JPH06160420A - Semiconductor acceleration sensor and its manufacture - Google Patents
Semiconductor acceleration sensor and its manufactureInfo
- Publication number
- JPH06160420A JPH06160420A JP4332173A JP33217392A JPH06160420A JP H06160420 A JPH06160420 A JP H06160420A JP 4332173 A JP4332173 A JP 4332173A JP 33217392 A JP33217392 A JP 33217392A JP H06160420 A JPH06160420 A JP H06160420A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- semiconductor
- acceleration sensor
- semiconductor substrate
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0828—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
Landscapes
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体加速度センサ及
びその製造方法に関するもので、より具体的には各電極
の配線取り出し構造の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor and a method for manufacturing the same, and more particularly to improvement of a wiring lead-out structure for each electrode.
【0002】[0002]
【従来の技術】自動車の車体制御やエンジン制御等に用
いられる静電容量式の半導体加速度センサは、図7に示
すように一般に可動電極を構成するシリコン板1の上下
両面にガラス板2を配置する。この時、可動電極と、ガ
ラス板2の対向面との間には、所定の空隙が形成され、
可動電極の揺動を許容している。そしてこのガラス板2
の内面、すなわち、可動電極に対向する面の所定位置に
アルミ蒸着等により固定電極を形成する。そして、上記
のように可動電極が揺動すると、上記可動電極と固定電
極の間隙が変動し、両電極間に生じる静電容量が変化す
る。2. Description of the Related Art In a capacitance type semiconductor acceleration sensor used for vehicle body control or engine control of an automobile, glass plates 2 are arranged on both upper and lower sides of a silicon plate 1 which generally constitutes a movable electrode, as shown in FIG. To do. At this time, a predetermined gap is formed between the movable electrode and the facing surface of the glass plate 2,
The movable electrode is allowed to swing. And this glass plate 2
The fixed electrode is formed by aluminum vapor deposition or the like on a predetermined position of the inner surface of, ie, the surface facing the movable electrode. When the movable electrode swings as described above, the gap between the movable electrode and the fixed electrode changes, and the electrostatic capacitance generated between both electrodes changes.
【0003】そして、係る静電容量の変化を検出するた
め、両電極に接続された配線(電極リード)を外部に引
き出す必要があるが、係る引き出しは、例えば固定電極
側ではそれに連続するようにしてアルミ配線3を下方の
ガラス板2の上面に形成する。そして、シリコン板1の
所定部位を切除して上記アルミ配線3の端部3aを露出
して取り出し用のパッドとするとともに、シリコン板1
の下面側のアルミ配線3に対応する部位は凹溝1aが形
成され、その凹溝1a以外の下面と下側のガラス板2と
が接合するようになっている。In order to detect such a change in capacitance, it is necessary to lead out the wiring (electrode lead) connected to both electrodes to the outside. However, such a lead-out should be continuous on the fixed electrode side, for example. The aluminum wiring 3 is formed on the upper surface of the glass plate 2 below. Then, a predetermined portion of the silicon plate 1 is cut off to expose the end 3a of the aluminum wiring 3 to be a pad for taking out, and the silicon plate 1
A concave groove 1a is formed in a portion of the lower surface corresponding to the aluminum wiring 3, and the lower surface other than the concave groove 1a is joined to the lower glass plate 2.
【0004】しかし、そのままの構成では、シリコン板
1に形成する凹溝1aの内形状とアルミ配線3の外形状
とを一致させることは困難であるため、凹溝1aの幅並
びに深さは、それぞれアルミ配線3の幅並びに高さより
も一回り以上大きく設定することになり、図(B)に示
すように両者の間には隙間を生じてしまう。したがっ
て、隙間を介して内部に塵等が入り込むおそれがあり、
故障の原因となる。However, with the structure as it is, it is difficult to match the inner shape of the concave groove 1a formed in the silicon plate 1 with the outer shape of the aluminum wiring 3, so that the width and depth of the concave groove 1a are The width and height of the aluminum wiring 3 are set to be larger than the width and height of the aluminum wiring 3 by one or more, and a gap is generated between the two as shown in FIG. Therefore, there is a risk that dust, etc. may enter inside through the gap,
It may cause a failure.
【0005】そこで、上記シリコン板1並びに上方のガ
ラス板2の所定部位に上下に貫通する貫通孔1b,2a
を形成し、各板1,2を積層配置後、その貫通孔1b,
2a内に接着剤(樹脂)等を充填して密封するようにな
っている。Therefore, through holes 1b and 2a vertically penetrating through the silicon plate 1 and the upper glass plate 2 at predetermined positions.
And the plates 1 and 2 are stacked and arranged, and then the through holes 1b,
2a is filled with an adhesive (resin) or the like and hermetically sealed.
【0006】[0006]
【発明が解決しようとする課題】しかし、上記した構成
では、封止を行うために接着剤封入という余分なプロセ
スが必要となり、作業性が悪い。また、上記のアルミ配
線3は、固定電極側に配線であるが、実際のセンサとし
て使用する場合にはシリコン板1に形成した可動電極か
らの配線(シリコンが導電性を有するためそのシリコン
板自体を配線に利用する)を要する。そして、係る配線
はシリコン板2の上面に形成されるため、上方のガラス
板2の一部をさらに切除することにより露出したシリコ
ン板2の上面(表面)を取り出し用のパッド4とする
(同図(B)参照)。すなわち、両パッド3a,4の高
さ位置が異なるため、実装の際における外部回路等との
接続を行うためのワイヤボンディングの作業性が悪い。However, in the above-mentioned structure, an extra process of encapsulating an adhesive is required for sealing, and workability is poor. Further, the aluminum wiring 3 is wiring on the fixed electrode side, but when used as an actual sensor, wiring from the movable electrode formed on the silicon plate 1 (since silicon has conductivity, the silicon plate itself Is used for wiring). Since such wiring is formed on the upper surface of the silicon plate 2, the upper surface (front surface) of the silicon plate 2 exposed by further cutting off a part of the upper glass plate 2 is used as a pad 4 for extraction (same as above). See FIG. That is, since the height positions of the pads 3a and 4 are different from each other, workability of wire bonding for connecting to an external circuit or the like at the time of mounting is poor.
【0007】さらに空気は温度によりその圧力が変動す
るため、センサ内部を減圧したり、或いは、係る影響の
少ない雰囲気を封入することが好ましい。しかし上記の
センサではアルミ配線3とシリコン板1の凹溝1aとの
間に形成される隙間を介してセンサ内部が外部と連通状
態となり、上記のごとく製造後密封したとしても内部を
減圧状態等にすることはできず、センサ内に空気が存在
し、その空気の影響を受けてセンサの精度が落ちてしま
う。Further, since the pressure of air changes depending on the temperature, it is preferable to depressurize the inside of the sensor or to enclose an atmosphere which has little influence. However, in the above sensor, the inside of the sensor is in communication with the outside through the gap formed between the aluminum wiring 3 and the concave groove 1a of the silicon plate 1, and even if the inside of the sensor is sealed after manufacturing as described above, the inside of the sensor is in a depressurized state, etc. However, there is air in the sensor, and the accuracy of the sensor deteriorates under the influence of the air.
【0008】本発明は、上記した背景に鑑みてなされた
もので、その目的とするところは、封止用の特別なプロ
セスが不要で、しかも、センサ内部を減圧や所望の雰囲
気にすることができ、さらに必要に応じて電極配線の取
り出し用のパッドを同一面上にすることが可能な半導体
加速度センサ及びその製造方法を提供することにある。The present invention has been made in view of the above background, and it is an object of the present invention that a special process for sealing is unnecessary, and further, the inside of the sensor can be depressurized and a desired atmosphere can be obtained. A further object of the present invention is to provide a semiconductor acceleration sensor and a method of manufacturing the same, in which pads for taking out electrode wirings can be formed on the same surface as necessary.
【0009】[0009]
【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る半導体加速度センサでは加速度に
応じて変位する可動電極が形成された半導体基板の両側
に絶縁基板を配置し、かつ、その絶縁基板の所定板に前
記可動電極に対し所定の間隙をおいて固定電極を形成
し、前記変位にともない前記可動電極と前記固定電極と
の間で生じる静電容量の変化から加速度を検出する半導
体加速度センサにおいて、前記絶縁基板に形成された貫
通孔の内周全面に形成された金属性被膜の端部を、前記
貫通孔に対向する前記半導体基板に形成された金属性の
連結線に接続するとともにその接続部位を無端状に配置
した。そしてさらに、前記貫通孔を備えた絶縁基板に形
成された前記固定電極を前記連結線に接続した。In order to achieve the above object, in a semiconductor acceleration sensor according to the present invention, insulating substrates are arranged on both sides of a semiconductor substrate on which movable electrodes that are displaced according to acceleration are formed, and , A fixed electrode is formed on a predetermined plate of the insulating substrate with a predetermined gap from the movable electrode, and acceleration is detected from a change in electrostatic capacitance between the movable electrode and the fixed electrode caused by the displacement. In the semiconductor acceleration sensor, the end of the metallic coating formed on the entire inner circumference of the through hole formed in the insulating substrate is connected to the metallic connecting line formed on the semiconductor substrate facing the through hole. The connection was made and the connection site was arranged endlessly. Further, the fixed electrode formed on the insulating substrate having the through hole was connected to the connecting wire.
【0010】また、かかる構成の半導体加速度センサを
製造する方法としては、少なくとも前記貫通孔を備えた
絶縁基板と、所定の構成からなる半導体基板並びに他の
絶縁基板とを接合し、次いで、減圧或いは所定の雰囲気
下で、前記貫通孔の内周全面に所定の金属被膜を形成す
るプロセスを有することである。As a method of manufacturing a semiconductor acceleration sensor having such a structure, an insulating substrate having at least the through hole is bonded to a semiconductor substrate having a predetermined structure and another insulating substrate, and then pressure reduction or That is, it has a process of forming a predetermined metal coating on the entire inner circumference of the through hole under a predetermined atmosphere.
【0011】[0011]
【作用】貫通孔の内周面全面にわたって金属被膜を形成
し、その端部を半導体基板の対向部位に形成した金属性
連結線に接続する。そしてこの金属性連結線は、その貫
通孔が形成された絶縁基板に設けた固定電極と導通状態
にある。よって、上記の貫通孔内に金属被膜を形成する
ことにより、固定電極が金属性連結線並びにその金属被
膜を介して、センサ外部への取り出し用の配線処理が終
了する。また、上記したように、金属被膜と連結線との
接続部位は、無端状となっているため、貫通孔が閉塞さ
れる。すなわち、上記の配線処理とセンサの封止処理が
同時に行われ、封止構造をとるための特別な作業が不要
となる。さらに、係る金属被膜の形成を所定のガス雰囲
気中で行えば、センサ内部を係るガスで充満することが
でき、また、減圧(真空を含む)状態で行えば、センサ
内部を減圧させ、熱的に安定な半導体加速度センサが製
造される。The metal coating is formed on the entire inner peripheral surface of the through hole, and the end portion of the metal coating is connected to the metallic connecting wire formed at the facing portion of the semiconductor substrate. The metallic connection wire is in electrical connection with the fixed electrode provided on the insulating substrate having the through hole formed therein. Therefore, by forming the metal film in the through hole, the wiring process for taking out the fixed electrode to the outside of the sensor through the metallic connecting wire and the metal film is completed. Further, as described above, since the connecting portion between the metal coating and the connecting wire is endless, the through hole is closed. That is, the wiring process and the sensor sealing process described above are performed at the same time, which eliminates the need for a special work for forming the sealing structure. Further, if the formation of such a metal film is performed in a predetermined gas atmosphere, the inside of the sensor can be filled with the relevant gas, and if it is performed in a depressurized state (including vacuum), the inside of the sensor is depressurized and thermally A stable semiconductor acceleration sensor is manufactured.
【0012】[0012]
【実施例】以下、本発明に係る半導体加速度センサ及び
その製造方法の好適な実施例を添付図面を参照にして詳
述する。図1は本発明に係る加速度センサの第1実施例
の断面図を示しており、図2は各板の平面図を示し、さ
らに図3並びに図4は、それぞれ所定部位の拡大図であ
る。図示するように、半導体基板であるP型のシリコン
板11の上下両面側に基板たるガラス板12,13を配
置している。そして本例では、シリコン板11と下側の
ガラス板13との平面形状を略同一とし、上側のガラス
板12は、それらと同一の平面形状からその一辺側を除
去した短い平面矩形状となっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a semiconductor acceleration sensor and a method of manufacturing the same according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a sectional view of a first embodiment of an acceleration sensor according to the present invention, FIG. 2 is a plan view of each plate, and FIGS. 3 and 4 are enlarged views of predetermined portions. As shown in the figure, glass plates 12 and 13 as substrates are arranged on both upper and lower sides of a P-type silicon plate 11 which is a semiconductor substrate. In this example, the silicon plate 11 and the lower glass plate 13 have substantially the same planar shape, and the upper glass plate 12 has a short planar rectangular shape in which one side is removed from the same planar shape. ing.
【0013】また、シリコン板11は、平面略ロ字状の
枠体14の中央に梁部15を介して重り部16が揺動可
能に接続された形状からなり、その重り部16の上面側
が第1の可動電極17となり、また下面側が第2の可動
電極18となる。さらに、各電極17,18に対応し
て、ガラス板12,13の内面所定位置には、アルミ等
の金属蒸着(或いはスパッタ(以下同じ))等により、
所定形状からなる第1,第2の固定電極19,20が形
成されている。そして、上下において各対となる電極間
で生じる静電容量の差分から加速度を検出するもので、
上記した基本的な構成は、従来からある差動型の半導体
加速度センサと同様である。Further, the silicon plate 11 has a shape in which a weight portion 16 is swingably connected to the center of a frame body 14 having a substantially rectangular shape in a plane through a beam portion 15, and the upper surface side of the weight portion 16 is It becomes the first movable electrode 17, and the lower surface side becomes the second movable electrode 18. Further, corresponding to the electrodes 17 and 18, at a predetermined position on the inner surface of the glass plates 12 and 13, a metal such as aluminum is deposited (or sputtered (hereinafter the same)), or the like.
First and second fixed electrodes 19 and 20 having a predetermined shape are formed. Then, the acceleration is detected from the difference between the electrostatic capacities generated between the upper and lower electrodes,
The basic configuration described above is the same as that of a conventional differential type semiconductor acceleration sensor.
【0014】ここで、本発明では、まず図1,図2
(B)に示すように、シリコン板11の上面の所定部位
にリンをドーピングして拡散層(各図中ハッチングで示
す)を形成している。そして、図から明らかなように、
上記の拡散層は、重り部16の上面全面並びに梁部15
の全体に形成している。そして梁部15に関しては、シ
リコン板11の下側から梁部15に相当する部位を電気
化学エッチングすることにより拡散層に至るまでP型シ
リコンの所定部位を除去し、これにより梁部15が拡散
層のみから構成される。かかる構成とすることにより、
梁部15の厚さが拡散層の厚さと同一となるため、その
厚さが正確に制御され、梁部15の弾性係数のばらつき
がなく、品質の均一化が図られる。Here, in the present invention, first, FIG.
As shown in (B), phosphorus is doped at a predetermined portion of the upper surface of the silicon plate 11 to form a diffusion layer (shown by hatching in each figure). And, as you can see from the figure,
The diffusion layer is formed on the entire upper surface of the weight portion 16 and the beam portion 15.
Has formed throughout. Regarding the beam portion 15, a predetermined portion of P-type silicon is removed from the lower side of the silicon plate 11 to the diffusion layer by electrochemically etching a portion corresponding to the beam portion 15, whereby the beam portion 15 is diffused. It consists of only layers. With this configuration,
Since the thickness of the beam portion 15 is the same as the thickness of the diffusion layer, the thickness is accurately controlled, the elastic coefficient of the beam portion 15 does not vary, and the quality is made uniform.
【0015】そして、係る重り部16の上面に形成され
た拡散層が上記第1の可動電極17となる。さらに、か
かる拡散層は、そのままシリコン板11の側縁に向かっ
て細幅状で延長形成されて配線21とし、その端部の上
面に金属蒸着により配線取り出し用のパッド22を形成
する。The diffusion layer formed on the upper surface of the weight portion 16 serves as the first movable electrode 17. Further, the diffusion layer is formed as it is in a narrow width extending toward the side edge of the silicon plate 11 to form the wiring 21, and the pad 22 for taking out the wiring is formed on the upper surface of the end portion by metal deposition.
【0016】また、重り部16の下側に形成する第2の
可動電極18は、図3に示すように、その重り部16の
下面全面に金属蒸着を施して金属被膜を形成することに
より構成している。そしてその金属被膜の端部を延長配
置して梁部15の下面に接続している。これにより、第
1,第2の可動電極17,18がその拡散層にて短絡さ
れて同電位となり、第2の可動電極18も拡散層で形成
される上記配線21並びにパッド22を介して外部へ取
り出し可能となる。すなわち、係る両可動電極17,1
8が共通電極となる。As shown in FIG. 3, the second movable electrode 18 formed below the weight portion 16 is formed by depositing metal on the entire lower surface of the weight portion 16 to form a metal coating. is doing. The end of the metal coating is extended and connected to the lower surface of the beam portion 15. As a result, the first and second movable electrodes 17 and 18 are short-circuited in the diffusion layer to have the same potential, and the second movable electrode 18 is also externally formed via the wiring 21 and the pad 22 formed of the diffusion layer. Can be taken out. That is, both movable electrodes 17 and 1
8 serves as a common electrode.
【0017】一方、第1の固定電極19の取り出しは、
シリコン板11の上面に形成した他の細長矩形状の拡散
層からなる配線23を介して行われる。すなわち、係る
配線23の両端には、それぞれ金属蒸着によりパッド2
4,25が形成され、一方のパッド24が配線取り出し
用のパッドとなり、また、他方のパッド25が、第1の
固定電極19の延出部19aと圧着され、電気機械的に
接続される。これにより、第1の固定電極19が取り出
し用のパッド24を介して外部回路等と接続可能とな
る。On the other hand, when taking out the first fixed electrode 19,
This is performed through the wiring 23 formed of another elongated rectangular diffusion layer formed on the upper surface of the silicon plate 11. That is, the pads 2 are formed on both ends of the wiring 23 by metal deposition.
4, 25 are formed, one pad 24 serves as a wiring take-out pad, and the other pad 25 is pressure-bonded to the extending portion 19a of the first fixed electrode 19 and is electrically mechanically connected. As a result, the first fixed electrode 19 can be connected to an external circuit or the like via the extraction pad 24.
【0018】さらに、第2の固定電極20の取り出し
は、以下に示す構造により行われる。すなわち、図2
(C)に示すように、第2の固定電極20の一部が細長
矩形状に延長された延出部20aとなり、その延出部2
0aの端部は、シリコン板11の下面(梁部15よりも
枠体14側)に形成された段部26の表面に設けられた
金属蒸着からなる連結線27に圧着され、電気機械的に
接続されている。さらに、その連結線27は、図4に拡
大して示すように、下方のガラス板13の所定位置に形
成した貫通孔13aに対向配置されている。Further, the second fixed electrode 20 is taken out by the structure shown below. That is, FIG.
As shown in (C), a part of the second fixed electrode 20 becomes an extended portion 20a extended in an elongated rectangular shape.
The end portion of 0a is pressure-bonded to the connecting wire 27 made of metal vapor deposition provided on the surface of the stepped portion 26 formed on the lower surface of the silicon plate 11 (on the side of the frame 14 with respect to the beam portion 15), and electromechanically It is connected. Further, the connecting line 27 is arranged so as to face a through hole 13a formed at a predetermined position of the lower glass plate 13 as shown in an enlarged view in FIG.
【0019】そして、その貫通孔13aの内周面に蒸着
された金属性被膜たる配線28の上端28aが、その全
周(無端状)に渡って上記連結線27に接続されてい
る。このように、貫通孔13aの内周全面にわたって形
成された配線28の上端28aが、その全周にて連結線
27と接続されることにより、貫通孔13aは封止され
る。すなわち、係る配線の接続により、自動的に半導体
加速度センサの封止が行われる。なお、係る配線28の
他端は、ガラス板13の下面側所定部位に延長形成され
て、取り出し用のパッド29となる。The upper end 28a of the wiring 28, which is a metallic coating deposited on the inner peripheral surface of the through hole 13a, is connected to the connecting line 27 over the entire circumference (endless shape). In this way, the upper end 28a of the wiring 28 formed over the entire inner circumference of the through hole 13a is connected to the connecting line 27 over the entire circumference, whereby the through hole 13a is sealed. That is, the semiconductor acceleration sensor is automatically sealed by the connection of the wiring. The other end of the wiring 28 is extended to a predetermined portion on the lower surface side of the glass plate 13 to form a pad 29 for taking out.
【0020】ここで、上記の貫通孔13a付近の接続
(製造)方法について説明すると、貫通孔13aは、超
音波加工等によりガラス板13の所定部位に形成する。
そして、上記した各種の配線やパッド(貫通孔13aに
形成する配線28を除く)を形成したガラス板12,1
3とシリコン板11とを積層し、陽極接合により一体化
する。この接合時に、対向する各種配線同士等が、自動
的に密着接合し電気機械的な接続がとられる。Here, the connection (manufacturing) method in the vicinity of the through hole 13a will be described. The through hole 13a is formed in a predetermined portion of the glass plate 13 by ultrasonic processing or the like.
Then, the glass plates 12 and 1 on which the above-mentioned various wirings and pads (excluding the wiring 28 formed in the through hole 13a) are formed.
3 and the silicon plate 11 are laminated and integrated by anodic bonding. At the time of this joining, the various wirings and the like that face each other are automatically brought into close contact and electromechanical connection is established.
【0021】また、両可動電極17,18の配線21並
びに第1の固定電極19の配線23は、上記のごとく拡
散層で形成されており、その表面は、他のシリコン板1
1の上面と面一状態に加工されているため、そのシリコ
ン板11と上側のガラス板12との陽極接合を行うと、
両板11,12は面接触して一体化し、封止される。Further, the wiring 21 of both movable electrodes 17 and 18 and the wiring 23 of the first fixed electrode 19 are formed by the diffusion layer as described above, and the surface thereof is the other silicon plate 1.
Since it is processed so as to be flush with the upper surface of No. 1, when anodic bonding between the silicon plate 11 and the upper glass plate 12 is performed,
Both plates 11 and 12 are in surface contact with each other to be integrated and sealed.
【0022】すなわち、両板の接合処理により、両可動
電極17,18と第1の固定電極19の配線(各取り出
し用のパッド22,24への接続)処理並びにセンサの
封止処理が同時に自動的に行われる(特別な封止処理が
不要となる)。そして、両電極の取り出し用のパッド2
2,24が同一平面状に位置するため、外部回路との接
続をとるためのワイヤボンディング処理が容易に行え
る。That is, by the joining process of both plates, the wiring process of both movable electrodes 17 and 18 and the first fixed electrode 19 (connection to the pads 22 and 24 for taking out) and the sealing process of the sensor are automatically performed at the same time. Is performed (no special sealing process is required). And the pad 2 for taking out both electrodes
Since 2 and 24 are located on the same plane, the wire bonding process for connecting to an external circuit can be easily performed.
【0023】そして、この状態で貫通孔13a付近の所
定部位を金属蒸着(スパッタリング)する。すると、貫
通孔13aの内周全面はもちろんその上方に位置する連
結線27にまで係る蒸着部位が配設され上記の所望の配
線28が形成される。そして、係る配線28の形成を真
空(所定の減圧)状態で行えば、センサ内部も減圧さ
れ、その状態で配線28が形成されて貫通孔13a(開
口部位)が封止されるため、その減圧状態が維持され
る。これにより、半導体加速度センサの特性が向上す
る。また、所望のガスからなる雰囲気中で、上記の配線
28の製造を行えば、センサ内部に所望のガスを封入す
ることも容易にできる。Then, in this state, metal deposition (sputtering) is performed on a predetermined portion near the through hole 13a. As a result, not only the entire inner peripheral surface of the through hole 13a but also the vapor deposition portion up to the connecting line 27 located above the through hole 13a is arranged, and the desired wiring 28 is formed. If the wiring 28 is formed in a vacuum (predetermined decompression) state, the inside of the sensor is also decompressed, and the wiring 28 is formed in that state to seal the through hole 13a (opening portion). The state is maintained. This improves the characteristics of the semiconductor acceleration sensor. Further, if the wiring 28 is manufactured in an atmosphere of a desired gas, it is possible to easily fill the sensor with the desired gas.
【0024】図5は本発明の第2実施例を示している。
図示するように、この実施例では、上記した第1実施例
と相違して、下側の第2の固定電極20の取り出し用パ
ッド30も、他のパッド22,24と同一平面状に位置
させている。すなわち、シリコン板11′の上面所定位
置(両可動電極17,18用の配線21並びに第1の固
定電極19用の配線23と異なる位置に、それらと同様
に拡散層を形成して配線31を形成し、その配線31の
一端(露出側端部)の上面を金属蒸着することによりパ
ッド30を形成する。FIG. 5 shows a second embodiment of the present invention.
As shown in the drawing, in this embodiment, unlike the above-described first embodiment, the extraction pad 30 of the lower second fixed electrode 20 is also positioned on the same plane as the other pads 22, 24. ing. That is, a diffusion layer is formed on the silicon plate 11 'at a predetermined position (a position different from the wiring 21 for both the movable electrodes 17 and 18 and the wiring 23 for the first fixed electrode 19) to form the wiring 31. Then, the pad 30 is formed by depositing metal on the upper surface of one end (exposed side end) of the wiring 31.
【0025】そして、シリコン板11′の枠体14′側
の下面に形成された段部26′の所定位置に凹所32を
形成し、その凹所32の奥面を上記の配線31を形成す
る拡散層に接続している。この凹所32も、段部26′
の所定部位を電気化学エッチングしてP型のシリコン部
位を除去することにより簡単に行え、拡散層を露出する
ことができる。Then, a recess 32 is formed at a predetermined position of a step 26 'formed on the lower surface of the silicon plate 11' on the side of the frame 14 ', and the wiring 31 is formed on the inner surface of the recess 32. It is connected to the diffusion layer. This recess 32 also has a step 26 '.
This can be easily performed by electrochemically etching a predetermined portion of P to remove the P-type silicon portion, and the diffusion layer can be exposed.
【0026】さらに、この凹所32の内周面と、上記拡
散層の露出部位並びに段部26′の所定部位に金属蒸着
を施して連結線33を形成し、その連結線33と第2の
固定電極20の延出部20aとを密着させる(この密着
処理も、シリコン板11′とガラス板13′との陽極接
合により自動的に行われる)。これにより、第2の固定
電極20は、上記金属蒸着による連結線33,配線31
を介してパッド32に連係され、外部への取り出しが可
能となる。Further, metal is vapor-deposited on the inner peripheral surface of the recess 32, the exposed portion of the diffusion layer and the predetermined portion of the step portion 26 'to form a connecting line 33, and the connecting line 33 and the second portion are formed. The extension portion 20a of the fixed electrode 20 is brought into close contact (this close contact process is also automatically performed by anodic bonding between the silicon plate 11 'and the glass plate 13'). As a result, the second fixed electrode 20 has the connection line 33 and the wiring 31 formed by the metal deposition.
It is linked to the pad 32 through the and can be taken out to the outside.
【0027】係る構成とすることにより、3つのパッド
22,24,30が同一平面状に位置することになり、
その後のワイヤボンディング処理等が容易となるばかり
でなく、ガラス板に対する孔開け処理が不要となり、製
造プロセスが非常に簡便となる。なお、その他の構成並
びに作用は、上記した第1実施例と同様であるためその
説明を省略する。With this structure, the three pads 22, 24, 30 are located on the same plane,
Not only the subsequent wire bonding process and the like become easy, but also the process of making holes in the glass plate is not necessary, which greatly simplifies the manufacturing process. The rest of the configuration and operation are similar to those of the above-described first embodiment, and therefore their explanations are omitted.
【0028】図6は、本発明の第3実施例を示してい
る。この実施例では、上記した各実施例と相違して、両
可動電極17′,18′並びに第1,第2の固定電極1
9′,20′を取り出すための3つのパッドをガラス板
12″の表面に形成している。まず、本例における基本
構成について説明すると、梁部15′が下側に位置する
という上記各実施例と逆配置からなり、重り部16′の
上面に金属蒸着を施して第1の可動電極17′を形成し
ている。そしてその金属蒸着の端部を延長して梁部1
5′を形成する拡散層に接続することにより、第1,第
2の可動電極17′,18′を同電位としているが、本
例では、さらに金属蒸着を延長してその端部36をシリ
コン板11″の上面に形成した段部35にまで位置させ
る。FIG. 6 shows a third embodiment of the present invention. In this embodiment, unlike the above-described embodiments, both movable electrodes 17 ', 18' and the first and second fixed electrodes 1 are provided.
Three pads for taking out 9'and 20 'are formed on the surface of the glass plate 12 ". First, the basic structure in this example will be described. In each of the above embodiments, the beam portion 15' is located on the lower side. In the reverse arrangement of the example, metal evaporation is performed on the upper surface of the weight portion 16 'to form the first movable electrode 17'. Then, the end of the metal evaporation is extended to extend the beam portion 1.
By connecting to the diffusion layer forming 5 ', the first and second movable electrodes 17' and 18 'are made to have the same potential. It is located up to the step portion 35 formed on the upper surface of the plate 11 ″.
【0029】そして、この上側のガラス板12″の所定
部位に形成した第1の貫通孔12″aの内面にスパッタ
リングにより形成した金属性被膜たる配線37と、上記
金属蒸着の端部36とを、第1実施例における第2の固
定電極20の配線取り出し並びに封止機構と同様にして
接続する。これにより、第1の貫通孔12″aが封止さ
れる。そして、上記配線37の外側端部(ガラス板1
2″の上面側)が、取り出し用パッド38となる。Then, the wiring 37 which is a metallic coating formed by sputtering on the inner surface of the first through hole 12 "a formed at a predetermined portion of the upper glass plate 12" and the end portion 36 of the metal vapor deposition are provided. Then, the second fixed electrode 20 in the first embodiment is connected in the same manner as the wiring extraction and sealing mechanism. As a result, the first through hole 12 ″ a is sealed. Then, the outer end portion of the wiring 37 (the glass plate 1) is sealed.
The 2 ″ upper surface side) serves as the extraction pad 38.
【0030】また、上側のガラス板12″に形成した第
1の固定電極19′の配線取り出しも上記と同様に、そ
の延長部19′aをまずシリコン板11″の段部35に
形成した連結線40に密着し、その連結線40とガラス
板12″に形成した第2の貫通孔12″bの内周全面に
スパッタリングにより形成した金属性被膜たる配線41
とを接続することにより、行われる。そして、その配線
41の端部が取り出し用のパッド42となる。In the same way as above, the wiring of the first fixed electrode 19 'formed on the upper glass plate 12 "is taken out, and its extension 19'a is first formed on the step 35 of the silicon plate 11". Wiring 41, which is a metallic coating formed by sputtering on the entire inner circumference of the connecting wire 40 and the second through hole 12 "b formed in the glass plate 12"
This is done by connecting and. Then, the end portion of the wiring 41 becomes a pad 42 for taking out.
【0031】さらに、第2の固定電極20′の配線取り
出しは、同図(B)に拡大して示すように、ガラス板1
2″並びにシリコン板11″の所定板に、上下に連続す
る第3の貫通孔44を形成する。そして、その第3の貫
通孔44の内周面に対し、スパッタリングにより金属性
被膜たる配線45を形成するとともに、その配線45の
下端45aを第2の固定電極20′の延長部20′aと
を接続一体化し、電気機械的な接続処理とともに、その
第3の貫通孔44を封止する。そして、その配線45の
上端は、ガラス板12″の上面に延長配置し、取り出し
用パッド46とする。Further, the wiring of the second fixed electrode 20 'is taken out from the glass plate 1 as shown in the enlarged view of FIG.
A second through hole 44 that is vertically continuous is formed in a predetermined plate of the 2 ″ and the silicon plate 11 ″. Then, a wiring 45, which is a metallic coating, is formed on the inner peripheral surface of the third through hole 44 by sputtering, and the lower end 45a of the wiring 45 serves as an extension 20'a of the second fixed electrode 20 '. Are integrated and connected, and the third through hole 44 is sealed together with the electromechanical connection process. Then, the upper end of the wiring 45 is extendedly arranged on the upper surface of the glass plate 12 ″ to form a take-out pad 46.
【0032】そして、上記した各貫通孔12″a,1
2″b,44内に形成する配線37,41,45は、上
記した各実施例と同様に、各板を陽極接合した状態で、
減圧或いは所定の雰囲気下でスパッタリング等すること
により行う。なお、その他の構成並びに作用は、上記し
た各実施例と同様てあるため、その説明を省略する。Then, each of the above-mentioned through holes 12 "a, 1"
The wirings 37, 41, 45 formed in the 2 ″ b, 44 are formed by anodic bonding of the respective plates in the same manner as in the above-described embodiments.
It is performed by sputtering under reduced pressure or a predetermined atmosphere. Since the other configurations and operations are the same as those of the above-described embodiments, the description thereof will be omitted.
【0033】[0033]
【発明の効果】以上のように、本発明に係る半導体加速
度センサ及びその製造方法では、各電極の配線引き出し
処理と、封止処理とが同時に行え、封止処理のための特
別な処理が不要となり、製造プロセスが簡略化される。
しかも、同時に行えるため、したとえば、その封止処理
を減圧状態或いは所定のガス雰囲気中で行うことによ
り、そのセンサ内部を減圧したり所望のガスを封入する
ことが簡単に行える。As described above, in the semiconductor acceleration sensor and the method of manufacturing the same according to the present invention, the wiring drawing process for each electrode and the sealing process can be performed at the same time, and a special process for the sealing process is unnecessary. Therefore, the manufacturing process is simplified.
Moreover, since they can be performed simultaneously, for example, by performing the sealing process in a depressurized state or in a predetermined gas atmosphere, it is possible to easily depressurize the inside of the sensor and fill a desired gas.
【0034】また、固定電極が複数有する場合にはその
少なくとも一方の固定電極と、可動電極との配線の端部
(外部回路等との接続部)が同一平面状配置することが
可能となり、実装時における外部回路等との接続処理
(ワイヤボンディング処理等)が簡単となる。When there are a plurality of fixed electrodes, at least one of the fixed electrodes and the end of the wiring with the movable electrode (the connection with the external circuit) can be arranged in the same plane, and mounting The connection process (wire bonding process, etc.) with an external circuit or the like at that time is simplified.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る半導体加速度センサの第1実施例
を示す図である。FIG. 1 is a diagram showing a first embodiment of a semiconductor acceleration sensor according to the present invention.
【図2】(A)は、その上側のガラス板を示す平面図で
ある。(B)は、そのシリコン板を示す平面図である。
(C)は、その下側のガラス板を示す平面図である。FIG. 2A is a plan view showing the upper glass plate. (B) is a plan view showing the silicon plate.
(C) is a plan view showing the lower glass plate.
【図3】シリコン板に形成した重り部(可動電極)を示
す斜視図である。FIG. 3 is a perspective view showing a weight portion (movable electrode) formed on a silicon plate.
【図4】配線接続部位の要部を示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing a main part of a wiring connection portion.
【図5】本発明に係る半導体加速度センサの第2実施例
を示す図である。FIG. 5 is a diagram showing a second embodiment of the semiconductor acceleration sensor according to the present invention.
【図6】本発明に係る半導体加速度センサの第3実施例
を示す図である。FIG. 6 is a diagram showing a third embodiment of the semiconductor acceleration sensor according to the present invention.
【図7】従来例を示す図である。FIG. 7 is a diagram showing a conventional example.
11,11′,11″ シリコン板(半導体基板) 12,12′,12″,13,13′,13″ ガラス
板(絶縁基板) 13a,12″a,12″b ガラス板に形成する貫通
孔 16,16′ 重り部 17,17′ 第1の可動電極 18,18′ 第2の可動電極 19,19′ 第1の固定電極 20,20′ 第2の固定電極 21,23,31 配線(拡散層) 27,36,40 連結線 28,31,37,41,45 配線(金属性被膜) 32 凹所 44 ガラス板,シリコン板に連通状態で形成する貫通
穴11, 11 ', 11 "Silicon plate (semiconductor substrate) 12, 12', 12", 13, 13 ', 13 "Glass plate (insulating substrate) 13a, 12" a, 12 "b Through hole formed in glass plate 16, 16 'Weight portion 17, 17' First movable electrode 18, 18 'Second movable electrode 19, 19' First fixed electrode 20, 20 'Second fixed electrode 21, 23, 31 Wiring (diffusion) Layers) 27, 36, 40 Connection lines 28, 31, 37, 41, 45 Wiring (metallic coating) 32 Recesses 44 Glass plate, through hole formed in communication with a silicon plate
Claims (6)
された半導体基板の両側に絶縁基板を配置し、かつ、そ
の絶縁基板の所定板に前記可動電極に対し所定の間隙を
おいて固定電極を形成し、前記変位にともない前記可動
電極と前記固定電極との間で生じる静電容量の変化から
加速度を検出する半導体加速度センサにおいて、 前記絶縁基板に形成された貫通孔の内周全面に形成され
た金属性被膜の端部を、前記貫通孔に対向する前記半導
体基板に形成された金属性の連結線に接続するとともに
その接続部位を無端状に配置し、 かつ、前記貫通孔を備えた絶縁基板に形成された前記固
定電極を前記連結線に接続してなる半導体加速度セン
サ。1. An insulating substrate is arranged on both sides of a semiconductor substrate on which a movable electrode that is displaced according to acceleration is formed, and a fixed electrode is provided on a predetermined plate of the insulating substrate with a predetermined gap from the movable electrode. And a semiconductor acceleration sensor that detects acceleration from a change in electrostatic capacitance between the movable electrode and the fixed electrode that accompanies the displacement, and is formed on the entire inner circumference of a through hole formed in the insulating substrate. The end portion of the formed metallic coating is connected to a metallic connecting line formed on the semiconductor substrate facing the through hole, and the connecting portion is arranged endlessly, and the through hole is provided. A semiconductor acceleration sensor in which the fixed electrode formed on an insulating substrate is connected to the connecting wire.
れ、加速度に応じて変位する重り部の両面に可動電極が
形成された半導体基板と、 前記両可動電極にそれぞれ所定の間隙をおいて対向させ
た固定電極を有し、前記半導体基板を挟持するように配
置されたガラス板等の絶縁基板とを備えた半導体加速度
センサにおいて、 前記半導体基板の同一表面の所定位置に、絶縁状態で複
数の拡散層を形成し、それら各拡散層に前記可動電極並
びに前記一方の固定電極を接続し、 さらに、前記他方の固定電極を、その固定電極が設けら
れた絶縁基板に形成された貫通孔の内周全面に形成され
た金属性被膜の端部を、前記貫通孔に対向する前記半導
体基板に形成された金属性の連結線に接続するとともに
その接続部位を無端状に配置し、かつ、前記貫通孔を備
えた絶縁基板に形成された前記固定電極を前記連結線に
接続してなる半導体加速度センサ。2. A semiconductor substrate in which movable electrodes are formed on both surfaces of a weight portion that is integrally connected to a frame body through a beam portion and that is displaced according to acceleration, and a predetermined gap between the movable electrodes. In a semiconductor acceleration sensor having fixed electrodes opposed to each other with an insulating substrate such as a glass plate arranged so as to sandwich the semiconductor substrate, at a predetermined position on the same surface of the semiconductor substrate, insulating In this state, a plurality of diffusion layers are formed, the movable electrode and the one fixed electrode are connected to each diffusion layer, and the other fixed electrode is formed on an insulating substrate provided with the fixed electrode. An end portion of the metallic coating formed on the entire inner circumference of the through hole is connected to a metallic connecting line formed on the semiconductor substrate facing the through hole, and the connecting portion is arranged endlessly, And the penetration A semiconductor acceleration sensor in which the fixed electrode formed on an insulating substrate having a hole is connected to the connecting line.
れ、加速度に応じて変位する重り部の両面に可動電極が
形成された半導体基板と、 前記両可動電極にそれぞれ所定の間隙をおいて対向させ
た固定電極を有し、前記半導体基板を挟持するように配
置されたガラス板等の絶縁基板とを備えた半導体加速度
センサにおいて、 前記半導体基板の同一表面の所定位置に、絶縁状態で複
数の拡散層を形成し、それら各拡散層に前記可動電極並
びに前記一方の固定電極を接続し、 前記半導体基板の反対側表面に凹所を形成して他の拡散
層の裏面側を露出させ、前記凹所の内周面並びに前記他
の拡散層の裏面側に金属性被膜に接続するとともに、前
記他の固定電極を前記凹所に設けた金属性被膜に接続し
てなる半導体加速度センサ。3. A semiconductor substrate on which movable electrodes are formed on both surfaces of a weight portion that is integrally connected to a frame body through a beam portion and that is displaced according to acceleration, and a predetermined gap between the movable electrodes. In a semiconductor acceleration sensor having fixed electrodes opposed to each other with an insulating substrate such as a glass plate arranged so as to sandwich the semiconductor substrate, at a predetermined position on the same surface of the semiconductor substrate, insulating A plurality of diffusion layers are formed in a state, the movable electrode and the one fixed electrode are connected to each of the diffusion layers, and a recess is formed on the surface on the opposite side of the semiconductor substrate so that the back surface side of the other diffusion layer is formed. A semiconductor acceleration which is exposed and is connected to the metallic coating on the inner peripheral surface of the recess and the back side of the other diffusion layer, and the other fixed electrode is connected to the metallic coating provided in the recess. Sensor.
れ、加速度に応じて変位する重り部の両面に可動電極が
形成された半導体基板と、 前記両可動電極にそれぞれ所定の間隙をおいて対向させ
た固定電極を備え、前記半導体基板を挟持するように配
置されたガラス板等の絶縁基板とを備えた半導体加速度
センサにおいて、 前記一方の絶縁基板の所定位置に複数の貫通孔を形成
し、 それら複数の貫通孔のうち所定の貫通孔の内周全面に形
成された金属性被膜の端部を前記可動電極に連結された
金属性配線に接続し、 他の貫通孔の内周全面に形成された金属性被膜の端部
を、その貫通孔に対向する前記半導体基板に形成された
金属性の連結線に接続するとともに前記貫通孔を設けた
前記一方の絶縁基板に形成された前記固定電極を前記連
結線に接続し、 さらに他の貫通孔に連通状態で前記半導体基板に貫通孔
を形成し、それら連通状態の両貫通孔の内周全面に設け
た金属性被膜の端部を前記他の固定電極に接続された金
属性配線に接続し、 かつ、前記各貫通孔に形成した金属被膜の端部の接続部
位を無端状に配置してなる半導体加速度センサ。4. A semiconductor substrate having movable electrodes formed on both surfaces of a weight portion that is integrally connected to a frame body through a beam portion and that is displaced according to acceleration, and a predetermined gap between the movable electrodes. A semiconductor acceleration sensor having fixed electrodes opposed to each other with an insulating substrate such as a glass plate arranged so as to sandwich the semiconductor substrate, wherein a plurality of through holes are provided at predetermined positions of the one insulating substrate. Of the plurality of through holes, the end of the metallic coating formed on the entire inner surface of the predetermined through hole is connected to the metallic wiring connected to the movable electrode, and The end portion of the metallic coating formed on the entire circumference is connected to the metallic connecting line formed on the semiconductor substrate facing the through hole and is formed on the one insulating substrate provided with the through hole. The fixed electrode is connected to the connecting wire. A through hole is formed in the semiconductor substrate while being connected to another through hole, and the ends of the metallic coatings provided on the entire inner surfaces of both through holes in the connected state are connected to the other fixed electrode. A semiconductor acceleration sensor which is connected to the formed metallic wiring and has endless connection portions at the end portions of the metal coating formed in the through holes.
部の片面に形成された拡散層で形成され、他方の可動電
極が前記重り部の他の面に形成された金属被膜で構成さ
れ、さらに、その他の可動電極を構成する金属被膜の端
部を延長して前記拡散層に接続してなる請求項1〜5の
いずれか1項に記載の半導体加速度センサ。5. One of the movable electrodes is formed of a diffusion layer formed on one surface of the weight portion, and the other movable electrode is formed of a metal film formed on the other surface of the weight portion. The semiconductor acceleration sensor according to any one of claims 1 to 5, further comprising: extending an end portion of a metal coating film forming another movable electrode and connecting the extended metal film to the diffusion layer.
記載の半導体加速度センサの製造方法であって、 少なくとも前記貫通孔を備えた絶縁基板と、所定の構成
からなる半導体基板並びに他の絶縁基板とを接合し、次
いで、減圧或いは所定の雰囲気下で、前記貫通孔の内周
全面に所定の金属被膜を形成するプロセスを有する半導
体加速度センサの製造方法。6. The method for manufacturing a semiconductor acceleration sensor according to claim 1, wherein the semiconductor substrate has at least the through hole and a predetermined configuration. And a method for manufacturing a semiconductor acceleration sensor, which comprises a process of bonding a predetermined insulating film to another insulating substrate, and then forming a predetermined metal film on the entire inner surface of the through hole under reduced pressure or a predetermined atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4332173A JPH06160420A (en) | 1992-11-19 | 1992-11-19 | Semiconductor acceleration sensor and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4332173A JPH06160420A (en) | 1992-11-19 | 1992-11-19 | Semiconductor acceleration sensor and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06160420A true JPH06160420A (en) | 1994-06-07 |
Family
ID=18251981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4332173A Withdrawn JPH06160420A (en) | 1992-11-19 | 1992-11-19 | Semiconductor acceleration sensor and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06160420A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999013343A1 (en) * | 1997-09-10 | 1999-03-18 | Matsushita Electric Industrial Co., Ltd. | Acceleration sensor and method of producing the same |
EP0982576A1 (en) * | 1998-03-12 | 2000-03-01 | Yamatake Corporation | Sensor and method of producing the same |
WO2002061373A1 (en) * | 2001-01-29 | 2002-08-08 | Matsushita Electric Industrial Co., Ltd. | Inertia transducer |
JP2005233926A (en) * | 2004-01-21 | 2005-09-02 | Seiko Instruments Inc | Capacity type dynamic quantity sensor |
US7047815B2 (en) | 2003-09-18 | 2006-05-23 | Yamatake Corporation | Sensor and electrode extraction structure and method |
WO2008126409A1 (en) * | 2007-04-10 | 2008-10-23 | Panasonic Corporation | Acceleration sensor and method for manufacturing the same |
JP2009121881A (en) * | 2007-11-13 | 2009-06-04 | Dainippon Printing Co Ltd | Mechanical quantity detecting sensor and manufacturing method therefor |
JP2013164285A (en) * | 2012-02-09 | 2013-08-22 | Seiko Epson Corp | Electronic device, manufacturing method of the same and electronic apparatus |
WO2013146368A1 (en) * | 2012-03-29 | 2013-10-03 | 曙ブレーキ工業株式会社 | Method for manufacturing capacitive acceleration sensor, device for manufacturing same, and capacitive acceleration sensor |
-
1992
- 1992-11-19 JP JP4332173A patent/JPH06160420A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6263735B1 (en) | 1997-09-10 | 2001-07-24 | Matsushita Electric Industrial Co., Ltd. | Acceleration sensor |
WO1999013343A1 (en) * | 1997-09-10 | 1999-03-18 | Matsushita Electric Industrial Co., Ltd. | Acceleration sensor and method of producing the same |
EP0982576A4 (en) * | 1998-03-12 | 2007-07-18 | Yamatake Corp | SENSOR AND METHOD FOR PRODUCING SAME |
EP0982576A1 (en) * | 1998-03-12 | 2000-03-01 | Yamatake Corporation | Sensor and method of producing the same |
CN100376868C (en) * | 2001-01-29 | 2008-03-26 | 松下电器产业株式会社 | Inertial sensor |
US6748807B2 (en) | 2001-01-29 | 2004-06-15 | Matsushita Electric Industrial Co., Ltd. | Inertia detecting transducer |
WO2002061373A1 (en) * | 2001-01-29 | 2002-08-08 | Matsushita Electric Industrial Co., Ltd. | Inertia transducer |
US7047815B2 (en) | 2003-09-18 | 2006-05-23 | Yamatake Corporation | Sensor and electrode extraction structure and method |
JP2005233926A (en) * | 2004-01-21 | 2005-09-02 | Seiko Instruments Inc | Capacity type dynamic quantity sensor |
JP4555612B2 (en) * | 2004-01-21 | 2010-10-06 | セイコーインスツル株式会社 | Capacitive mechanical quantity sensor |
WO2008126409A1 (en) * | 2007-04-10 | 2008-10-23 | Panasonic Corporation | Acceleration sensor and method for manufacturing the same |
JP2009121881A (en) * | 2007-11-13 | 2009-06-04 | Dainippon Printing Co Ltd | Mechanical quantity detecting sensor and manufacturing method therefor |
JP2013164285A (en) * | 2012-02-09 | 2013-08-22 | Seiko Epson Corp | Electronic device, manufacturing method of the same and electronic apparatus |
WO2013146368A1 (en) * | 2012-03-29 | 2013-10-03 | 曙ブレーキ工業株式会社 | Method for manufacturing capacitive acceleration sensor, device for manufacturing same, and capacitive acceleration sensor |
JP2013205396A (en) * | 2012-03-29 | 2013-10-07 | Akebono Brake Ind Co Ltd | Method of manufacturing capacitance type acceleration sensor, manufacturing apparatus, and capacitance type acceleration sensor |
EP2833153A4 (en) * | 2012-03-29 | 2015-08-12 | Akebono Brake Ind | METHOD FOR THE PRODUCTION OF A CAPACITIVE ACCELERATION SENSOR, DEVICE FOR THE PRODUCTION THEREOF AND CAPACITIVE ACCELERATION SENSOR |
US10067155B2 (en) | 2012-03-29 | 2018-09-04 | Akebono Brake Industry Co., Ltd. | Method and apparatus for fabricating electrostatic capacitance-type acceleration sensor and electrostatic capacitance-type acceleration sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5243861A (en) | Capacitive type semiconductor accelerometer | |
US4530029A (en) | Capacitive pressure sensor with low parasitic capacitance | |
JP2610464B2 (en) | Capacitor type pressure sensor and pressure sensor group | |
US4773972A (en) | Method of making silicon capacitive pressure sensor with glass layer between silicon wafers | |
TWI616396B (en) | Process for producing a micromechanical component | |
JP2008501535A (en) | Microstructured component with multiple cavities and method for manufacturing the component | |
US6392158B1 (en) | Structure equipped with electric contacts formed through said structure substrate and method for obtaining said structure | |
JP2008236741A (en) | Package type piezoelectric vibrator and manufacturing method of package type piezoelectric vibrator | |
JPH02134570A (en) | Electrostatic capacity type acceleration sensor and semiconductor pressure sensor | |
JP2011131309A5 (en) | Semiconductor package manufacturing method and semiconductor package | |
JPH06160420A (en) | Semiconductor acceleration sensor and its manufacture | |
JP2019211229A (en) | Temperature sensor and piezoelectric vibration device including the same | |
JPH10177034A (en) | Capacitance type acceleration sensor and its manufacture | |
JPS6272178A (en) | Semiconductor pressure detecting device and manufacture of the same | |
JP2014122906A (en) | Micromechanical element and micromechanical element manufacturing method | |
JP3299715B2 (en) | Chip potential extraction structure and manufacturing method | |
JP2003098026A (en) | Manufacturing method of capacitance type pressure sensor and capacitance type pressure sensor | |
JP3329089B2 (en) | Semiconductor sensor and method of manufacturing the same | |
JPH06324077A (en) | Semiconductor acceleration sensor and manufacture thereof | |
JPH06138141A (en) | Semiconductor acceleration sensor | |
JP5095930B2 (en) | MEMS device and manufacturing method thereof | |
JP2004532744A (en) | Micromechanical cap structure and corresponding manufacturing method | |
JPH06273442A (en) | Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor | |
JP4095280B2 (en) | Acceleration sensor element | |
JPH08254474A (en) | Semiconductor sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000201 |