センサが
加速度を受けたとき質量部が懸垂方向にもそれと直角方
向にも変位し得るようにするとともに、これに対応して
下側半導体部分にこの質量部と狭い間隙を介して対向す
る複数個の電極層を設けることにより、加速度がどの方
向から掛かっても質量部のかかる変位に基づくそれと各
電極層の間の静電容量の変化から加速度の3方向ないし
は少なくとも2方向の成分を単一の半導体加速度センサ
により検出できるようにしたものである。
According to the present invention, the sensor receives the acceleration by suspending the mass portion of the upper semiconductor portion from the support portion fixed to the lower semiconductor portion in a pendulum-like manner and elastically as described in the construction of the preceding paragraph. At this time, the mass part can be displaced both in the suspension direction and in the direction perpendicular thereto, and correspondingly, the lower semiconductor part is provided with a plurality of electrode layers facing the mass part with a narrow gap. Therefore, no matter which direction the acceleration is applied, the components in the three directions or at least two directions of the acceleration can be detected by a single semiconductor acceleration sensor based on the change in the capacitance between the mass part and each electrode layer based on the applied displacement. It was done like this.

【0012】[0012]

【実施例】以下、図を参照しながら本発明の具体実施例
を説明する。図1に本発明による半導体加速度センサの
一実施例とその動作を断面図と上面図で示し、図2にそ
の製造方法の例を断面図で示し、図3に異なる実施例を
断面図で示し、図4にその製造方法の例を断面図で示
す。なお、以下説明する実施例では下側半導体部分の中
央に1個の電極層とその周囲に電極層の対とを設け、下
側半導体部分に単結晶半導体を用い上側半導体部分を多
結晶半導体で構成するものとするが、本発明はかかる構
造に限らず種々の形態で実施することができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a semiconductor acceleration sensor according to the present invention and its operation in a sectional view and a top view, FIG. 2 shows an example of its manufacturing method in a sectional view, and FIG. 3 shows a different embodiment in a sectional view. FIG. 4 is a sectional view showing an example of the manufacturing method. In the embodiments described below, one electrode layer and a pair of electrode layers are provided in the center of the lower semiconductor portion, a single crystal semiconductor is used for the lower semiconductor portion, and a polycrystalline semiconductor is used for the upper semiconductor portion. Although configured, the present invention is not limited to such a structure and can be implemented in various forms.

【0013】図1(a) に断面で示された下側半導体部分
10は単結晶シリコンからなり、この例ではp形の半導体
基板11の表面に強いp形の埋込層12を所定のパターンで
拡散した上でn形のエピタキシャル層13を成長させてな
る。この下側半導体部分10の上面の中央部に電極層14を
強いp形で埋込層12まで達するように深く拡散するとと
もに、図1(b) に示すようその周囲の向き合う位置に電
極層15a, 15bの対15と電極層16a, 16bの対16を強いp形
で浅く拡散する。なお、埋込層12のパターンは中央部と
図の右下への延出部からなり、延出部の端部に達するよ
うに下側半導体部分10の表面からp形の接続層12aが深
く拡散される。また、電極層15a, 15bや16a, 16bのパタ
ーンも扇状部と端子用の外側への延出部からなる。
Lower semiconductor portion shown in cross section in FIG. 1 (a)
Reference numeral 10 is made of single crystal silicon. In this example, a strong p-type buried layer 12 is diffused on the surface of a p-type semiconductor substrate 11 in a predetermined pattern, and then an n-type epitaxial layer 13 is grown. At the central portion of the upper surface of the lower semiconductor portion 10, the electrode layer 14 is diffused deeply so as to reach the buried layer 12 with a strong p-type, and the electrode layer 15a is formed at a position facing the periphery thereof as shown in FIG. 1 (b). , 15b and the pair 16 of electrode layers 16a, 16b are shallowly diffused with a strong p-type. The pattern of the buried layer 12 is composed of a central portion and an extending portion to the lower right of the figure, and the p-type connecting layer 12a is deep from the surface of the lower semiconductor portion 10 so as to reach the end portion of the extending portion. Diffused. The patterns of the electrode layers 15a, 15b and 16a, 16b also include fan-shaped portions and outwardly extending portions for terminals.

【0014】図1(a) の上側半導体部分20は多結晶シリ
コンからなり、上側半導体部分10の上面に絶縁膜30を介
して固定ないし搭載される。図示の例の上側半導体部分
20は円板状の質量部21を円筒状の支承部25の上端部から
薄いダイアフラム部26と細い棒状の懸垂部27を介して懸
垂した構造をもち、かつダイアフラム26には複数個の窓
24がその可撓性を増すため例えばスリット状のパターン
で放射状に明けられている。図1(b) にこの上側半導体
部分20の質量部21と支承部25を図示の都合から破線によ
り示す。図のように支承部25の外周の一部から端子用の
張り出し部28が絶縁膜30の上に設けられる。
The upper semiconductor portion 20 of FIG. 1A is made of polycrystalline silicon and is fixed or mounted on the upper surface of the upper semiconductor portion 10 with an insulating film 30 interposed therebetween. Upper semiconductor part of the example shown
20 has a structure in which a disc-shaped mass portion 21 is suspended from the upper end of a cylindrical support portion 25 via a thin diaphragm portion 26 and a thin rod-shaped suspension portion 27, and the diaphragm 26 has a plurality of windows.
To increase its flexibility, 24 are laid out radially, for example in a slit-like pattern. In FIG. 1 (b), the mass portion 21 and the support portion 25 of the upper semiconductor portion 20 are shown by broken lines for convenience of illustration. As shown in the figure, a terminal overhanging portion 28 is provided on the insulating film 30 from a part of the outer periphery of the supporting portion 25.

【0015】図1(b) に示すようにこの張り出し部28に
接続されたアルミ等の金属膜により上側半導体部分20用
に単一の端子40が設けられる。下側半導体部分10に対し
ては図1(a) に示す絶縁膜30の窓31の個所に設ける金属
膜により端子が導出される。図1(b) のように中央の電
極膜14用に前述の埋込層12に接続された接続層12aの上
に端子41が設けられ、対15の電極層15a, 15b用にはそれ
らの延出部の上に端子42a, 42bがそれぞれ設けられ、同
様に対16の電極層16a, 16b用に端子43a, 43bがそれぞれ
設けられる。図1(a) と(b) のように構成された加速度
センサは後述のように半導体の製造プロセス技術を利用
して下側半導体部分10の上に上側半導体部分20を作り込
むことによって、2〜3mm角程度に小形化しあるいは関
連回路とともに集積回路装置のチップ内に組み込むこと
ができる。
As shown in FIG. 1B, a single terminal 40 is provided for the upper semiconductor portion 20 by a metal film such as aluminum connected to the projecting portion 28. A terminal is led out to the lower semiconductor portion 10 by a metal film provided at a portion of the window 31 of the insulating film 30 shown in FIG. As shown in FIG. 1 (b), a terminal 41 is provided on the connection layer 12a connected to the above-mentioned buried layer 12 for the central electrode film 14, and for the electrode layers 15a and 15b of the pair 15, those terminals are provided. Terminals 42a and 42b are provided on the extending portions, respectively, and similarly terminals 43a and 43b are provided for the electrode layers 16a and 16b of the pair 16, respectively. The acceleration sensor constructed as shown in FIGS. 1 (a) and 1 (b) can be manufactured by forming the upper semiconductor portion 20 on the lower semiconductor portion 10 using the semiconductor manufacturing process technology as described later. It can be miniaturized to about 3 mm square or incorporated into a chip of an integrated circuit device together with related circuits.

【0016】図1(c) と(d) に加速度を受けた時の状態
を要部断面で示す。図1(c) に示すようz方向の加速度
が質量部21に掛かるとダイアフラム部26の撓みや懸垂部
27の伸縮により質量部21と中央の電極層14との間隙が図
のδだけ変化して、両者間の静電容量の変化から加速度
が検出される。図1(d) に示すようx方向の加速度が掛
かると質量部21がダイアフラム部26と懸垂部27の撓みに
より図のθだけ傾き、質量部21と電極層15a, 15bとの間
の2個の静電容量の差動的な変化から加速度が検出され
る。同様に紙面と直角なy方向の加速度を受けた時、質
量部21と電極層16a, 16bとの間の静電容量の差動的変化
から加速度が検出される。
FIGS. 1 (c) and 1 (d) are cross-sectional views showing the state when the acceleration is applied. As shown in FIG. 1 (c), when the acceleration in the z direction is applied to the mass part 21, the diaphragm part is bent or suspended.
Due to the expansion and contraction of 27, the gap between the mass portion 21 and the central electrode layer 14 changes by δ in the figure, and the acceleration is detected from the change in the capacitance between them. As shown in FIG. 1 (d), when the acceleration in the x direction is applied, the mass part 21 is inclined by θ in the figure due to the deflection of the diaphragm part 26 and the suspension part 27, and the two parts between the mass part 21 and the electrode layers 15a, 15b are provided. Acceleration is detected from the differential change in the capacitance of the. Similarly, when an acceleration in the y direction perpendicular to the paper surface is received, the acceleration is detected from the differential change in the capacitance between the mass portion 21 and the electrode layers 16a and 16b.

【0017】次に図2を参照して図1の実施例の加速度
センサの製造方法の例を説明する。図2(a) の状態では
下側半導体部分10は前述のようにp形の基板11に強いp
形の埋込層12を拡散した後にn形のエピタキシャル層13
を成長させてなり、その表面からp形の中央の電極膜14
が埋込層12に達するよう, 周囲の電極膜15a, 15b等が例
えば2μmの深さにそれぞれ1018原子/cm3 以上の高不
純物濃度で拡散されている。さらにこの工程では下側半
導体部分10の表面に酸化膜17が 0.5〜1μmの膜厚で被
着される。なお、この酸化膜17の膜厚により加速度検出
用の静電容量の電極間の間隙長が設定される。
Next, an example of a method of manufacturing the acceleration sensor of the embodiment shown in FIG. 1 will be described with reference to FIG. In the state of FIG. 2A, the lower semiconductor portion 10 has a strong p-type substrate 11 as described above.
The n-type epitaxial layer 13 after diffusing the n-type buried layer 12
From the surface of the p-type central electrode film 14
So as to reach the buried layer 12, the surrounding electrode films 15a, 15b, etc. are diffused at a high impurity concentration of 10 18 atoms / cm 3 or more, for example, to a depth of 2 μm. Further, in this step, the oxide film 17 is deposited on the surface of the lower semiconductor portion 10 to a thickness of 0.5 to 1 μm. The thickness of the oxide film 17 sets the gap length between the electrodes of the capacitance for acceleration detection.

【0018】図2(b) の工程では、下側半導体部分10の
表面に窒化シリコン等の絶縁膜30をCVD法により例え
ば2μm程度の膜厚に成膜してフォトエッチングを施す
ことにより、図のように表面の中央部分を除いたほぼ全
体を覆いかつ要所に端子用の窓31を備えるパターンに形
成する。なお、この図2(b) の絶縁膜30の形成工程と図
2(a) の酸化膜17の被着工程は互いに入れ換えてもよ
い。次の図2(c) の工程では、多結晶シリコンをCVD
法により例えば10〜50μmの膜厚に成長させかつフォト
エッチングを施すことにより酸化膜17の上に質量部21を
円板状パターンで配設する。この質量部21用の多結晶シ
リコンは例えばドープ用の不純物を含んだふん囲気内で
CVD成長させて高導電率をもたせるのがよい。
In the step of FIG. 2B, an insulating film 30 of silicon nitride or the like is formed on the surface of the lower semiconductor portion 10 by the CVD method to a film thickness of, for example, about 2 μm, and photoetching is performed. As described above, the pattern is formed so as to cover almost the entire surface except the central portion and to have a window 31 for a terminal at a key portion. The step of forming the insulating film 30 in FIG. 2B and the step of depositing the oxide film 17 in FIG. 2A may be interchanged. In the next step of FIG. 2 (c), polycrystalline silicon is CVD
The mass portion 21 is arranged in a disc-shaped pattern on the oxide film 17 by growing the film to a film thickness of 10 to 50 μm by a method and performing photoetching. It is preferable that the polycrystalline silicon for the mass part 21 has high conductivity by CVD growth in an atmosphere containing impurities for doping, for example.

【0019】図2(d) の工程では、シランと酸素を含む
ふん囲気ガス中の熱CVD法により酸化膜22を例えば 1
00〜数百μmの膜厚で全面に成長させた後にふっ素系ガ
スを用いるリアクティブイオンエッチングを施すことに
より、図のように質量部21の中央部を露出させる細い円
形断面の溝22aと絶縁膜30の一部を露出させる環状の溝
22bを異方性のエッチング条件で深く掘り込む。さらに
図2(e) の工程では、多結晶シリコン23を図のように溝
22aと22bを充填しかつ酸化膜22の上面を覆うように質
量部21用と同様な要領で厚く成長させた後に、いわゆる
エッチバックを施して上面を図のように平坦化する。な
お、この多結晶シリコン23の酸化膜22の上側部分の膜厚
は例えば数〜30μmとするのがよい。
In the step shown in FIG. 2D, the oxide film 22 is formed, for example, by a thermal CVD method in an atmosphere gas containing silane and oxygen.
Insulate the thin circular groove 22a that exposes the center of the mass 21 as shown in the figure by performing reactive ion etching using a fluorine-based gas after growing the entire surface to a thickness of 00 to several hundreds of μm. An annular groove that exposes a portion of the membrane 30
22b is dug deep under anisotropic etching conditions. Further, in the step of FIG. 2 (e), the polycrystalline silicon 23 is grooved as shown in the figure.
After growing thickly in the same manner as for the mass part 21 so as to fill 22a and 22b and cover the upper surface of the oxide film 22, so-called etch back is performed to flatten the upper surface as shown in the figure. The film thickness of the upper portion of the oxide film 22 of the polycrystalline silicon 23 is preferably several to 30 μm, for example.

【0020】図2(f) の工程では化学エッチングにより
上側半導体部分20を形成する。まず同図(e) の酸化膜22
上の多結晶シリコン23に窓24を明けた上で、ふっ酸液の
吹き付け等の手段で窓24を介して酸化膜22とその下側の
酸化膜17をエッチングにより除去して図2(f) の状態と
する。この際に窒化シリコンの絶縁膜30はふっ酸液によ
ってはエッチングされないので、下側半導体部分10の上
側にはこの絶縁膜30を除いて多結晶シリコンのみが残
り、前述の円筒状の支承部25と,円板状のダイアフラム
部26と,懸垂部27と,それから懸垂された質量部21とか
らなる上側半導体部分20が形成される。なお、上述の窓
24を明ける際に支承部25の外側に相当する図2(e) の多
結晶シリコン23にも開口を設けて置いてその下側の酸化
膜30と17をエッチングにより除去する。この図2(f) の
工程後は、絶縁膜30の窓31の個所に端子用の金属膜を設
けて図1(a) の完成状態とする。
In the step of FIG. 2F, the upper semiconductor portion 20 is formed by chemical etching. First of all, the oxide film 22 in FIG.
After opening the window 24 in the upper polycrystalline silicon 23, the oxide film 22 and the oxide film 17 therebelow are removed by etching through the window 24 by means such as spraying a hydrofluoric acid solution. ) State. At this time, since the insulating film 30 of silicon nitride is not etched by the hydrofluoric acid solution, only the polycrystalline silicon remains on the upper side of the lower semiconductor portion 10 except for the insulating film 30, and the cylindrical support portion 25 described above is used. The upper semiconductor portion 20 is formed of the disk-shaped diaphragm portion 26, the suspension portion 27, and the mass portion 21 suspended from the suspension portion 27. Note that the above windows
When opening 24, an opening is also provided in the polycrystalline silicon 23 of FIG. 2 (e) corresponding to the outside of the support portion 25, and the oxide films 30 and 17 thereunder are removed by etching. After the step of FIG. 2 (f), a metal film for a terminal is provided in the window 31 of the insulating film 30 to complete the state of FIG. 1 (a).

【0021】図3に本発明の異なる実施例を図1(a) に
対応する断面図で示す。図の図1に対応する部分には同
じ符号が付されている。この実施例では下側半導体部分
10の上面の中央部に凹所19を掘り込み、これに応じて上
側半導体部分20の質量部21を凹所19の表面に沿いそれと
狭い間隙を介して対向する形状に形成する。凹所19は図
の例では深い皿状に掘り込まれ、その底面に中央の電極
層14が, 斜めの側面に周囲の電極層15a, 15b等がそれぞ
れ配設される。このため、電極層15a, 15b等は図1の実
施例の場合よりも深く拡散される。これらの点以外の部
分の構造は前の実施例と変わるところはない。
FIG. 3 shows a different embodiment of the present invention in a sectional view corresponding to FIG. 1 (a). Parts corresponding to those in FIG. 1 are designated by the same reference numerals. In this example, the lower semiconductor portion
A recess 19 is dug in the central portion of the upper surface of the upper portion 10, and accordingly, a mass portion 21 of the upper semiconductor portion 20 is formed along the surface of the recess 19 so as to face it with a narrow gap. In the illustrated example, the recess 19 is dug into a deep dish, and the central electrode layer 14 is provided on the bottom surface thereof, and the peripheral electrode layers 15a, 15b, etc. are provided on the oblique side surfaces thereof. Therefore, the electrode layers 15a, 15b, etc. are diffused deeper than in the case of the embodiment of FIG. The structure other than these points is the same as that of the previous embodiment.

【0022】この図3の実施例では、質量部21にz方向
の加速度を受けた時のそれと中央の電極層14の間の静電
容量の変化は図1の実施例と同等であるが、加速度がx
方向ないし紙面に直角なy方向に掛かった時の質量部21
と周囲の電極層15a, 15b等の間の静電容量の差動的な変
化が図1の場合より大きくなるので、横方向に掛かる加
速度に対する検出感度が高い利点がある。容易にわかる
ようにこの検出感度は凹所19の側面の傾斜が急なほど高
くなり、凹所19を矩形の縦断面形状に形成するのが感度
向上に有利になる。
In the embodiment of FIG. 3, the change in the electrostatic capacitance between the mass portion 21 and the central electrode layer 14 when the mass portion 21 receives acceleration in the z direction is the same as that of the embodiment of FIG. Acceleration is x
Mass part 21 when hung in the direction y or the direction perpendicular to the paper surface
Since the differential change in the electrostatic capacitance between the electrode layers 15a, 15b, etc., and the surrounding electrode layers is larger than that in the case of FIG. 1, there is an advantage that the detection sensitivity to the lateral acceleration is high. As can be easily seen, this detection sensitivity becomes higher as the side surface of the recess 19 becomes steeper, and it is advantageous to improve the sensitivity to form the recess 19 in a rectangular vertical sectional shape.

【0023】図4を参照しながらこの図3の構造の加速
度センサに適する製造方法の要点を説明する。図4(a)
は前の図2(a) に相当する状態を示し、下側半導体部分
10の上面が薄い酸化膜17で覆われているが、上述のよう
に周囲の電極層15a, 15b等が図2(a) の場合よりも深
く,例えば数〜10μm程度の深さに拡散されている点が
異なる。次の図4(b) では凹所19を掘り込むためこの実
施例では厚い酸化膜18をいわゆる L0COS法により成長さ
せる。このため、酸化膜18を成長させるべき範囲以外の
酸化膜17の上に窒化シリコン膜18aで覆った状態で高温
下の熱酸化処理を施すことにより、厚い酸化膜18を下側
半導体部分10の表面に図示のように皿状に5μm程度以
上食い込ませて成長させる。この後は下側半導体部分10
の表面から窒化シリコン膜18aはもちろん酸化膜17と18
をすべて除去する。
The essential points of the manufacturing method suitable for the acceleration sensor having the structure of FIG. 3 will be described with reference to FIG. Figure 4 (a)
Shows the state corresponding to the previous Figure 2 (a), the lower semiconductor part
Although the upper surface of 10 is covered with a thin oxide film 17, as described above, the surrounding electrode layers 15a, 15b, etc. are diffused deeper than in the case of FIG. 2 (a), for example, to a depth of several to 10 μm. Is different. In the next FIG. 4 (b), in order to dig a recess 19, a thick oxide film 18 is grown by the so-called L0COS method in this embodiment. Therefore, a thick oxide film 18 is formed on the lower semiconductor portion 10 by performing a thermal oxidation process at a high temperature on the oxide film 17 outside the range where the oxide film 18 should be grown while being covered with the silicon nitride film 18a. As shown in the figure, the surface is made to dig into a dish shape for 5 μm or more to grow. After this, the lower semiconductor part 10
Of the silicon nitride film 18a and the oxide films 17 and 18 from the surface of the
Remove all.

【0024】図4(c) では、下側半導体部分10の表面に
酸化膜17aを例えば 0.5〜1μmの膜厚で付け直しかつ
図2(b) の要領で窒化シリコンの絶縁膜30を配設した上
で、図2(c) の要領で多結晶シリコンの質量部21を凹所
19を覆う酸化膜17aの上側に配設する。これにより質量
部21が凹所19の皿状表面に沿った形状に形成される。以
後はこれに図2(d) 〜(f) の工程を施た上で、金属膜の
端子を配設して図3の完成状態とすることでよい。な
お、この図4の製造方法の例では凹所19を皿状に形成す
るために L0COS法による厚い酸化膜18を利用したが、凹
所19を前述の矩形縦断面形状にするには図4(b) の段階
でフォトエッチングによりこれを掘り込むようにすれば
よい。
In FIG. 4 (c), the oxide film 17a is reattached on the surface of the lower semiconductor portion 10 to a thickness of 0.5 to 1 .mu.m, for example, and the insulating film 30 of silicon nitride is provided as shown in FIG. 2 (b). Then, as shown in FIG. 2 (c), the polycrystal silicon mass part 21 is recessed.
It is provided above the oxide film 17a that covers 19. As a result, the mass portion 21 is formed in a shape along the dish-shaped surface of the recess 19. After that, the steps of FIGS. 2D to 2F may be performed, and then the terminals of the metal film may be arranged to complete the state of FIG. In the example of the manufacturing method shown in FIG. 4, the thick oxide film 18 formed by the L0COS method was used to form the recess 19 in the shape of a dish. In the step (b), this may be dug by photoetching.

【0025】以上説明した図1や図3の実施例の半導体
加速度センサでは、質量部に掛かるzとxの2方向ない
しy方向を含めた3方向の加速度を単一のセンサで検出
することができ、かつこれらの方向の加速度成分を電気
的に相互に分離して検出することができる。また、質量
部と各電極膜の間の静電容量から得られる電気信号を適
宜に合成することにより、例えば自動車の衝突時の人身
保護に最も適するよう正面方向のほか横方向からの衝撃
力も加味した所望の角度感度特性をもつ加速度検出値を
作ることができる。
In the semiconductor acceleration sensor of the embodiment shown in FIGS. 1 and 3 described above, a single sensor can detect acceleration applied to the mass portion in two directions of z and x or in three directions including the y direction. In addition, the acceleration components in these directions can be electrically separated from each other and detected. Also, by appropriately synthesizing the electric signal obtained from the capacitance between the mass part and each electrode film, for example, the impact force from the front as well as the lateral direction is added so that it is most suitable for personal protection in the event of an automobile collision. The acceleration detection value having the desired angular sensitivity characteristic can be created.

【0026】[0026]

【発明の効果】以上述べたとおり本発明によれば、加速
度センサを相互に絶縁した上下1対の半導体部分から構
成し、上側半導体部分に下側半導体部分に固定された支
承部とそれから振り子状かつ弾性的に懸垂された質量部
を設け、下側半導体部分にその表面部に質量部と間隙を
介して対向する複数個の電極層を不純物拡散により作り
込み、加速度を受けたとき質量部を変位させて各電極層
との間の静電容量の変化から懸垂方向とそれに直角方向
の加速度を検出することより、次の効果を上げることが
できる。
As described above, according to the present invention, the acceleration sensor is composed of a pair of upper and lower semiconductor parts which are insulated from each other, and the upper semiconductor part is fixed to the lower semiconductor part, and the supporting part and the pendulum shape. In addition, a mass part that is elastically suspended is provided, and a plurality of electrode layers facing the mass part through a gap are formed in the surface part of the lower semiconductor part by impurity diffusion, and the mass part is formed when an acceleration is applied. The following effects can be obtained by displacing and detecting the acceleration in the suspending direction and the direction perpendicular to it from the change in capacitance between each electrode layer.

【0027】(a) 質量部を支承部から振り子状かつ弾性
的に懸垂することにより、加速度を受けた時に質量部を
懸垂方向にもそれと直角な方向にも変位させて、それに
伴う静電容量の変化から2方向ないし3方向から掛かる
加速度を単一の加速度センサにより検出することがで
き、かつ質量部に対する懸垂の弾性値を適宜に選定する
ことにより検出感度を高めることができる。
(A) Pendantly and elastically suspending the mass part from the support part to displace the mass part both in the suspending direction and in a direction perpendicular to it when an acceleration is applied, and the resulting capacitance The acceleration applied from two or three directions due to the change can be detected by a single acceleration sensor, and the detection sensitivity can be increased by appropriately selecting the elastic value of suspension with respect to the mass portion.

【0028】(b) 電極層を複数設けてそれぞれ質量部と
の間に静電容量を形成させるので、加速度を受けた時の
各静電容量の変化から加速度の各方向成分を独立に検出
することができ、かつこれらの静電容量の変化による検
出信号を電気的に適宜に合成ないし組み合わせることに
より用途や目的に最適な感度方向特性で加速度を検出す
ることができる。
(B) Since a plurality of electrode layers are provided and an electrostatic capacitance is formed between each of them and the mass part, each directional component of acceleration is independently detected from the change in each electrostatic capacitance when receiving acceleration. Further, by appropriately combining or combining the detection signals due to the change in the electrostatic capacity, it is possible to detect the acceleration with the sensitivity direction characteristic most suitable for the intended use or purpose.

【0029】これらの効果のほか、本発明の加速度セン
サは半導体プロセス技術を利用して2〜3mm角の極小形
に構成でき、関連回路とともに集積回路チップへの組み
込みが容易で、かつ安価に提供できる特長があり、自動
車の衝突の検出等に適用して加速度を所望の方向感度特
性で検出できる効果を奏し得るものである。
In addition to these effects, the acceleration sensor of the present invention can be formed into a miniature size of 2 to 3 mm square by utilizing semiconductor process technology, can be easily incorporated into an integrated circuit chip together with related circuits, and can be provided at low cost. The present invention has the advantage that it can be applied to the detection of a collision of an automobile and the like, and can exert an effect of detecting acceleration with a desired directional sensitivity characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体加速度センサの実施例を示
し、同図(a) はその縦断面図、同図(b) は下側半導体部
分の上面図、同図(c) と(d) は加速度がz方向とx方向
から掛かった時の状態をそれぞれ示す要部の断面図であ
る。
FIG. 1 shows an embodiment of a semiconductor acceleration sensor according to the present invention, where FIG. 1 (a) is a longitudinal sectional view thereof, FIG. 1 (b) is a top view of a lower semiconductor portion, and FIGS. [Fig. 3] is a cross-sectional view of essential parts showing states when acceleration is applied from the z direction and the x direction, respectively.

【図2】図1の実施例に対応する半導体加速度センサの
製造方法例を示し、同図(a) は酸化膜の被着工程、同図
(b) は絶縁膜の形成工程、同図(c) は多結晶シリコンの
質量部の配設工程、同図(d) は酸化膜の成長工程、同図
(e) は多結晶シリコンの成長工程、同図(f) はエッチン
グ工程での状態をそれぞれ示す下側半導体部分と上側半
導体部分の断面図である。
2 shows an example of a method of manufacturing a semiconductor acceleration sensor corresponding to the embodiment of FIG. 1, where FIG. 2 (a) is an oxide film deposition step, FIG.
(b) is the step of forming the insulating film, (c) is the step of arranging the mass parts of polycrystalline silicon, (d) is the step of growing the oxide film,
(e) is a cross-sectional view of a lower semiconductor portion and an upper semiconductor portion, showing a state in a polycrystalline silicon growth step and a state in an etching step, respectively.

【図3】本発明による半導体加速度センサの異なる実施
例を示す縦断面図である。
FIG. 3 is a vertical sectional view showing another embodiment of the semiconductor acceleration sensor according to the present invention.

【図4】図3の実施例に対応する半導体加速度センサの
製造方法を要点について示し、同図(a) は酸化膜の被着
工程、同図(a) は凹所の掘り込み用の厚い酸化膜の成長
工程、同図(c) は絶縁膜の形成工程および多結晶シリコ
ンの質量部の配設工程の状態をそれぞれ示す下側半導体
部分の断面図である。
4A and 4B show the main points of a method of manufacturing a semiconductor acceleration sensor corresponding to the embodiment of FIG. 3, where FIG. 4A is an oxide film deposition step, and FIG. 4A is a thick digging for a recess. FIG. 3C is a cross-sectional view of the lower semiconductor portion showing the states of the oxide film growing step, the insulating film forming step, and the polycrystalline silicon mass part arranging step.

【図5】従来の半導体加速度センサの構造の概要をカン
チレバー形センサについて示す斜視図である。
FIG. 5 is a perspective view showing an outline of the structure of a conventional semiconductor acceleration sensor for a cantilever sensor.

【符号の説明】[Explanation of symbols]

10 下側半導体部分 14 中央の電極層 15a 周囲の対をなす電極層 15b 周囲の対をなす電極層 16a 周囲の対をなす電極層 16b 周囲の対をなす電極層 19 凹所 20 上側半導体部分 21 質量部 24 ダイアフラム部の窓 25 支承部 26 ダイアフラム部 27 懸垂部 30 絶縁膜 x 加速度がかかる方向 z 加速度が掛かる方向 10 Lower semiconductor part 14 Central electrode layer 15a Peripheral paired electrode layer 15b Peripheral paired electrode layer 16a Peripheral paired electrode layer 16b Peripheral paired electrode layer 19 Recess 20 Upper semiconductor part 21 Mass part 24 Window of diaphragm part 25 Bearing part 26 Diaphragm part 27 Suspension part 30 Insulation film x Direction of acceleration z Direction of acceleration

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】相互に絶縁された上下1対の半導体部分か
らなり両者間に形成される静電容量の変化から加速度を
検出するセンサであって、上側半導体部分が下側半導体
部分に固定された支承部とそれから振り子状かつ弾性的
に懸垂された質量部を備え、下側半導体部分の表面部に
質量部と間隙を介して対向する複数の電極層が拡散さ
れ、加速度を受けた時に質量部を変位させて電極層との
間の静電容量の変化から質量部の懸垂方向とそれに直角
方向の加速度を検出し得るようにしたことを特徴とする
半導体加速度センサ。
1. A sensor for detecting acceleration from a change in capacitance formed between a pair of upper and lower semiconductor parts insulated from each other, wherein an upper semiconductor part is fixed to a lower semiconductor part. A support part and a mass part that is pendulum-like and elastically suspended from the support part, and a plurality of electrode layers facing the mass part through a gap are diffused into the surface part of the lower semiconductor part, and the mass is applied when an acceleration is applied. A semiconductor acceleration sensor, wherein the acceleration of the mass part in the suspension direction and the direction perpendicular to the mass part can be detected from the change of the capacitance between the mass part and the electrode layer.
【請求項2】請求項1に記載のセンサにおいて、下側半
導体部分が質量部の下側の中央に配設された電極層とそ
の周囲の向き合う位置に対をなすように配設された電極
層を備え、質量部と中央の電極層の間の静電容量変化に
より質量部の懸垂方向に掛かる加速度を,質量部と周囲
の電極層対の間の静電容量変化により懸垂と直角方向に
掛かる加速度をそれぞれ検出するようにしたことを特徴
とする半導体加速度センサ。
2. The electrode according to claim 1, wherein the lower semiconductor portion is arranged so as to make a pair at a position facing the electrode layer arranged at the center of the lower side of the mass portion and its periphery. Layer, the acceleration applied in the suspension direction of the mass part due to the capacitance change between the mass part and the central electrode layer, in the direction perpendicular to the suspension due to the capacitance change between the mass part and the surrounding electrode layer pair. A semiconductor acceleration sensor characterized in that the applied acceleration is detected respectively.
【請求項3】請求項2に記載のセンサにおいて、下側半
導体部分の表面部に凹所が設けられ、上側半導体部分の
質量部が凹所の表面と間隙を置いて対向する形状に形成
され、中央の電極層が凹所の底面に,周囲の電極層対が
凹所の側面にそれぞれ配設されたことを特徴とする半導
体加速度センサ。
3. The sensor according to claim 2, wherein a recess is provided in a surface portion of the lower semiconductor portion, and a mass portion of the upper semiconductor portion is formed in a shape facing the surface of the recess with a gap. The semiconductor acceleration sensor is characterized in that the central electrode layer is disposed on the bottom surface of the recess and the peripheral electrode layer pair is disposed on the side surface of the recess.
【請求項4】請求項1に記載のセンサにおいて、下側半
導体部分が単結晶の半導体から,上側半導体部分がその
上に絶縁膜を介し成長された多結晶の半導体からそれぞ
れ構成されることを特徴とする半導体加速度センサ。
4. The sensor according to claim 1, wherein the lower semiconductor portion is composed of a single crystal semiconductor, and the upper semiconductor portion is composed of a polycrystalline semiconductor grown on the insulating semiconductor film. Characteristic semiconductor acceleration sensor.
JP4174593A 1992-07-02 1992-07-02 Semiconductor acceleration sensor Pending JPH0618552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174593A JPH0618552A (en) 1992-07-02 1992-07-02 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174593A JPH0618552A (en) 1992-07-02 1992-07-02 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH0618552A true JPH0618552A (en) 1994-01-25

Family

ID=15981285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174593A Pending JPH0618552A (en) 1992-07-02 1992-07-02 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0618552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520348A (en) * 2015-06-11 2018-07-26 ジョージア テック リサーチ コーポレイション MEMS inertial measurement device with tilted electrodes for quadrature tuning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520348A (en) * 2015-06-11 2018-07-26 ジョージア テック リサーチ コーポレイション MEMS inertial measurement device with tilted electrodes for quadrature tuning

Similar Documents

Publication Publication Date Title
US6076404A (en) Micromechanical sensor including a single-crystal silicon support
US6030850A (en) Method for manufacturing a sensor
US6293149B1 (en) Acceleration sensor element and method of its manufacture
US5616523A (en) Method of manufacturing sensor
US8558327B2 (en) Micromechanical component and corresponding production method
JP3616659B2 (en) Micromechanical sensor and manufacturing method thereof
JP3151956B2 (en) Acceleration sensor
JPH0479420B2 (en)
US20020158293A1 (en) Micro structure for vertical displacement detection and fabricating method thereof
JPH0453267B2 (en)
JP2010161266A (en) Semiconductor device and method of manufacturing the same
GB2240178A (en) Acceleration sensor with etched vibratable tongue
USRE41856E1 (en) Process for manufacturing high-sensitivity accelerometric and gyroscopic integrated sensors, and sensor thus produced
JPH08510094A (en) Integrated micromechanical sensor device and manufacturing method thereof
US5172205A (en) Piezoresistive semiconductor device suitable for use in a pressure sensor
JPS62232171A (en) Semiconductor acceleration sensor
CN1243576A (en) Micromechanical semiconductor device and method for production thereof
CN106290985B (en) A kind of condenser type compound sensor and its manufacturing method
JPH0618552A (en) Semiconductor acceleration sensor
JP3530250B2 (en) Manufacturing method of capacitance type acceleration sensor
JP4174853B2 (en) Manufacturing method of semiconductor dynamic quantity sensor and manufacturing method of semiconductor pressure sensor
JP3506794B2 (en) Acceleration sensor and method of manufacturing the same
JP4178574B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof
US20220411256A1 (en) Mems device comprising an insulated suspended diaphragm, in particular pressure sensor, and manufacturing process thereof
JP3506795B2 (en) Manufacturing method of capacitance type acceleration sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees