JPH06154611A - Catalyst for decomposition of nitrous oxide - Google Patents
Catalyst for decomposition of nitrous oxideInfo
- Publication number
- JPH06154611A JPH06154611A JP4215380A JP21538092A JPH06154611A JP H06154611 A JPH06154611 A JP H06154611A JP 4215380 A JP4215380 A JP 4215380A JP 21538092 A JP21538092 A JP 21538092A JP H06154611 A JPH06154611 A JP H06154611A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- same manner
- aqueous solution
- kinds
- components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 43
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical group [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000001272 nitrous oxide Substances 0.000 title claims abstract description 11
- 238000000354 decomposition reaction Methods 0.000 title abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 230000002378 acidificating effect Effects 0.000 claims abstract description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052762 osmium Inorganic materials 0.000 claims abstract description 5
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 5
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 4
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 abstract description 10
- 229910021536 Zeolite Inorganic materials 0.000 abstract description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 150000002739 metals Chemical class 0.000 abstract description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 238000003421 catalytic decomposition reaction Methods 0.000 abstract 1
- 230000003197 catalytic effect Effects 0.000 abstract 1
- 239000007864 aqueous solution Substances 0.000 description 28
- 239000000843 powder Substances 0.000 description 28
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 26
- 229910052680 mordenite Inorganic materials 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 229910002089 NOx Inorganic materials 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- -1 SiO 2 —Al 2 O 3 Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(N2O)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing and removing nitrogen oxides in exhaust gas, particularly nitrous oxide (N 2 O), and more specifically, factories, automobiles, refuse incinerators, sewage sludge incinerators, etc. The present invention relates to a suitable catalyst for decomposing nitrogen oxides, which is used when decomposing and removing nitrous oxide contained in exhaust gas discharged from the waste treatment facility.
【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO2)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。また、最近では(ハ)炭化水素を用いた排ガス中
のNOx除去方法として、銅等の金属を担持したゼオラ
イト、あるいはアルミナ等の金属酸化物を触媒として炭
化水素の共存下でNOを含むガスと接触させる方法など
が提案されるている。ところが、こうした方法ではいず
れも、排ガス中のN2Oの処理は不可能ではないが十分
ではなく、従来これらは、前述した脱硝設備の後流に未
処理のまま排出されてきた。これは、これまでN2Oに
対する法的な規制値がなく、又、JISのような公的な
測定方法も定められてなかったことなどとも関連してお
り、実質的にはこれらの処理は、脱硝の対象としては黙
視されてきたというのが現実であった。ところが、前述
した脱硝方法においては、その運転条件によってN2O
が生成することが認められており、又、最近ではゴミ焼
却炉や下水汚泥焼却炉などからも比較的高濃度のN2O
が生成することも報告されている。加えて近年、N2O
は、CO2、フロン、CH4等とともに、成層圏でのオ
ゾ層の破壊、ないしは温室効果による温度上昇などもた
らす地球規模的汚染物質として特に注目されてきてい
る。こうした事情からN2Oの処理方法、とりわけその
分解触媒についての関心が高まっており、いくつかの方
法が提案されてきた。それらは例えば、ゼオライト系の
担体に各種の遷移金属を担持させたものあるいは又、酸
化マグネシウムや酸化亜鉛などの塩基性担体に各種の遷
移金属を担持させたものである。しかしながらこれらは
いずれも活性を示す温度が高く、低温では充分なる性能
が得られず、又処理ガス中に水分があるとその影響を強
く受けて失活するなどの弱点を有していた。本発明はこ
うした状況に鑑みてなされたものであり、その目的とす
るところは、排ガス中のN2Oを効率よく分解すること
が出来るN2O分解用触媒を提供することにある。2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain, so their emission Is severely limited, and the development of effective removal means is desired. By the way, the nitrogen oxides conventionally required to be emission regulated are mainly nitric oxide (NO) and nitrogen dioxide (NO 2 ). As methods for removing these NOx, some methods for reducing NOx in exhaust gas using a catalyst have already been put into practical use. For example, (a) a three-way catalyst method in a gasoline automobile, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility emission source such as a boiler. Recently, as a method for removing NOx in exhaust gas using (c) hydrocarbons, zeolite containing a metal such as copper, or a gas containing NO in the presence of hydrocarbons using a metal oxide such as alumina as a catalyst is used. Methods such as contacting have been proposed. However, none of these methods is not sufficient, but not sufficient, to treat N 2 O in the exhaust gas, and conventionally, these have been discharged untreated in the downstream of the above-mentioned denitration equipment. This is related to the fact that there is no legal regulation value for N 2 O and no official measurement method such as JIS has been established so far. However, the reality is that they have been ignored as targets for denitration. However, in the above-described denitration method, N 2 O may be added depending on the operating conditions.
It has been confirmed that methane is generated, and recently, a relatively high concentration of N 2 O has been obtained from garbage incinerators and sewage sludge incinerators.
Are also reported to be generated. In addition, in recent years, N 2 O
Has attracted particular attention as a global pollutant that causes destruction of the Ozo layer in the stratosphere, or temperature rise due to the greenhouse effect, together with CO 2 , chlorofluorocarbon, CH 4, and the like. Under such circumstances, there has been increasing interest in N 2 O treatment methods, particularly decomposition catalysts thereof, and several methods have been proposed. They are, for example, a zeolite-based carrier on which various transition metals are supported, or a basic carrier such as magnesium oxide or zinc oxide on which various transition metals are supported. However, all of them have a high temperature at which they are active, and they do not provide sufficient performance at low temperatures, and have a weak point that they are strongly affected by the presence of water in the process gas and are deactivated. The present invention has been made in view of such circumstances, and an object thereof is to provide a catalyst for decomposing N 2 O that can efficiently decompose N 2 O in exhaust gas.
【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、ゼオライト、
アルミナ、チタニア、ジルコニア、シリカ−アルミナな
どの酸性担体に、第1成分として、銅(Cu)、鉄(F
e)、コバルト(Co)、ニツケル(Ni)から選ばれ
た少なくとも1種以上の金属又は金属酸化物、及び第2
成分として、ルテニウム(Ru)、ロジウム(Rh)、
パラジウム(Pd)、レニウム(Re)、オスミウム
(Os)、イリジウム(Ir)、白金(Pt)から選ば
れた少なくとも1種以上の貴金属を担持させてなる。本
発明に係る酸性担体は(I)ゼオライト、(II)酸化
物系に大別される。(I)ゼオライト系は、Na−モル
デナイト、Na−ZSM・5、Na−USYなど耐熱性
に優れたゼオライトを硫安などのアンモニウム塩水溶
液、あるいは硫酸などの酸で処理し、ゼオライト中のア
ルカリ金属の一部あるいは全部をNH4 あるいはH
でイオン交換処理し、NH4 イオン交換の場合更に焼
成処理することによって酸型ゼオライトが得られる。例
えば、SiO2/Al2O3のモル比が、13〜20ど
あって、かつSiO2/Na2Oのモル比が10〜20
0であるものや、特願平3−164094として出願し
ているTi、Zr置換もしくは担体ゼオライトなどを挙
げることができる。(II)酸化物系は、本発明者らが
平成3年1月8日付に出願しているAl2O3、TiO
2、TiO2/SO4 、ZrO2、ZrO4/SO4
などの単一金属酸化物や、SiO2−Al2O3、T
iO2−Al2O3、TiO2−ZrO2などの複合酸
化物などである。本発明にかかる触媒粉は、種々の方法
により調製することが出来る。前述した酸性担体を、水
にリパルブし、これに第1成分から選択されるCu、F
e、Co、Niなどの硝酸塩水溶液、および第2成分か
ら選択される、Ru、Rh、Pd、Re、Os、Ir、
Ptなどの貴金属の塩化物を所定量加え、一定時間撹拌
した後、NH4OH水を用いてpH7になるように中和
し、沈殿を形成させ、これらをろ別、水洗、乾燥した
後、5%ヒドラジン水溶液中に一定時間浸漬させ還元す
る。これらをろ別後、乾燥し、500℃〜600℃で3
〜5時間焼成する。触媒の調製は又、イオン交換法によ
っても可能である。すなわち、先ず第1に、第1成分の
硝酸塩等の水溶液中に、酸性担体をリパルブし、加熱し
ながら、一定時間撹拌し、イオン交換した後、ろ別、水
洗し、乾燥する。次に更にこのものを、第2成分の塩化
物水溶液中にリパルブし、同じく加熱しながら一定時間
撹拌し、イオン交換した後、ろ別、水洗、乾燥した後、
500℃〜600℃で3〜5時間焼成する。本発明にお
いて、イオン交換の方法は、特に限定されるものではな
く、従来より知られている通常の方法によって行うこと
ができる。例えば、前記酸性担体を水に分散させ、十分
な撹拌下に、イオン交換する遷移金属等の陽イオン又は
錯陽イオンを加えればよい。このように、イオン交換に
おいて、イオン交換する遷移金属の陽イオン又は錯陽イ
オンが沈殿を生じず、且つ、できるだけ高いpHに保こ
とによって、水酸基の有する水素イオンとイオン交換す
るイオンの交換容量を増加させることができる。かかる
イオン交換の進行に伴って、交換された水素イオンによ
って液のpHが低下するので、アンモニア等の中和剤を
加え、pHを前述したように高く維持しながら、イオン
交換するのがよい。また、交換する金属イオンが銅、ニ
ッケル等の場合のように、加熱によって加水分解しない
ときは、イオン交換速度を速めるために、温度を上昇さ
せた条件下にイオン交換を行ってもよい。以上のように
して、本発明に係る触媒粉が得られるが、これら金属の
好適な担持量は、第1成分の遷移金属としては、金属換
算で1〜10wt%であり、又、第2成分の貴金属とし
ては、金属換算で0.01〜1.0wt%である。第1
成分の担持量が上記範囲以上では、それに見合うだけの
活性の向上は見られなかった。又第2成分の担持量は、
上記範囲以下ではその効果は十分に発揮されないが、上
記範囲以上では、活性が発現する温度をより低くするこ
とは可能であるが、これら貴金属の使用量を増すことは
経済的に不利である。結局、本発明が提起している温度
領域においては、第2成分としてはその担持量が上記範
囲以上にある必要はない。これらの触媒粉のうちでより
好ましいのは、ゼオライト系担体に、銅およびルテニウ
ムあるいはロジウムを担持したものである。本発明に係
る亜酸化窒素分解用触媒は、従来公知の成形方法によ
り、ハニカム状球状等の種々の形状に成形することが出
来る。さらに又、前述した酸性担体のみを成形し、第1
成分および第2成分を成形後に含浸させてもよい。さら
に又、別に成形したセラミックス担体あるいはセラミッ
クファイバー製基材、コージエライト製ハニカム等の上
に前述した触媒粉をウォッシュコートしてもよい。又、
成形の際には、成形助剤、無機繊維、有機バインダー等
を適宜配合してもよい。本発明に係る亜酸化窒素分解用
触媒が、N2Oに対して活性を示す最適な温度は、触媒
種によって異なるが通常300℃〜600℃であり、こ
の温度領域においては、空間速度(SV)500〜50
0000程度で排ガスを通流させることが好ましい。な
お、より好適な使用温度領域は400℃〜500℃であ
る。The catalyst for decomposing nitrous oxide according to the present invention for achieving the above object is zeolite,
Copper (Cu), iron (F) as the first component in an acidic carrier such as alumina, titania, zirconia, or silica-alumina.
e), at least one metal or metal oxide selected from cobalt (Co), nickel (Ni), and second
As components, ruthenium (Ru), rhodium (Rh),
It comprises at least one or more noble metals selected from palladium (Pd), rhenium (Re), osmium (Os), iridium (Ir), and platinum (Pt). The acidic carrier according to the present invention is roughly classified into (I) zeolite and (II) oxide type. (I) Zeolite is a zeolite having excellent heat resistance such as Na-mordenite, Na-ZSM.5, and Na-USY, which is treated with an ammonium salt solution such as ammonium sulfate or an acid such as sulfuric acid so that the alkali metal Part or all of NH 4 or H
In the case of NH 4 ion exchange, the acid-type zeolite is obtained by further performing the ion exchange treatment in (1). For example, the SiO 2 / Al 2 O 3 molar ratio is 13 to 20, and the SiO 2 / Na 2 O molar ratio is 10 to 20.
Examples thereof include those having a value of 0, and Ti, Zr-substituted or carrier zeolites filed as Japanese Patent Application No. 3-164094. The (II) oxide-based materials are Al 2 O 3 and TiO, which the present inventors applied for on January 8, 1991.
2 , TiO 2 / SO 4 , ZrO 2 , ZrO 4 / SO 4
Single metal oxide such as SiO 2 —Al 2 O 3 , T
Examples thereof include complex oxides such as iO 2 —Al 2 O 3 and TiO 2 —ZrO 2 . The catalyst powder according to the present invention can be prepared by various methods. The above-mentioned acidic carrier is repulsed in water, and Cu, F selected from the first component is added to this.
Ru, Rh, Pd, Re, Os, Ir, selected from aqueous nitrate solutions such as e, Co, Ni, and the second component.
After adding a predetermined amount of a noble metal chloride such as Pt and stirring for a certain period of time, the mixture is neutralized with NH 4 OH water to pH 7 to form a precipitate, which is filtered, washed with water and dried, It is dipped in a 5% aqueous solution of hydrazine for a certain period of time to be reduced. These are separated by filtration, dried, and dried at 500 ° C to 600 ° C for 3
Bake for ~ 5 hours. The preparation of the catalyst is also possible by the ion exchange method. That is, first, first, an acidic carrier is repulsed in an aqueous solution of a nitrate or the like of the first component, stirred for a certain period of time while heating, ion-exchanged, filtered, washed with water, and dried. Next, this product is further repulsed in an aqueous chloride solution of the second component, stirred for a certain period of time while being heated, ion-exchanged, filtered, washed with water and dried,
Baking is performed at 500 ° C. to 600 ° C. for 3 to 5 hours. In the present invention, the ion exchange method is not particularly limited, and it can be performed by a conventionally known conventional method. For example, the acidic carrier may be dispersed in water, and a cation or a complex cation such as a transition metal for ion exchange may be added under sufficient stirring. As described above, in ion exchange, the exchange metal cations or complex cations to be ion-exchanged do not cause precipitation, and the pH is kept as high as possible to increase the exchange capacity of the ions exchanged with the hydrogen ions of the hydroxyl groups. Can be increased. As the ion exchange proceeds, the pH of the liquid decreases due to the exchanged hydrogen ions. Therefore, it is preferable to add a neutralizing agent such as ammonia and perform the ion exchange while maintaining the pH high as described above. When the metal ion to be exchanged is not hydrolyzed by heating, as in the case of copper, nickel or the like, the ion exchange may be performed under the condition of increasing the temperature in order to increase the ion exchange rate. As described above, the catalyst powder according to the present invention is obtained, and the preferable loading amount of these metals is 1 to 10 wt% in terms of metal as the transition metal of the first component, and the second component The noble metal is 0.01 to 1.0 wt% in terms of metal. First
When the amount of the component carried was more than the above range, the activity corresponding to the above amount was not improved. The amount of the second component carried is
If the amount is less than the above range, the effect is not sufficiently exhibited, but if the amount is more than the above range, the temperature at which the activity is exhibited can be lowered, but increasing the amount of these precious metals used is economically disadvantageous. After all, in the temperature range proposed by the present invention, it is not necessary that the amount of the second component carried is above the above range. Among these catalyst powders, more preferred is a zeolite-based carrier carrying copper and ruthenium or rhodium. The catalyst for decomposing nitrous oxide according to the present invention can be molded into various shapes such as a spherical shape by a conventionally known molding method. Furthermore, by molding only the above-mentioned acidic carrier,
The component and the second component may be impregnated after molding. Further, the above-mentioned catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like. or,
At the time of molding, a molding aid, an inorganic fiber, an organic binder and the like may be appropriately mixed. The optimum temperature at which the catalyst for decomposing nitrous oxide according to the present invention is active with respect to N 2 O varies depending on the catalyst species, but is usually 300 ° C to 600 ° C. In this temperature range, the space velocity (SV ) 500-50
It is preferable to let the exhaust gas flow at about 0000. A more suitable operating temperature range is 400 ° C to 500 ° C.
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (I)、触媒の調製 実施例1 SiO2/Al2O3モル比が19.5、SiO2/N
a2Oモル比が165の日本化学製H型モルデナイト
(HM−23)200gを2lの水に浸漬し、CuSO
4水溶液をCuOとして10gとなるように、又RuC
l3水溶液をRuとして0.2gとなるように添加し、
30分間撹拌した。次いで、(1+1)NH4OHを用
いてpHが7になるまで中和した。このスラリーをろ別
し、十分に水洗し、100℃で8時間乾燥した。得られ
た粉末を軽く粉砕し5%のヒドラジン溶液に10分間浸
漬し、還元した。このスラリーをろ別、水洗後100℃
で8時間乾燥し、さらに500℃で4時間焼成して、C
uOおよびRuをそれぞれ4.91%、0.095%含
有するモルデナイト粉末を得た。尚、これらの分析は原
子吸光法によった。次に、この粉末100gに水100
gを加え、ボールミルにて10分間粉砕し、さらに水に
て粘度調節し、ウォッシュコート用スラリーを得た。こ
のスラリーを用いて7mmピッチのコージェライト製ハ
ニカムに触媒粉を担持した。このときのコート量は0.
12g/ccであった。 実施例2 実施例1において、CuSO4水溶液にかえて、Fe
(NO3)3溶液とする以外は実施例1と同様にして、
Fe2O3およびRuをそれぞれ4.93%、0.09
1%含有するモルデナイト粉末を得た。以下、実施例1
と同様にしてハニカム触媒を得たが、このときのコート
量は0.122g/ccであった。 実施例3 実施例1において、CuSO4水溶液にかえて、Co
(NO3)2溶液とする以外は実施例1と同様にして、
CoOおよびRuをそれぞれ4.92%、0.093%
含有するモルデナイト粉末を得た。以下、実施例1と同
様にしてハニカム触媒を得たが、このときのコート量は
0.131g/ccであった。 実施例4 実施例1において、CuSO4水溶液にかえて、Ni
(NO3)2溶液とする以外は実施例1と同様にして、
NiOおよびRuをそれぞれ4.91%、0.091%
含有するモルデナイト粉末を得た。以下、実施例1と同
様にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。 実施例5 実施例1において、RuCl3水溶液にかえて、RhC
l3水溶液とする以外は実施例1と同様にして、CuO
およびRuをそれぞれ4.92%、0.011%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
31g/ccであった。 実施例6 実施例1において、RuCl3水溶液にかえて、RhC
l3水溶液とする以外は実施例1と同様にして、CuO
およびRuをそれぞれ4.95%、0.048%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
33g/ccであった。 実施例7 実施例1において、RuCl3水溶液にかえて、PdC
l3水溶液とする以外は実施例1と同様にして、CuO
およびPdをそれぞれ4.95%、0.093%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
26g/ccであった。 実施例8 実施例1において、RuCl3水溶液にかえて、ReC
l3水溶液とする以外は実施例1と同様にして、CuO
およびReをそれぞれ4.95%、0.095%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
23g/ccであった。 実施例9 実施例1において、RuCl3水溶液にかえて、OsC
l3水溶液とする以外は実施例1と同様にして、CuO
およびOsをそれぞれ4.96%、0.095%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
21g/ccであった。 実施例10 実施例1において、RuCl3水溶液にかえて、IrC
l4水溶液とする以外は実施例1と同様にして、CuO
およびIrをそれぞれ4.95%、0.089%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
33g/ccであった。 実施例11 実施例1において、RuCl3水溶液にかえて、H2P
tCl6水溶液とする以外は実施例1と同様にして、C
uOおよびPtをそれぞれ4.95%、0.095%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.133g/ccであった。 実施例12 実施例1において、HM23にかえて、比表面積110
m2/gのアナターゼ型TiO2とする以外は実施例1
と同様にして、CuOおよびRuそれぞれ4.96%、
0.093%含有するTiO2粉末を得た。実施例1と
同様にしてハニカム触媒を得たがこのときのコート量は
0.122g/ccであった。 実施例13 実施例1において、CuSO4水溶液をCuOとして6
gとなるようにする以外は実施例1と同様にして、Cu
OおよびRuをそれぞれ2.95%、0.094%含有
するモルデナイト粉末を得た。以下、実施例1と同様に
してハニカム触媒を得たが、このときのコート量は0.
126g/ccであった。 実施例14 実施例1において、CuSO4水溶液をCuOとして2
0gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ9.92%、0.095%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。 実施例15 実施例1において、RuCl3水溶液をRuとして0.
4gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ4.95%、0.193%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.126g/ccであった。 実施例16 実施例1において、RuCl3水溶液をRuとして0.
1gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ4.95%、0.048%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。 比較例1 実施例1において、RuCl3水溶液を添加せずして、
CuOを4.96%含有するモルデナイト粉末を得た。
以下実施例1と同様にしてハニカム触媒を得たが、この
ときのコート量は0.123g/ccであった。 比較例2 実施例13において、RuCl3水溶液を添加せずし
て、CuOを2.95%含有するモルデナイト粉末を得
た。以下実施例1と同様にしてハニカム触媒を得たが、
このときのコート量は0.131g/ccであった。 比較例3 実施例14において、RuCl3水溶液を添加せずし
て、CuOを9.95%含有するモルデナイト粉末を得
た。以下実施例1と同様にしてハニカム触媒を得たが、
このときのコート量は0.131g/ccであった。 比較例4 実施例12において、RuCl3水溶液を添加せずし
て、CuOを4.95%含有するTiO2粉末を得た。
以下実施例12と同様にしてハニカム触媒を得たが、こ
のときのコート量は0.133g/ccであった。 (II)、評価試験 実施例1〜16、比較例1〜4で得た触媒について、下
記の試験条件により、常圧流通式反応装置を用い、亜酸
化窒素含有ガスの接触分解を行い、亜酸化窒素のN2へ
の転換率をガスクロマトグラフ法によりN2を定量して
算出した。試験条件 、ガス組成 N2O 50ppm O2 5% H2O 2% He 残部 、空間速度 5000Hr1 、反応温度 300℃、400℃、500℃ 結果を表1に示す。 EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible. (I), Preparation of Catalyst Example 1 SiO 2 / Al 2 O 3 molar ratio was 19.5, SiO 2 / N
200 g of H-type mordenite (HM-23, manufactured by Nippon Kagaku Co., Ltd.) having an a 2 O molar ratio of 165 was immersed in 2 l of water, and CuSO
4 Aqueous solution to make CuO 10g, RuC
The l 3 aqueous solution was added to a 0.2g as Ru,
Stir for 30 minutes. It was then neutralized with (1 + 1) NH 4 OH until pH = 7. This slurry was filtered off, washed thoroughly with water, and dried at 100 ° C. for 8 hours. The obtained powder was lightly crushed and immersed in a 5% hydrazine solution for 10 minutes to reduce the powder. This slurry is filtered, washed with water and then at 100 ° C.
At 8 ° C for 8 hours, then calcination at 500 ° C for 4 hours.
A mordenite powder containing 4.91% and 0.095% of uO and Ru was obtained. In addition, these analyzes were based on the atomic absorption method. Next, 100 g of this powder is added to 100 g of water.
g was added, the mixture was pulverized with a ball mill for 10 minutes, and the viscosity was adjusted with water to obtain a washcoat slurry. Using this slurry, a catalyst powder was supported on a 7 mm pitch cordierite honeycomb. The coat amount at this time is 0.
It was 12 g / cc. Example 2 In Example 1, instead of the CuSO 4 aqueous solution, Fe was used.
(NO 3 ) 3 solution was prepared in the same manner as in Example 1, except that
Fe 2 O 3 and Ru were 4.93% and 0.09, respectively.
A mordenite powder containing 1% was obtained. Hereinafter, Example 1
A honeycomb catalyst was obtained in the same manner as above, but the coating amount at this time was 0.122 g / cc. Example 3 In Example 1, instead of CuSO 4 aqueous solution, Co
In the same manner as in Example 1 except that a (NO 3 ) 2 solution was used,
CoO and Ru are 4.92% and 0.093%, respectively
A mordenite powder containing was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.131 g / cc. Example 4 In Example 1, the CuSO 4 aqueous solution was replaced with Ni.
In the same manner as in Example 1 except that a (NO 3 ) 2 solution was used,
NiO and Ru are 4.91% and 0.091%, respectively
A mordenite powder containing was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Example 5 In Example 1, instead of the RuCl 3 aqueous solution, RhC
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.92% and Ru of 0.011% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 31 g / cc. Example 6 In Example 1, instead of the RuCl 3 aqueous solution, RhC
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.95% and Ru of 0.048% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 33 g / cc. Example 7 In Example 1, PdC was used instead of RuCl 3 aqueous solution.
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
Thus, a mordenite powder containing 4.95% and Pd of 0.093% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 26 g / cc. Example 8 In Example 1, instead of the RuCl 3 aqueous solution, the ReC
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.95% and 0.095% Re was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 23 g / cc. Example 9 In Example 1, instead of the RuCl 3 aqueous solution, OsC was added.
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.96% and Os of 0.095% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 21 g / cc. Example 10 In Example 1, instead of the RuCl 3 aqueous solution, IrC was used.
except that the l 4 solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.95% and 0.089% of Ir was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 33 g / cc. Example 11 In Example 1, H 2 P was used instead of the RuCl 3 aqueous solution.
C in the same manner as in Example 1 except that a tCl 6 aqueous solution was used.
A mordenite powder containing 4.95% uO and 0.095% Pt was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.133 g / cc. Example 12 In Example 1, instead of HM23, a specific surface area of 110
Example 1 except that m 2 / g of anatase type TiO 2 was used.
In the same manner as described above, CuO and Ru are each 4.96%,
A TiO 2 powder containing 0.093% was obtained. A honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Example 13 In Example 1, the CuSO 4 aqueous solution was used as CuO to obtain 6
Cu was prepared in the same manner as in Example 1 except that g was changed to g.
A mordenite powder containing O and Ru at 2.95% and 0.094% respectively was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.
It was 126 g / cc. Example 14 In Example 1, the CuSO 4 aqueous solution was used as CuO to obtain 2
C in the same manner as in Example 1 except that the amount is 0 g.
A mordenite powder containing 9.92% and 0.095% of uO and Ru was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Example 15 In Example 1, the RuCl 3 aqueous solution was used as Ru to give a value of 0.
C in the same manner as in Example 1 except that the weight is 4 g.
A mordenite powder containing 4.95% and 0.193% of uO and Ru was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.126 g / cc. Example 16 In Example 1, the RuCl 3 aqueous solution was used as Ru to give a value of 0.
C, in the same manner as in Example 1 except that the amount was 1 g.
A mordenite powder containing 4.95% uO and 0.048% Ru was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Comparative Example 1 In Example 1, the RuCl 3 aqueous solution was not added,
A mordenite powder containing 4.96% CuO was obtained.
A honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.123 g / cc. Comparative Example 2 A mordenite powder containing 2.95% CuO was obtained without adding the RuCl 3 aqueous solution in Example 13. A honeycomb catalyst was obtained in the same manner as in Example 1 below.
The coating amount at this time was 0.131 g / cc. Comparative Example 3 A mordenite powder containing 9.95% CuO was obtained without adding the RuCl 3 aqueous solution in Example 14. A honeycomb catalyst was obtained in the same manner as in Example 1 below.
The coating amount at this time was 0.131 g / cc. Comparative Example 4 In Example 12, a TiO 2 powder containing 4.95% CuO was obtained without adding the RuCl 3 aqueous solution.
A honeycomb catalyst was obtained in the same manner as in Example 12, but the coating amount at this time was 0.133 g / cc. (II), Evaluation test The catalysts obtained in Examples 1 to 16 and Comparative Examples 1 to 4 were catalytically decomposed with a nitrous oxide-containing gas by using a normal pressure flow reactor under the following test conditions. the conversion to N 2 of nitrogen oxide was calculated by quantifying the N 2 by gas chromatography. Test conditions , gas composition N 2 O 50 ppm O 2 5% H 2 O 2% He balance, space velocity 5000 Hr 1 , reaction temperature 300 ° C., 400 ° C., 500 ° C. Results are shown in Table 1.
【発明の効果】以上詳細に説明したように、本発明に係
る亜酸化窒素分解用触媒は、排ガス中の亜酸化窒素を比
較的温度においても効率よく接触分解することが出来、
又、排ガスが存在してもその影響を受けにくいなど、優
れた特有を有する。As described in detail above, the catalyst for decomposing nitrous oxide according to the present invention can efficiently catalytically decompose nitrous oxide in exhaust gas even at a relatively high temperature,
Further, it has an excellent peculiarity such that it is not easily affected by the presence of exhaust gas.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉本 雅文 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masafumi Yoshimoto 5-1, Ebishimacho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd.
Claims (1)
u)、鉄(Fe)、コバルト(Co)、ニッケル(N
i)から選ばれた少なくとも1種以上の金属又は金属酸
化物、および第2成分として、ルテニウム(Ru)、ロ
ジウム(Rh)、パラジウム(Pd)レニウム(R
e)、オスミウム(Os)、イリジウム(Ir)、白金
(Pt)から選ばれた少なくとも1種以上の貴金属を担
持することを特徴とする亜酸化窒素分解用触媒。1. Copper (C) as a first component in an acidic carrier
u), iron (Fe), cobalt (Co), nickel (N
at least one metal or metal oxide selected from i) and, as the second component, ruthenium (Ru), rhodium (Rh), palladium (Pd) rhenium (R
e), osmium (Os), iridium (Ir), platinum (Pt), at least one or more noble metals selected from the above, a catalyst for decomposing nitrous oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21538092A JP3254742B2 (en) | 1992-07-03 | 1992-07-03 | Catalyst for decomposition of nitrous oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21538092A JP3254742B2 (en) | 1992-07-03 | 1992-07-03 | Catalyst for decomposition of nitrous oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06154611A true JPH06154611A (en) | 1994-06-03 |
JP3254742B2 JP3254742B2 (en) | 2002-02-12 |
Family
ID=16671345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21538092A Expired - Fee Related JP3254742B2 (en) | 1992-07-03 | 1992-07-03 | Catalyst for decomposition of nitrous oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3254742B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100408503B1 (en) * | 1996-07-23 | 2004-02-14 | 삼성전기주식회사 | Catalyst for purifying exhaus gas of vehicle |
NL1026207C2 (en) * | 2004-05-17 | 2005-11-21 | Stichting Energie | Process for the decomposition of N2O, catalyst for it and preparation of this catalyst. |
WO2006103754A1 (en) * | 2005-03-30 | 2006-10-05 | Sued-Chemie Catalysts Japan, Inc. | Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst |
KR100847739B1 (en) * | 2006-08-01 | 2008-07-23 | 고등기술연구원연구조합 | Catalyst for removing nitrous oxide, preparation method thereof and method for removing nitrous oxide using the catalyst |
JP2011056347A (en) * | 2009-09-07 | 2011-03-24 | Toshiba Corp | Catalytic filter and catalytic device |
KR20110041509A (en) * | 2008-07-11 | 2011-04-21 | 쉬티흐틴크 에네르지온데르조크 센트룸 네델란드 | Decomposition method of N 2 O, catalyst therefor, and preparation of this catalyst |
JP2011106999A (en) * | 2009-11-18 | 2011-06-02 | Horiba Ltd | Dilution air refining method and dilution air refining device |
JP2014089216A (en) * | 2014-02-17 | 2014-05-15 | Sumitomo Metal Mining Engineering Co Ltd | Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system |
WO2017115767A1 (en) * | 2015-12-28 | 2017-07-06 | トヨタ自動車株式会社 | Cluster supported catalyst and production method therefor |
WO2023219074A1 (en) * | 2022-05-12 | 2023-11-16 | 住友化学株式会社 | Catalyst, catalyst precursor, method for producing catalyst, reaction tube filled with catalyst, and method for decomposing nitrous oxide |
-
1992
- 1992-07-03 JP JP21538092A patent/JP3254742B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100408503B1 (en) * | 1996-07-23 | 2004-02-14 | 삼성전기주식회사 | Catalyst for purifying exhaus gas of vehicle |
US7901648B2 (en) | 2004-05-17 | 2011-03-08 | Stichting Energieonderzoek Centrum Nederland | Method for the decomposition of N2O, catalyst therefor and preparation of this catalyst |
KR101171086B1 (en) * | 2004-05-17 | 2012-08-06 | 쉬티흐틴크 에네르지온데르조크 센트룸 네델란드 | Decomposition method of N₂O, catalyst used therein and preparation method thereof |
WO2005110582A1 (en) * | 2004-05-17 | 2005-11-24 | Stichting Energieonderzoek Centrum Nederland | Method for the decomposition of n2o, catalyst therefor and preparation of this catalyst |
JP2007537858A (en) * | 2004-05-17 | 2007-12-27 | スティヒティング エネルギーオンダーゾーク セントラム ネーデルランド | N2O decomposition method, catalyst therefor, and process for producing the catalyst |
NL1026207C2 (en) * | 2004-05-17 | 2005-11-21 | Stichting Energie | Process for the decomposition of N2O, catalyst for it and preparation of this catalyst. |
EA011258B1 (en) * | 2004-05-17 | 2009-02-27 | Стихтинг Энергиондерзук Сентрум Недерланд | Method for the decomposition of no, catalyst therefor and preparation of this catalyst |
US7704474B2 (en) | 2004-05-17 | 2010-04-27 | Stichting Energieonderzoek Centrum Nederland | Method for the decomposition of N2O, catalyst therefor and preparation of this catalyst |
WO2006103754A1 (en) * | 2005-03-30 | 2006-10-05 | Sued-Chemie Catalysts Japan, Inc. | Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst |
KR100847739B1 (en) * | 2006-08-01 | 2008-07-23 | 고등기술연구원연구조합 | Catalyst for removing nitrous oxide, preparation method thereof and method for removing nitrous oxide using the catalyst |
KR20110041509A (en) * | 2008-07-11 | 2011-04-21 | 쉬티흐틴크 에네르지온데르조크 센트룸 네델란드 | Decomposition method of N 2 O, catalyst therefor, and preparation of this catalyst |
JP2011527629A (en) * | 2008-07-11 | 2011-11-04 | シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド | N2O decomposition method, catalyst therefor and preparation of the catalyst |
JP2011056347A (en) * | 2009-09-07 | 2011-03-24 | Toshiba Corp | Catalytic filter and catalytic device |
JP2011106999A (en) * | 2009-11-18 | 2011-06-02 | Horiba Ltd | Dilution air refining method and dilution air refining device |
CN102101016A (en) * | 2009-11-18 | 2011-06-22 | 株式会社堀场制作所 | Method for refining dilution air and dilution air refinery |
JP2014089216A (en) * | 2014-02-17 | 2014-05-15 | Sumitomo Metal Mining Engineering Co Ltd | Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system |
WO2017115767A1 (en) * | 2015-12-28 | 2017-07-06 | トヨタ自動車株式会社 | Cluster supported catalyst and production method therefor |
JP6235764B1 (en) * | 2015-12-28 | 2017-11-22 | トヨタ自動車株式会社 | Cluster-supported catalyst and method for producing the same |
WO2023219074A1 (en) * | 2022-05-12 | 2023-11-16 | 住友化学株式会社 | Catalyst, catalyst precursor, method for producing catalyst, reaction tube filled with catalyst, and method for decomposing nitrous oxide |
Also Published As
Publication number | Publication date |
---|---|
JP3254742B2 (en) | 2002-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0544282B1 (en) | Catalyst for purifying exhaust gas | |
EP1874441B1 (en) | Ammonia oxidation catalyst for coal fired utilities | |
US5783515A (en) | Catalyst for treating exhaust gases containing dioxines, production process for the catalyst and method of treating the exhaust gases | |
DE69204830T2 (en) | Exhaust gas purification catalyst and process. | |
DE3120780A1 (en) | DIESEL EXHAUST CATALYST | |
US5002920A (en) | Catalyst for ozone decomposition | |
JPH06154611A (en) | Catalyst for decomposition of nitrous oxide | |
JP3221116B2 (en) | Catalyst for decomposition of nitrous oxide | |
KR20010037883A (en) | A process for preparing honeycomb type monolithic catalyst | |
DE2602286A1 (en) | CATALYST WITH DUAL FUNCTION FOR EXHAUST GAS PURIFICATION | |
JP2004358454A (en) | Exhaust gas cleaning catalyst and cleaning method | |
JP2916377B2 (en) | Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst | |
KR20010044002A (en) | Honeycomb type monolithic catalyst for removing VOCs | |
JP3091820B2 (en) | Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst | |
JP3321423B2 (en) | Exhaust gas purification method | |
EP0387044A1 (en) | Catalyst and method for ozone decomposition | |
JPH08141398A (en) | Catalyst for decomposing ammonia | |
JPH06198187A (en) | Catalyst for decomposition of nitrous oxide | |
JPH0290923A (en) | Deodorizing method | |
JP3221071B2 (en) | Catalyst for decomposition of nitrous oxide | |
JP2001104781A (en) | Material for removing nitrogen oxide and method for removing it | |
JP3219613B2 (en) | Ammonia decomposition catalyst and method for decomposing and removing ammonia | |
JP3221115B2 (en) | Catalyst for decomposition of nitrous oxide | |
JPH0299142A (en) | Nitrogen oxide decomposing catalyst | |
JP2982623B2 (en) | Detoxification method of ammonia-containing exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |