[go: up one dir, main page]

JP2004358454A - Exhaust gas cleaning catalyst and cleaning method - Google Patents

Exhaust gas cleaning catalyst and cleaning method Download PDF

Info

Publication number
JP2004358454A
JP2004358454A JP2003199738A JP2003199738A JP2004358454A JP 2004358454 A JP2004358454 A JP 2004358454A JP 2003199738 A JP2003199738 A JP 2003199738A JP 2003199738 A JP2003199738 A JP 2003199738A JP 2004358454 A JP2004358454 A JP 2004358454A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
zeolite
nox
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003199738A
Other languages
Japanese (ja)
Inventor
Masashi Sugiyama
正史 杉山
Kengo Soda
健吾 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003199738A priority Critical patent/JP2004358454A/en
Publication of JP2004358454A publication Critical patent/JP2004358454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a exhaust gas cleaning catalyst that excels in denitrating performance and durability eliminating nitrogen oxide NOx in exhaust gas including sulfur oxide and excels in practicality without lowering the denitrating performance even at relatively lower exhaust gas temperature of 300°C-400°C and a method for purifying the exhaust gas with the catalyst. <P>SOLUTION: As the catalyst, copper, cobalt, silver, molybdenum or βzeolite supporting tungsten are used and the nitrogen oxide NOx in the exhaust gas is deoxidized and eliminated by bringing the exhaust gas with excess oxygen into contact with ethanol and/or isopropyl alcohol as a reducing agent. In the above-mentioned zeolite, the exhaust gas cleaning catalyst, it is desirable that the mole ratio of SiO<SB>2</SB>to Al<SB>2</SB>O<SB>3</SB>should be 20 to 70. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラー、ディーゼルエンジン発電機、またはディーゼルエンジン自動車からの各種燃焼排ガスや、産業設備からの排ガスに含まれる窒素酸化物の除去に有効な排ガス浄化用触媒、並びにその触媒を使用する排ガス浄化方法に関する。
【0002】
【従来の技術】
工場、発電設備、その他の産業設備や、自動車などから排出される各種の排ガス中には、一酸化窒素や二酸化窒素などの窒素酸化物(NOx)が含まれている。このNOxは人体、特に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保全の上から問題視される酸性雨の原因の一つとなっている。
【0003】
そのため、これら各種の排ガスから、窒素酸化物(NOx)を効率よく除去する技術の開発が望まれている。このような排煙脱硝法の一つとして、自動車(ガソリン車)の排ガス処理に用いられている三元触媒法が知られている。しかし、この三元触媒法は、排ガス中に含まれる炭化水素や一酸化炭素などの未燃焼分を完全酸化するのに必要な理論量より過剰な酸素を含む排ガスには適用することができない。
【0004】
一方、酸素が過剰に存在する雰囲気下でNOxを還元除去する方法としては、V−TiO触媒を用い、アンモニアを還元剤とするアンモニア選択接触還元法が知られている。しかし、この方法においては、臭気が強く有害なアンモニアを用いるため、取り扱いが容易でない。また、未反応のアンモニアの排出を防ぐための特別な装置を必要とするため、設備が大型化することから、小規模な排ガス発生源や移動型発生源への適用には不向きであるうえ、経済性においても好ましいものではない。
【0005】
近年、酸素過剰の希薄燃焼排ガス中に残存する未燃焼の炭化水素を還元剤として用いることにより、その排ガス中のNOxの還元反応を促進させることができるという報告がなされた。この報告以来、NOxの還元反応を促進するための触媒が種々開発され、例えば、アルミナやアルミナに遷移金属を担時した触媒などが、炭化水素類を還元剤として用いるNOxの還元除去反応に有効であるとする数多くの報告がなされている。
【0006】
このような炭化水素類を還元剤として酸素過剰の燃焼排ガス中の窒素酸化物を還元除去する触媒の一例として、アルミナやアルミナに遷移金属を担時した触媒のほか、0.1〜4重量%のCu、Fe、Cr、Zn、Ni、又はVを含有するアルミナ若しくはシリカ−アルミナからなる還元触媒が報告されている(特許文献1参照)。
【0007】
また、Ptなどをアルミナに担時した触媒を用いると、NOxの還元反応が200〜300℃程度の低温領域でも進行することが報告されている(特許文献2〜4参照)。しかしながら、これらの貴金属担持触媒では、還元剤である炭化水素の燃焼反応が過度に促進されたり、地球温暖化の原因物質の一つとされているNOが多量に副生したりするため、無害なNへの還元反応を選択的に進行させることが困難であるという欠点を有していた。
【0008】
更に、アルミナなどに銀を担持した触媒が、酸素過剰雰囲気下で炭化水素を還元剤として、NOxの還元反応を選択的に進行させることが報告されている(特許文献5参照)。この報告後、銀を含有する触媒を用いた類似のNOxの還元除去方法が数多く開発され、報告されている(特許文献6参照)。
【0009】
しかしながら、上記した脱硝触媒を用いた排ガスの浄化方法は、いずれも、硫黄酸化物を含む酸素過剰の排ガス中ではNOxの除去性能が著しく低下し、実用的な耐久性が不十分であるという問題があった。また、排ガスの温度が300℃〜400℃程度の比較的低温である場合には、NOxの除去性能が低いという問題もあった。
【0010】
また、水素化したゼオライト触媒や、V、Cr、Mn、Fe、Co、Niなどをゼオライトに担持した触媒を用いて、有機化合物の共存下にNOxを還元除去する方法が報告され、そのゼオライトとしてY型ゼオライト、L型ゼオライト、オフレタイト・エリオナイト混晶型ゼオライト、フェリエライト型ゼオライト、ZSM−5型ゼオライトが示されている(特許文献7参照)。更に、プロトン型ゼオライトを用いてエタノールの存在下にNOxを還元除去する方法も報告され、そのゼオライトとしてY型ゼオライト、ZSM−5型ゼオライト、モルデナイトが示されている(特許文献8参照)。
【0011】
しかしながら、上記した特定のゼオライトからなる触媒を用いたNOxの還元除去方法は、いずれも実用的に十分なNOxの除去性能が得られず、未だ実用化に至っていない現状である。
【0012】
【特許文献1】
特開平4−284848号公報
【特許文献2】
特開平4−267946号公報
【特許文献3】
特開平5−68855号公報
【特許文献4】
特開平5−103949号公報
【特許文献5】
特開平4−281844号公報
【特許文献6】
特開平4−354536号公報
【特許文献7】
特許第2139645号
【特許文献8】
特許第2506598号
【0013】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、硫黄酸化物を含む酸素過剰の排ガスにおいても優れたNOx除去性能と耐久性を有し、排ガス温度が300℃〜400℃の比較的低温でも脱硝性能が高く、実用性に優れた排ガス浄化触媒、及びそれを用いた排ガス浄化方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する排ガス浄化触媒は、酸素過剰の排ガス中の窒素酸化物を、エタノール及び/又はイソプロピルアルコールの存在下に還元除去する触媒であって、βゼオライトに鉄、コバルト、銀、モリブデン及びタングステンから選ばれた少なくとも1種の金属を担持させたことを特徴とする。
【0015】
また、本発明が提供する排ガス浄化方法は、酸素過剰の排ガスを、還元剤としてのエタノール及び/又はイソプロピルアルコールの存在下に、βゼオライトに鉄、コバルト、銀、モリブデン及びタングステンから選ばれた少なくとも1種の金属を担持させた触媒に接触させ、排ガス中の窒素酸化物を還元除去することを特徴とする。
【0016】
上記した本発明の排ガス浄化触媒及び排ガス浄化方法においては、前記βゼオライトのSiO/Alモル比が20〜70であることが好ましい。
【0017】
【発明の実施の形態】
本発明においては、酸素過剰な排ガス中の窒素酸化物(NOx)をエタノール及び/又はイソプロピルアルコールの存在下に還元除去する触媒として、βゼオライトを担体とし、これに鉄、コバルト、銀、モリブデン及びタングステンから選ばれた1種以上を担持させたものを用いる。尚、ゼオライトには、β型のほかにも、Y型、L型、ZSM−5(MFI)型、モルデナイト型など多くの種類があるが、その内でも特にβゼオライトを担体として用いた触媒が、硫黄酸化物を含む排ガスの浄化に極めて有効であることが分かった。
【0018】
βゼオライトに鉄、コバルト、銀、モリブデン又はタングステンを担持させる方法は特に制限されず、従来知られている担持方法を用いることができる。例えば、鉄、コバルト、銀、モリブデン又はタングステンの水溶性塩の水溶液中にβゼオライトを投入し、撹拌してイオン交換させた後、ろ過及び水洗を行うイオン交換法や、βゼオライトに鉄、コバルト、銀、モリブデン又はタングステンの水溶性塩の水溶液を含浸させる含浸法などが挙げられる。
【0019】
このようにして鉄、コバルト、銀、モリブデン又はタングステンを担持させたβゼオライトは、その後、これを乾燥・焼成することにより触媒が調製される。触媒調製時の乾燥温度は、特に制限されるものではないが、通常は80〜120℃程度で乾燥する。また、その後の焼成温度は300〜600℃が好ましい。焼成時の雰囲気は特に限定されないが、触媒組成に応じて、空気、不活性ガス、酸素などの雰囲気を適宜選択すればよい。
【0020】
使用するβゼオライトのシリカ(SiO)/アルミナ(Al)比は、NOxの除去性能(脱硝性能)の点から、モル比で20〜70の範囲が好ましい。このモル比が40を越えて大きくなるほど脱硝性能が低くなること、また熱や水蒸気に対する安定性などを考慮すると、SiO/Alモル比は20〜40の範囲が更に好ましい。
【0021】
本発明の触媒は、従来から知られている成形方法によって、球状、ハニカム状、ペレット状などの種々の形状に成形することができる。これらの形状及び大きさなどは、触媒の使用条件に応じて任意に選択すればよい。また、排ガスの流れ方向に対して多数の貫通孔を有する耐火性一体構造の支持基体の表面に、鉄、コバルト、銀、モリブデン又はタングステンを担持させたβゼオライトを、ウォッシュコート法などにより被覆して触媒とすることもできる。
【0022】
窒素酸化物を還元除去する排ガスの浄化方法においては、上記した本発明の触媒に、排ガスをエタノール及び/又はイソプロピルアルコールの存在下で接触させればよい。還元剤として排ガス中に添加するエタノール及び/又はイソプロピルアルコールの量は、操業上求められる脱硝率及びランニングコストなどに応じて適宜選択すればよいが、通常、排ガス中の窒素酸化物に対するモル比(炭素(C)換算)として0.5〜5程度が好ましい。
【0023】
本発明の処理対象となる窒素酸化物(NOx)を含む排ガスとしては、ボイラーなどの各種燃焼設備、ディーゼルエンジン自動車や定置式のディーゼル機関などの内燃機関、硝酸製造設備などの産業設備などからの排ガスを挙げることができる。これら排ガスは、一般に、CO、HC(炭化水素)及びHといった還元性成分と、NOx及びOといった酸化性成分とを含有するが、両者相互の完全な酸化還元反応に必要な化学量論量よりも過剰量の酸素を含有している。このような酸素過剰の排ガスが、エタノール及び/又はイソプロピルアルコールの存在下に本発明の触媒と接触することによって、排ガス中のNOxはNとHOに還元分解される。
【0024】
本発明の触媒を用いた排ガス浄化方法におけるガス空間速度(SV)については、特に限定されるものではないが、1,000〜100,000/時間(h)とすることが好ましい。また、本発明の触媒によれば、排ガスの温度が300〜400℃程度の比較的低温であっても、窒素酸化物の優れた除去性能が得られる。更に、硫黄酸化物を含む排ガスであっても、優れた脱硝性能を有し、且つその脱硝性能が低下せず耐久性にも優れている。
【0025】
尚、本発明方法で排ガスを処理した場合、反応条件によっては、未燃焼のエタノールやイソプロピルアルコール、あるいは不完全燃焼生成物が排ガス中に排出される場合がある。このような場合には、上記本発明の脱硝触媒通過後の排ガスを、酸化触媒、例えばPt系やPd系などの貴金属担持触媒に接触させて、未燃焼成分や不完全燃焼生成物を除去することができる。
【0026】
【実施例】
(1)触媒の調製
(1−a)本発明の触媒1〜2:Fe担持βゼオライト
100gのイオン交換水に塩化鉄(II)四水和物0.5gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを分散させ、温度を60℃に維持して12時間撹拌した。その後、ろ過及び水洗を行い、110℃で乾燥した後、空気中にて500℃で3時間焼成した。これを加圧成型した後、粉砕して粒度を350〜500μmに整粒し、本発明の触媒1とした。尚、この触媒1において、Fe担持量は金属換算で触媒全体の1.0重量%であった。また、上記と同様に触媒を調製する際に、βゼオライト粉末としてSiO/Alモル比37のものを用いて、触媒2(Fe担持量0.8重量%)を調製した。
【0027】
(1−b)本発明例の触媒3:Co担持βゼオライト
100gのイオン交換水に酢酸コバルト四水和物1.3gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを分散させ、温度を60℃に維持して12時間撹拌した。その後、ろ過及び水洗を行い、110℃で乾燥した後、空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒3を得た。尚、この触媒3のCo担持量は金属換算で触媒全体の2.7重量%であった。
【0028】
(1−c)本発明例の触媒4:Ag担持βゼオライト
100gのイオン交換水に硝酸銀1.6gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)20gを分散させ、温度を60℃に維持して12時間撹拌した。その後、ろ過及び水洗を行い、110℃で乾燥した後、空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒4を得た。尚、この触媒4のAg担持量は、金属換算で触媒全体の2.5重量%であった。
【0029】
(1−d)本発明例の触媒5:Mo担持βゼオライト
30gのイオン交換水に七モリブデン酸六アンモニウム四水和物0.38gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを浸漬した後、撹拌しながら加熱して水分を蒸発させ、更に110℃で通風乾燥した後、空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒5を得た。尚、この触媒5のMo担持量は、金属換算で触媒全体の2.0重量%であった。
【0030】
(1−e)本発明例の触媒6:W担持βゼオライト
30gのイオン交換水にタングステン酸アンモニウムパラ五水和物0.29gとシュウ酸二水和物0.15gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを浸漬した後、撹拌しながら加熱して水分を蒸発させ、更に110℃で通風乾燥した後、空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒6を得た。尚、この触媒6のW担持量は、金属換算で触媒全体の2.0重量%であった。
【0031】
(1−f)比較例の触媒C1〜C3
βゼオライト粉末としてSiO/Alモル比75のものを用い、上記触媒1の調製と同様にしてFeを担持した比較例の触媒C1、上記触媒4の調製と同様にしてAgを担持した比較例の触媒C2、及び上記触媒5の調製と同様にしてMoを担持した比較例の触媒C3を、それぞれ調整した。尚、触媒C1におけるFe担持量は金属換算で触媒全体の0.8重量%、触媒C2のAg担持量は金属換算で触媒全体の2.2重量%、及び触媒C3のMo担持量は金属換算で触媒全体の2.0重量%であった。
【0032】
(1−e)比較例の触媒C4〜C9
上記βゼオライトに代えてZSM−5(SiO/Alモル比27)を担体とし、且つFe担持量を1.2重量%とした比較例の触媒C4を調製した。同じくβゼオライトに代えてモルデナイト(SiO/Alモル比20)を担体とし、且つAg担持量を2.7重量%とした比較例の触媒C5を調製した。同じくβゼオライトに代えてZSM−5(SiO/Alモル比27)を担体とし、且つCo担持量を2.3重量%とした比較例の触媒C6を調製した。
【0033】
同じくβゼオライトに代えてZSM−5(SiO/Alモル比27)を担体とし、且つMo担持量を2.0重量%とした比較例の触媒C7を調製した。同じくβゼオライトに代えてモルデナイト(SiO/Alモル比20)を担体とし、且つW担持量を2.0重量%とした比較例の触媒C8を調製した。更に、同じくβゼオライトに代えてY型ゼオライト(SiO/Alモル比30)を担体とし、且つAg担持量を2.2重量%とした比較例の触媒C9を調製した。
【0034】
(2)触媒の評価
上記した本発明の触媒1〜6及び比較例の触媒C1〜C9を、それぞれ内径15mmのステンレス製反応管に充填して触媒体を形成し、これを常圧固定床流通反応装置に装着した。この反応管内に、モデル排ガスとして、NO:1,000ppm、O:10%、エタノール:1,000ppm、HO:10%、SO:100ppm、残部:Nからなる混合ガスを、空間速度10,000/hの条件で供給して、上記各触媒のNOx除去性能を調べた。
【0035】
また、本発明の触媒1と触媒4及び比較例の触媒C4と触媒C5について、上記モデル排ガス中に添加したエタノール:1,000ppmの代りに、イソプロピルアルコール:750ppmを添加した以外は上記と同様にして、脱硝性能を評価した。更に、本発明の触媒1と触媒4について、エタノール:1,000ppmに代えてエチレン:1,000ppm又はプロピレン:750ppmを添加した以外は上記と同様にして、脱硝性能を評価した。
【0036】
触媒のNOx除去性能(脱硝性能)としての脱硝率は、下記の数式1に従って算出した。尚、反応管出口のガス組成の分析については、NOxの濃度は化学発光式NOx計で測定し、NO濃度はPorapak Qカラム(商品名、GLサイエンス(株)製)を装着したガスクロマトグラフ・熱伝導度検出器を用いて測定した。
【0037】
【数1】

Figure 2004358454
【0038】
上記のごとく脱硝性能を評価する際、排ガス温度を300℃、350℃、400℃にそれぞれ変化させ、得られた結果をそれぞれ下記表1に示した。尚、上記エタノール、イソプロピルアルコール、エチレン、プロピレンは、還元剤としてモデル排ガスに添加したものである。また、いずれの触媒の場合も、反応管の出口ガス中にNOは殆ど認められなかった。
【0039】
【表1】
Figure 2004358454
【0040】
この結果から分かるように、本発明の触媒1〜6は、還元剤としてエタノール又はイソプロピルアルコールを用いることにより、硫黄化合物が多量に存在する酸素過剰な排ガスにおいて、排ガス温度が300〜400℃の比較的低温であっても、比較例の触媒C1〜C9に比べて著しくNOxの除去性能に優れていることが分かる。尚、担体としてβゼオライトを用いた場合でも、そのSiO/Alモル比が70を超える比較例の触媒C1〜C3では、脱硝率が著しく低下することが分かる。
【0041】
次に、触媒の硫黄酸化物に対する耐久性について、上記した本発明の触媒1、触媒3〜6と、比較例の触媒C4〜C8を用い、以下の耐久試験により評価した。即ち、上記と同様に構成した各反応管内に、SO濃度の高いモデル排ガスとして、NO:1,000ppm、O:10%、還元剤としてのエタノール:1,000ppm又はイソプロピルアルコール:750ppm、HO:10%、SO:1,000ppm、残部:Nからなる混合ガスを、排ガス温度350℃、空間速度10,000/hの条件で20時間供給した。
【0042】
上記SO濃度を高めたモデル排ガスでの耐久試験の後、各反応管内に、SO濃度を100ppmとした以外は上記組成と同じモデル排ガスを、同じく排ガス温度350℃及び空間速度10,000/hの条件で供給し、上記と同様にして脱硝率を求めた。得られた結果を、下記表2に示した。
【0043】
【表2】
Figure 2004358454
【0044】
この結果から分かるように、高濃度のSOを含む排ガスによる20時間の耐久試験後においても、本発明の金属担持βゼオライトからなる触媒は、還元剤としてのエタノール又はイソプロピルアルコールの存在下に、高い脱硝性能を維持しており、耐久性に優れている。
【0045】
【発明の効果】
本発明によれば、優れたNOxの除去性能と耐久性を兼ね備えた排ガス浄化触媒を提供することができ、この触媒を用いて酸素過剰の排ガスから窒素酸化物NOxを効率よく除去することができる。しかも、本発明の排ガス浄化触媒は、多量の硫黄酸化物を含む燃焼排ガス中においても高い脱硝率を示し、また排ガス温度が300℃〜400℃程度の比較的低温でも脱硝性能が低下しないため、極めて実用性に優れている。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst effective for removing various combustion exhaust gas from a boiler, a diesel engine generator, or a diesel engine vehicle, and nitrogen oxides contained in exhaust gas from industrial equipment, and an exhaust gas using the catalyst. It relates to a purification method.
[0002]
[Prior art]
Various exhaust gases emitted from factories, power generation facilities, other industrial facilities, automobiles, and the like contain nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide. This NOx not only has an adverse effect on the human body, especially the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection.
[0003]
Therefore, development of a technology for efficiently removing nitrogen oxides (NOx) from these various exhaust gases is desired. As one of such flue gas denitration methods, a three-way catalyst method used for exhaust gas treatment of automobiles (gasoline vehicles) is known. However, this three-way catalyst method cannot be applied to exhaust gas containing oxygen in excess of the theoretical amount required to completely oxidize unburned components such as hydrocarbons and carbon monoxide contained in the exhaust gas.
[0004]
On the other hand, as a method for reducing and removing NOx in an atmosphere in which oxygen is excessively present, an ammonia selective catalytic reduction method using a V 2 O 5 —TiO 2 catalyst and using ammonia as a reducing agent is known. However, in this method, harmful ammonia having a strong odor is used, so that handling is not easy. In addition, since it requires a special device to prevent the emission of unreacted ammonia, the equipment becomes large, so it is not suitable for application to small-scale exhaust gas sources or mobile sources, It is not preferable in terms of economy.
[0005]
In recent years, it has been reported that the use of unburned hydrocarbons remaining in an oxygen-rich lean combustion exhaust gas as a reducing agent can promote the reduction reaction of NOx in the exhaust gas. Since this report, various catalysts have been developed to promote the NOx reduction reaction. For example, alumina and a catalyst supporting a transition metal on alumina are effective for the reduction removal reaction of NOx using hydrocarbons as a reducing agent. There have been many reports that
[0006]
Examples of such a catalyst for reducing and removing nitrogen oxides in an oxygen-excessive combustion exhaust gas by using such hydrocarbons as a reducing agent include alumina and a catalyst in which a transition metal is supported on alumina, and 0.1 to 4% by weight. A reduction catalyst comprising alumina or silica-alumina containing Cu, Fe, Cr, Zn, Ni or V (see Patent Document 1).
[0007]
Further, it is reported that when a catalyst in which Pt or the like is carried on alumina is used, the reduction reaction of NOx proceeds even in a low temperature region of about 200 to 300 ° C. (see Patent Documents 2 to 4). However, in these noble metal-supported catalysts, the combustion reaction of the hydrocarbon as a reducing agent is excessively promoted, and N 2 O, which is one of the substances causing global warming, is produced as a large amount as a by-product. be advanced reduction reaction to harmless N 2 selectively had the disadvantage that it is difficult.
[0008]
Furthermore, it has been reported that a catalyst in which silver is supported on alumina or the like selectively promotes a NOx reduction reaction using a hydrocarbon as a reducing agent in an oxygen-excess atmosphere (see Patent Document 5). After this report, many similar NOx reduction and removal methods using a silver-containing catalyst have been developed and reported (see Patent Document 6).
[0009]
However, any of the above-mentioned methods for purifying exhaust gas using a denitration catalyst has the problem that the NOx removal performance is significantly reduced in an oxygen-excess exhaust gas containing sulfur oxides, and the practical durability is insufficient. was there. In addition, when the temperature of the exhaust gas is relatively low, such as about 300 ° C. to 400 ° C., there is a problem that the NOx removal performance is low.
[0010]
Further, a method of reducing and removing NOx in the presence of an organic compound using a hydrogenated zeolite catalyst or a catalyst in which V, Cr, Mn, Fe, Co, Ni, or the like is supported on the zeolite has been reported. Y-type zeolites, L-type zeolites, offretite-erionite mixed crystal zeolites, ferrierite-type zeolites, and ZSM-5-type zeolites are disclosed (see Patent Document 7). Furthermore, a method of reducing and removing NOx in the presence of ethanol using a proton-type zeolite has also been reported, and as the zeolites, Y-type zeolites, ZSM-5-type zeolites, and mordenite are disclosed (see Patent Document 8).
[0011]
However, none of the above-described methods for reducing and removing NOx using a catalyst composed of a specific zeolite has provided practically sufficient NOx removal performance and has not yet been put to practical use.
[0012]
[Patent Document 1]
JP-A-4-284848 [Patent Document 2]
JP-A-4-267946 [Patent Document 3]
JP-A-5-68855 [Patent Document 4]
JP-A-5-103949 [Patent Document 5]
JP-A-4-281844 [Patent Document 6]
JP-A-4-354536 [Patent Document 7]
Patent No. 2139645 [Patent Document 8]
Patent No. 2506598 [0013]
[Problems to be solved by the invention]
In view of such conventional circumstances, the present invention has excellent NOx removal performance and durability even in an oxygen-excess exhaust gas containing sulfur oxides, and denitration even at a relatively low exhaust gas temperature of 300 ° C to 400 ° C. An object of the present invention is to provide an exhaust gas purifying catalyst having high performance and excellent practicality, and an exhaust gas purifying method using the same.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust gas purifying catalyst provided by the present invention is a catalyst for reducing and removing nitrogen oxides in an oxygen-excess exhaust gas in the presence of ethanol and / or isopropyl alcohol. , At least one metal selected from cobalt, silver, molybdenum and tungsten.
[0015]
Further, the exhaust gas purification method provided by the present invention is characterized in that, in the presence of ethanol and / or isopropyl alcohol as a reducing agent, an excess oxygen exhaust gas is converted into β zeolite at least selected from iron, cobalt, silver, molybdenum and tungsten. It is characterized in that it is brought into contact with a catalyst supporting one kind of metal to reduce and remove nitrogen oxides in exhaust gas.
[0016]
In the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, the β zeolite preferably has a SiO 2 / Al 2 O 3 molar ratio of 20 to 70.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, as a catalyst for reducing and removing nitrogen oxides (NOx) in an oxygen-excess exhaust gas in the presence of ethanol and / or isopropyl alcohol, β zeolite is used as a carrier, and iron, cobalt, silver, molybdenum and One supporting at least one selected from tungsten is used. There are many types of zeolites such as Y-type, L-type, ZSM-5 (MFI) -type and mordenite-type in addition to β-type. Among them, a catalyst using β-zeolite as a carrier is particularly preferable. It was found to be extremely effective in purifying exhaust gas containing sulfur oxides.
[0018]
The method for supporting iron, cobalt, silver, molybdenum or tungsten on the β zeolite is not particularly limited, and a conventionally known supporting method can be used. For example, iron, cobalt, silver, molybdenum or molybdenum or tungsten zeolite in an aqueous solution of a water-soluble salt is stirred and ion-exchanged, followed by filtration and washing with an ion-exchange method. Impregnating with an aqueous solution of a water-soluble salt of silver, molybdenum or tungsten.
[0019]
Thus, the β zeolite supporting iron, cobalt, silver, molybdenum or tungsten is thereafter dried and calcined to prepare a catalyst. The drying temperature at the time of preparing the catalyst is not particularly limited, but it is usually dried at about 80 to 120 ° C. Further, the subsequent firing temperature is preferably from 300 to 600 ° C. The atmosphere during firing is not particularly limited, but an atmosphere such as air, an inert gas, or oxygen may be appropriately selected according to the catalyst composition.
[0020]
The silica (SiO 2 ) / alumina (Al 2 O 3 ) ratio of the β zeolite used is preferably in the range of 20 to 70 in terms of molar ratio from the viewpoint of NOx removal performance (denitration performance). In consideration of the fact that the denitration performance decreases as the molar ratio increases beyond 40, and the stability against heat and water vapor is taken into consideration, the SiO 2 / Al 2 O 3 molar ratio is more preferably in the range of 20 to 40.
[0021]
The catalyst of the present invention can be formed into various shapes such as a spherical shape, a honeycomb shape, and a pellet shape by a conventionally known forming method. These shapes and sizes may be arbitrarily selected according to the conditions for using the catalyst. Further, on the surface of a refractory integrated structure having a large number of through-holes in the flow direction of the exhaust gas, β zeolite carrying iron, cobalt, silver, molybdenum or tungsten is coated by a wash coat method or the like. Can be used as a catalyst.
[0022]
In the method for purifying exhaust gas for reducing and removing nitrogen oxides, the exhaust gas may be brought into contact with the above-described catalyst of the present invention in the presence of ethanol and / or isopropyl alcohol. The amount of ethanol and / or isopropyl alcohol to be added to the exhaust gas as a reducing agent may be appropriately selected according to the denitration rate and running cost required for operation, but usually, the molar ratio to the nitrogen oxides in the exhaust gas ( As carbon (C) conversion, about 0.5-5 is preferable.
[0023]
The exhaust gas containing nitrogen oxides (NOx) to be treated in the present invention includes various combustion facilities such as a boiler, an internal combustion engine such as a diesel engine automobile and a stationary diesel engine, and industrial facilities such as a nitric acid production facility. Exhaust gas can be mentioned. These exhaust gases generally contain reducing components such as CO, HC (hydrocarbon) and H 2 and oxidizing components such as NOx and O 2 , and the stoichiometry required for a complete redox reaction between them. It contains an excess amount of oxygen. By contacting such an oxygen-excess exhaust gas with the catalyst of the present invention in the presence of ethanol and / or isopropyl alcohol, NOx in the exhaust gas is reduced and decomposed into N 2 and H 2 O.
[0024]
The gas hourly space velocity (SV) in the exhaust gas purification method using the catalyst of the present invention is not particularly limited, but is preferably 1,000 to 100,000 / hour (h). Further, according to the catalyst of the present invention, excellent performance for removing nitrogen oxides can be obtained even when the temperature of the exhaust gas is relatively low at about 300 to 400 ° C. Furthermore, even an exhaust gas containing a sulfur oxide has excellent denitration performance, and its denitration performance does not decrease and is excellent in durability.
[0025]
When the exhaust gas is treated by the method of the present invention, unburned ethanol, isopropyl alcohol, or incomplete combustion products may be discharged into the exhaust gas depending on the reaction conditions. In such a case, the exhaust gas after passing through the denitration catalyst of the present invention is brought into contact with an oxidation catalyst, for example, a noble metal-supported catalyst such as a Pt-based or Pd-based catalyst to remove unburned components and incomplete combustion products. be able to.
[0026]
【Example】
(1) Preparation of catalyst (1-a) Catalysts 1-2 of the present invention: 0.5 g of iron (II) chloride tetrahydrate was dissolved in 100 g of Fe-supported β zeolite in ion-exchanged water, and β zeolite was added to this solution. 10 g of powder (SiO 2 / Al 2 O 3 molar ratio 27) was dispersed, and the mixture was stirred for 12 hours while maintaining the temperature at 60 ° C. Thereafter, the resultant was filtered and washed with water, dried at 110 ° C., and fired in air at 500 ° C. for 3 hours. This was press-molded, crushed and sized to a particle size of 350 to 500 μm to obtain Catalyst 1 of the present invention. In this catalyst 1, the amount of Fe carried was 1.0% by weight of the entire catalyst in terms of metal. When preparing the catalyst in the same manner as above, a catalyst 2 (Fe loading 0.8% by weight) was prepared using β zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of 37.
[0027]
(1-b) Catalyst 3 of the present invention example: 1.3 g of cobalt acetate tetrahydrate was dissolved in 100 g of ion exchanged water of 100 g of Co-supported β zeolite, and β zeolite powder ( 3 moles of SiO 2 / Al 2 O) was added to this solution. Ratio 27) 10 g were dispersed, and the mixture was stirred for 12 hours while maintaining the temperature at 60 ° C. Thereafter, the resultant was filtered and washed with water, dried at 110 ° C., and fired in air at 500 ° C. for 3 hours. This was sized in the same manner as above to obtain Catalyst 3 of the present invention. The amount of supported Co in the catalyst 3 was 2.7% by weight of the entire catalyst in terms of metal.
[0028]
(1-c) Catalyst 4 of the present invention example: 1.6 g of silver nitrate was dissolved in ion-exchanged water of 100 g of Ag-supported β zeolite, and 20 g of β zeolite powder (SiO 2 / Al 2 O 3 molar ratio 27) was dissolved in this solution. It was dispersed and stirred for 12 hours while maintaining the temperature at 60 ° C. Thereafter, the resultant was filtered and washed with water, dried at 110 ° C., and fired in air at 500 ° C. for 3 hours. This was sized in the same manner as above to obtain Catalyst 4 of the present invention. The amount of Ag carried on the catalyst 4 was 2.5% by weight of the entire catalyst in terms of metal.
[0029]
(1-d) Catalyst 5 of the present invention example: 0.38 g of hexaammonium hexamolybdate tetrahydrate was dissolved in 30 g of Mo-supported β zeolite in ion-exchanged water, and β zeolite powder (SiO 2 / Al 2 After immersing 10 g of O 3 in a molar ratio of 27), the mixture was heated with stirring to evaporate water, dried by ventilation at 110 ° C., and baked in air at 500 ° C. for 3 hours. This was sized in the same manner as above to obtain Catalyst 5 of the present invention. The amount of Mo supported on the catalyst 5 was 2.0% by weight of the entire catalyst in terms of metal.
[0030]
(1-e) Catalyst 6 of the present invention example: 0.29 g of ammonium tungstate parapentahydrate and 0.15 g of oxalic acid dihydrate were dissolved in 30 g of W-supported β zeolite in ion-exchanged water. After immersing 10 g of β zeolite powder (SiO 2 / Al 2 O 3 molar ratio 27), the mixture is heated with stirring to evaporate the water, and further dried by ventilation at 110 ° C., and then in air at 500 ° C. for 3 hours. Fired. This was sized in the same manner as above to obtain Catalyst 6 of the present invention. The amount of W carried on the catalyst 6 was 2.0% by weight of the entire catalyst in terms of metal.
[0031]
(1-f) Catalysts C1 to C3 of Comparative Example
A β-zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of 75 was used, and Fe was supported in the same manner as in the preparation of the catalyst 1 and Ag was supported in the same manner as in the preparation of the catalyst 4 in the same manner as in the preparation of the catalyst 4. The catalyst C2 of the comparative example thus prepared and the catalyst C3 of the comparative example supporting Mo in the same manner as in the preparation of the catalyst 5 were prepared. The amount of Fe supported in the catalyst C1 was 0.8% by weight of the entire catalyst in terms of metal, the amount of Ag supported in the catalyst C2 was 2.2% by weight in terms of metal, and the amount of Mo supported in the catalyst C3 was metal conversion. Was 2.0% by weight of the whole catalyst.
[0032]
(1-e) Catalysts C4 to C9 of Comparative Example
A catalyst C4 of a comparative example was prepared in which ZSM-5 (SiO 2 / Al 2 O 3 molar ratio 27) was used as a carrier in place of the β zeolite and the amount of Fe supported was 1.2% by weight. Similarly, a catalyst C5 of a comparative example was prepared in which mordenite (SiO 2 / Al 2 O 3 molar ratio 20) was used as a carrier instead of β zeolite and the amount of Ag supported was 2.7% by weight. Similarly, a catalyst C6 of a comparative example was prepared in which ZSM-5 (SiO 2 / Al 2 O 3 molar ratio 27) was used as a carrier instead of β zeolite and the amount of supported Co was 2.3% by weight.
[0033]
Similarly, a catalyst C7 of a comparative example was prepared in which ZSM-5 (SiO 2 / Al 2 O 3 molar ratio 27) was used as a carrier instead of β zeolite and the amount of Mo supported was 2.0% by weight. Similarly, a catalyst C8 of a comparative example was prepared in which mordenite (SiO 2 / Al 2 O 3 molar ratio: 20) was used as a carrier instead of β zeolite, and the amount of W supported was 2.0% by weight. Further, a catalyst C9 of a comparative example was prepared in which a Y-type zeolite (SiO 2 / Al 2 O 3 molar ratio: 30) was used as a carrier instead of β zeolite and the amount of Ag supported was 2.2% by weight.
[0034]
(2) Evaluation of Catalysts The catalysts 1 to 6 of the present invention and the catalysts C1 to C9 of the comparative examples were each filled in a stainless steel reaction tube having an inner diameter of 15 mm to form a catalyst, which was then passed through a fixed pressure bed under normal pressure. It was attached to the reactor. In this reaction tube, as a model exhaust gas, a mixed gas consisting of NO: 1,000 ppm, O 2 : 10%, ethanol: 1,000 ppm, H 2 O: 10%, SO 2 : 100 ppm, and the balance: N 2 was placed in a space. The catalysts were supplied at a speed of 10,000 / h, and the NOx removal performance of each of the above catalysts was examined.
[0035]
Further, the catalysts 1 and 4 of the present invention and the catalysts C4 and C5 of the comparative example were prepared in the same manner as above except that 750 ppm of isopropyl alcohol was added instead of 1,000 ppm of ethanol added to the model exhaust gas. Then, the denitration performance was evaluated. Furthermore, the denitration performance of the catalysts 1 and 4 of the present invention was evaluated in the same manner as described above except that 1,000 ppm of ethylene or 750 ppm of propylene was added instead of 1,000 ppm of ethanol.
[0036]
The denitration rate as the NOx removal performance (denitration performance) of the catalyst was calculated according to the following formula 1. In the analysis of the gas composition at the outlet of the reaction tube, the concentration of NOx was measured by a chemiluminescence NOx meter, and the concentration of N 2 O was measured by a gas chromatograph equipped with a Porapak Q column (trade name, manufactured by GL Science Co., Ltd.).・ Measured using a thermal conductivity detector.
[0037]
(Equation 1)
Figure 2004358454
[0038]
When the denitration performance was evaluated as described above, the exhaust gas temperature was changed to 300 ° C., 350 ° C., and 400 ° C., respectively, and the obtained results are shown in Table 1 below. The ethanol, isopropyl alcohol, ethylene, and propylene were added to the model exhaust gas as reducing agents. Also, in the case of any of the catalysts, almost no N 2 O was found in the outlet gas of the reaction tube.
[0039]
[Table 1]
Figure 2004358454
[0040]
As can be seen from the results, the catalysts 1 to 6 according to the present invention use ethanol or isopropyl alcohol as a reducing agent, so that the exhaust gas temperature is 300 to 400 ° C. in an oxygen-excess exhaust gas containing a large amount of a sulfur compound. It can be seen that even at a relatively low temperature, the NOx removal performance is remarkably superior to the catalysts C1 to C9 of the comparative example. Note that, even when β zeolite is used as the carrier, the catalysts C1 to C3 of the comparative examples whose SiO 2 / Al 2 O 3 molar ratio exceeds 70 significantly decrease the denitration rate.
[0041]
Next, the durability of the catalyst against sulfur oxides was evaluated by the following durability test using the above-described catalyst 1, catalysts 3 to 6 of the present invention, and catalysts C4 to C8 of comparative examples. That is, each reaction tube configured as above, as high a model exhaust gas of SO 2 concentrations, NO: 1,000ppm, O 2: 10%, ethanol as a reducing agent: 1,000 ppm or isopropyl alcohol: 750 ppm, H A mixed gas consisting of 2 O: 10%, SO 2 : 1,000 ppm, balance: N 2 was supplied for 20 hours under the conditions of an exhaust gas temperature of 350 ° C. and a space velocity of 10,000 / h.
[0042]
After the endurance test using the model exhaust gas with the increased SO 2 concentration, a model exhaust gas having the same composition as that described above except that the SO 2 concentration was set to 100 ppm was similarly placed in each reaction tube at an exhaust gas temperature of 350 ° C. and a space velocity of 10,000 /. h, and the denitration rate was determined in the same manner as described above. The results obtained are shown in Table 2 below.
[0043]
[Table 2]
Figure 2004358454
[0044]
As can be seen from the results, even after the endurance test for 20 hours using the exhaust gas containing high concentration of SO 2 , the catalyst comprising the metal-supported β zeolite of the present invention can be obtained in the presence of ethanol or isopropyl alcohol as a reducing agent. It maintains high denitration performance and has excellent durability.
[0045]
【The invention's effect】
According to the present invention, it is possible to provide an exhaust gas purifying catalyst having both excellent NOx removal performance and durability, and it is possible to efficiently remove nitrogen oxides NOx from an oxygen-excess exhaust gas by using this catalyst. . Moreover, the exhaust gas purifying catalyst of the present invention exhibits a high denitration rate even in a combustion exhaust gas containing a large amount of sulfur oxides, and the denitration performance does not decrease even at a relatively low exhaust gas temperature of about 300 ° C to 400 ° C. Extremely practical.

Claims (4)

酸素過剰の排ガス中の窒素酸化物を、エタノール及び/又はイソプロピルアルコールの存在下に還元除去する触媒であって、βゼオライトに鉄、コバルト、銀、モリブデン及びタングステンから選ばれた少なくとも1種の金属を担持させたことを特徴とする排ガス浄化触媒。A catalyst for reducing and removing nitrogen oxides in an oxygen-excess exhaust gas in the presence of ethanol and / or isopropyl alcohol, wherein β zeolite contains at least one metal selected from iron, cobalt, silver, molybdenum and tungsten An exhaust gas purifying catalyst characterized by carrying thereon. 前記βゼオライトのSiO/Alモル比が20〜70であることを特徴とする、請求項1に記載の排ガス浄化触媒。 2. The exhaust gas purifying catalyst according to claim 1, wherein the β zeolite has a SiO 2 / Al 2 O 3 molar ratio of 20 to 70. 3 . 酸素過剰の排ガスを、還元剤としてのエタノール及び/又はイソプロピルアルコールの存在下に、βゼオライトに鉄、コバルト、銀、モリブデン及びタングステンから選ばれた少なくとも1種の金属を担持させた触媒に接触させ、排ガス中の窒素酸化物を還元除去することを特徴とする排ガス浄化方法。The oxygen-excess exhaust gas is brought into contact with a catalyst in which β zeolite supports at least one metal selected from iron, cobalt, silver, molybdenum and tungsten in the presence of ethanol and / or isopropyl alcohol as a reducing agent. An exhaust gas purification method comprising reducing and removing nitrogen oxides in exhaust gas. 前記βゼオライトのSiO/Alモル比が20〜70であることを特徴とする、請求項3に記載の排ガス浄化方法。Wherein the SiO 2 / Al 2 O 3 molar ratio of said β-zeolite is from 20 to 70, the exhaust gas purifying method according to claim 3.
JP2003199738A 2003-04-11 2003-07-22 Exhaust gas cleaning catalyst and cleaning method Pending JP2004358454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199738A JP2004358454A (en) 2003-04-11 2003-07-22 Exhaust gas cleaning catalyst and cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003107549 2003-04-11
JP2003199738A JP2004358454A (en) 2003-04-11 2003-07-22 Exhaust gas cleaning catalyst and cleaning method

Publications (1)

Publication Number Publication Date
JP2004358454A true JP2004358454A (en) 2004-12-24

Family

ID=34066910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199738A Pending JP2004358454A (en) 2003-04-11 2003-07-22 Exhaust gas cleaning catalyst and cleaning method

Country Status (1)

Country Link
JP (1) JP2004358454A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142496A1 (en) * 2006-06-10 2007-12-13 Kocat Inc. Cleaning method of nitrogen dioxide from stationary sources and the apparatus for the same
JP2008264702A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp NOx adsorbent manufacturing method and NOx adsorbent
WO2010021315A1 (en) * 2008-08-19 2010-02-25 東ソー株式会社 Highly heat-resistant β-zeolite and scr catalyst using same
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
WO2015119069A1 (en) * 2014-02-07 2015-08-13 日立造船株式会社 Catalyst and method for purifying combustion exhaust gas
KR20160137995A (en) 2014-03-24 2016-12-02 히다치 조센 가부시키가이샤 Combustion exhaust gas purifying catalyst and method for purifying combustion exhaust gas
KR20160140610A (en) 2014-03-27 2016-12-07 히다치 조센 가부시키가이샤 Honeycomb structure and exhaust gas cleaning catalyst using same, and method for manufacturing exhaust gas cleaning catalyst
US9802155B2 (en) 2013-07-25 2017-10-31 Hitachi Zosen Corporation Method for purifying exhaust gas
WO2020149313A1 (en) 2019-01-15 2020-07-23 日立造船株式会社 Catalyst for exhaust gas purification use
WO2024262200A1 (en) * 2023-06-20 2024-12-26 株式会社キャタラー Silver-supported zeolite, exhaust gas purification catalyst, exhaust gas purification device, exhaust gas purification method, and method for producing silver-supported zeolite

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142496A1 (en) * 2006-06-10 2007-12-13 Kocat Inc. Cleaning method of nitrogen dioxide from stationary sources and the apparatus for the same
JP2008264702A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp NOx adsorbent manufacturing method and NOx adsorbent
WO2010021315A1 (en) * 2008-08-19 2010-02-25 東ソー株式会社 Highly heat-resistant β-zeolite and scr catalyst using same
JP2010070450A (en) * 2008-08-19 2010-04-02 Tosoh Corp Highly heat-resistant beta-zeolite and scr catalyst using same
US8722560B2 (en) 2008-08-19 2014-05-13 Tosoh Corporation Highly heat-resistant β-type zeolite and SCR catalyst employing the same
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
US9802155B2 (en) 2013-07-25 2017-10-31 Hitachi Zosen Corporation Method for purifying exhaust gas
KR20160119061A (en) 2014-02-07 2016-10-12 히다치 조센 가부시키가이샤 Catalyst and method for purifying combustion exhaust gas
JPWO2015119069A1 (en) * 2014-02-07 2017-03-23 日立造船株式会社 Combustion exhaust gas purification catalyst and combustion exhaust gas purification method
EP3103550A4 (en) * 2014-02-07 2017-10-18 Hitachi Zosen Corporation Catalyst and method for purifying combustion exhaust gas
WO2015119069A1 (en) * 2014-02-07 2015-08-13 日立造船株式会社 Catalyst and method for purifying combustion exhaust gas
KR20160137995A (en) 2014-03-24 2016-12-02 히다치 조센 가부시키가이샤 Combustion exhaust gas purifying catalyst and method for purifying combustion exhaust gas
US10112183B2 (en) 2014-03-24 2018-10-30 Hitachi Zosen Corporation Catalyst for purifying combustion exhaust gas, and method for purifying combustion exhaust gas
KR20160140610A (en) 2014-03-27 2016-12-07 히다치 조센 가부시키가이샤 Honeycomb structure and exhaust gas cleaning catalyst using same, and method for manufacturing exhaust gas cleaning catalyst
EP3542900A1 (en) 2014-03-27 2019-09-25 Hitachi Zosen Corporation Catalyst for cleaning exhaust gas using honeycomb structure
US10946366B2 (en) 2014-03-27 2021-03-16 Hitachi Zosen Corporation Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas
WO2020149313A1 (en) 2019-01-15 2020-07-23 日立造船株式会社 Catalyst for exhaust gas purification use
WO2024262200A1 (en) * 2023-06-20 2024-12-26 株式会社キャタラー Silver-supported zeolite, exhaust gas purification catalyst, exhaust gas purification device, exhaust gas purification method, and method for producing silver-supported zeolite

Similar Documents

Publication Publication Date Title
JP5185942B2 (en) Vanadium-free catalyst for selective catalytic reduction and process for producing the same
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP2003080033A (en) Exhaust gas denitration method and system
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP2005111436A (en) Method and apparatus for catalytic removal of nitrogen oxides
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
KR20100064926A (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP3506392B2 (en) Exhaust gas purification catalyst using only hydrocarbons as reducing agents
JP3510908B2 (en) Exhaust gas purification catalyst
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4082452B2 (en) Nitrogen oxide catalytic reduction catalyst
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JP2004261754A (en) Exhaust gas purifying catalyst and purifying method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JPH04193347A (en) Catalyst for purification of exhaust gas
JP3291316B2 (en) Exhaust gas purification catalyst
JP2006150301A (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same