[go: up one dir, main page]

JPH06151143A - Low loss magnetic core - Google Patents

Low loss magnetic core

Info

Publication number
JPH06151143A
JPH06151143A JP4296243A JP29624392A JPH06151143A JP H06151143 A JPH06151143 A JP H06151143A JP 4296243 A JP4296243 A JP 4296243A JP 29624392 A JP29624392 A JP 29624392A JP H06151143 A JPH06151143 A JP H06151143A
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
low loss
high frequency
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4296243A
Other languages
Japanese (ja)
Other versions
JP3638291B2 (en
Inventor
Katsutoshi Nakagawa
勝利 中川
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29624392A priority Critical patent/JP3638291B2/en
Publication of JPH06151143A publication Critical patent/JPH06151143A/en
Application granted granted Critical
Publication of JP3638291B2 publication Critical patent/JP3638291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide compactness and high performance requested to magnetic cores and also to give higher efficiency, compact size and lightweight to various electronic devices by providing low loss in the high frequency region of magnetic core and higher coercive force thereby corresponding to the trend of turning into high frequency range for power sources and providing magnetic cores having constant magnetic permeability. CONSTITUTION:Low loss magnetic core of the present invention comprises group Fe amorphous alloy sheet band having a DC rectangular ratio (Br/Bs) of less than 50%, DC coercive force of 0.2 to 10Oe and 1MHz rectangular ratio (Br/B1) of 5 to 30%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源等に
用いられる磁心に係り、特にMHzレベルの高周波領域
において有効な低損失磁心に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic core used for a switching power supply or the like, and more particularly to a low loss magnetic core effective in a high frequency region of MHz level.

【0002】[0002]

【従来の技術】近年、電子機器に対する小形軽量化、高
性能化の要求に伴って、これらを構成する機能部品であ
る磁性部品においても優れた磁気特性を持つ材料を用い
て高性能化を図ることが求められている。
2. Description of the Related Art In recent years, with the demand for smaller, lighter weight and higher performance of electronic devices, the magnetic parts, which are the functional parts constituting them, are also improved in performance by using materials having excellent magnetic characteristics. Is required.

【0003】例えば、電子機器の安定化電源として、近
年、スイッチング電源が幅広く用いられているが、電源
に対する小形軽量化の要求が強まるにつれて、スイッチ
ング周波数の高周波化が求められている。しかし、例え
ば磁気増幅器を組み込んだスイッチング電源の場合、金
属材料の中で高周波特性の良好なアモルファス合金を用
いたとしても、実用的には200〜500kHzが限度
であり、一層の高周波化対応が望まれていた。
For example, a switching power supply has been widely used in recent years as a stabilizing power supply for electronic equipment, but as the demand for smaller and lighter power supplies increases, higher switching frequencies are required. However, for example, in the case of a switching power supply incorporating a magnetic amplifier, even if an amorphous alloy having good high frequency characteristics is used among metal materials, the limit is practically 200 to 500 kHz, and further high frequency support is desired. It was rare.

【0004】これと同様に、恒透磁率性が要求されるト
ランス、チョークコイルなどについても、高周波化が要
求されている。従来よりトランスに用いられる材料はフ
ェライトがその主流を占めている。しかしながら、フェ
ライトを用いたトランスでは前述したような高周波化に
対する要求を充分に満足させることができないという問
題点があった。
Similarly, high frequencies are also required for transformers, choke coils and the like which are required to have constant magnetic permeability. Ferrites have been the mainstream of materials conventionally used for transformers. However, the transformer using ferrite has a problem that it is not possible to sufficiently satisfy the above-mentioned demand for higher frequency.

【0005】また、一般に金属材料では板厚を薄くする
ことにより鉄損を抑え、高周波特性を改善できることが
知られており、アモルファス合金においても厚さを低減
して更に磁気特性を改善させることが検討されている。
しかしながら、アモルファス合金薄帯は、一般に大気中
で単ロール法など液体急冷法により作製されているが、
この方法では板厚の低減が不十分であり、更に気泡の巻
き込みなどによるピンホールが発生し、高周波化を含め
た実用性の面においても問題があった。
Further, it is generally known that by reducing the plate thickness of a metal material, iron loss can be suppressed and high frequency characteristics can be improved. Even in an amorphous alloy, the thickness can be reduced to further improve the magnetic characteristics. Is being considered.
However, although the amorphous alloy ribbon is generally produced by a liquid quenching method such as a single roll method in the atmosphere,
With this method, the reduction of the plate thickness is not sufficient, and pinholes are generated due to the inclusion of bubbles, which is problematic in terms of practicality including high frequency.

【0006】さらに、本願発明の磁心には、低損失と同
時に高保磁力が求められている。通常低損失化を図るた
めには、保磁力を少なくとも0.2Oe未満まで下げる
という低保磁力化をその手段としてとるため、従来は、
金属薄帯を得たのち、磁心を製造する段階でトロイダル
状に巻回した後、樹脂含浸、キュアを経て、切断し、磁
気的ギャップを設ける等の処理を施すことにより後天的
に保磁力を高めていた。しかしながら、このプロセスに
おいては各種応力、切断面の仕上がり状態などにより損
失が増大するため材料の磁気特性を十分に生かしきれな
いという問題があった。さらに、ギャップを設けたこと
により使用時に磁束の漏れが生じ、ノイズの原因となる
という問題もあった。
Further, the magnetic core of the present invention is required to have high coercive force as well as low loss. Usually, in order to reduce the loss, the coercive force is lowered to at least less than 0.2 Oe as a means to reduce the loss.
After obtaining the metal ribbon, after winding it in a toroidal shape at the stage of manufacturing the magnetic core, it is impregnated with a resin, cured, cut, and then subjected to a treatment such as a magnetic gap to obtain a coercive force. It was high. However, in this process, there is a problem that the magnetic characteristics of the material cannot be fully utilized because the loss increases due to various stresses, the finished state of the cut surface and the like. Furthermore, there is a problem that the provision of the gap causes leakage of magnetic flux during use, which causes noise.

【0007】[0007]

【発明が解決しようとする課題】上述したように、各種
電子機器に対する高効率化、小形軽量化、また磁心に対
する小形化、高性能化の要求に伴い、スイッチング電源
等に用いられる磁心の高周波領域での低損失化が強く望
まれている。
As described above, in response to the demands for high efficiency, small size and light weight of various electronic devices, and miniaturization and high performance of the magnetic core, the high frequency region of the magnetic core used for the switching power supply etc. There is a strong demand for low loss in the field.

【0008】本発明はこのような課題に対処するために
なされたもので、磁心の高周波領域での低損失化ならび
に高保磁力化を図り、これによって電源の高周波化に対
応すると共に使用励磁範囲内での恒透磁率性を有する磁
心を提供することを目的とする。
The present invention has been made in order to solve such a problem, and achieves a low loss and a high coercive force in the high frequency region of the magnetic core, thereby responding to the high frequency of the power supply and within the use excitation range. An object of the present invention is to provide a magnetic core having constant magnetic permeability.

【0009】[0009]

【課題を解決するための手段および作用】本発明の低損
失磁心は、直流角形比(Br/Bs;Brは残留磁束密
度,Bsは飽和磁束密度)が50%以下、保磁力が0.
2〜10Oe、1MHzでの角形比(Br/B1;B1
は1Oe磁場を印加したときの磁束密度)が5〜30%
であるFe基アモルファス合金薄帯からなることを特徴
とする。
The low loss magnetic core of the present invention has a DC squareness ratio (Br / Bs; Br is a residual magnetic flux density, Bs is a saturated magnetic flux density) of 50% or less and a coercive force of 0.
Squareness ratio at 2 to 10 Oe and 1 MHz (Br / B1; B1
Has a magnetic flux density of 5 to 30% when a 1 Oe magnetic field is applied.
And Fe-based amorphous alloy ribbon.

【0010】本願発明者らは、MHzレベルの高周波領
域において、保磁力を下げずに低損失を得るために鋭意
検討した結果、直流角形比(Br/Bs)が50%以
下、1MHzでの角形比(Br/B1)が5〜30%の
範囲においては、保磁力が0.2〜10(Oe)の範囲
において、MHzレベルの高周波領域における低損失化
が容易に得られることを見出だし、本発明の完成に至っ
た。
The inventors of the present invention have made earnest studies in order to obtain low loss without lowering the coercive force in the high frequency region of MHz level. As a result, the DC squareness ratio (Br / Bs) is 50% or less, and the squareness at 1 MHz is obtained. It has been found that when the ratio (Br / B1) is in the range of 5 to 30%, reduction of loss in the high frequency region of MHz level can be easily obtained in the range of coercive force of 0.2 to 10 (Oe), The present invention has been completed.

【0011】本願発明の低損失磁心は、その直流角形比
(Br/Bs)を50%以下とすることが好ましい。直
流角形比が50%以上であると、磁壁の移動によって渦
電流損の低減が図れず、損失が大きくなる。よって、好
ましくは45%以下、さらには30%以下が好ましい。
The low loss magnetic core of the present invention preferably has a DC squareness ratio (Br / Bs) of 50% or less. If the DC squareness ratio is 50% or more, the eddy current loss cannot be reduced due to the movement of the domain wall, and the loss becomes large. Therefore, it is preferably 45% or less, more preferably 30% or less.

【0012】また、本願発明の低損失磁心は、1MHz
での角形比(Br/B1)が5〜30%の範囲とするこ
とが好ましい。1MHzでのBr/B1が5%未満であ
ると、ヒステリシス損ならびに励磁電力が大きくなる。
一方、30%以上では、磁壁の移動が起こり十分な渦電
流損の低減が図れず、損失が大きくなる。よって、好ま
しくは5〜25%であり、さらには5〜20%の範囲が
好ましい。
The low loss magnetic core of the present invention is 1 MHz.
The squareness ratio (Br / B1) is preferably in the range of 5 to 30%. If Br / B1 at 1 MHz is less than 5%, the hysteresis loss and the exciting power increase.
On the other hand, when it is 30% or more, the domain wall is moved and the eddy current loss cannot be sufficiently reduced, resulting in a large loss. Therefore, it is preferably 5 to 25%, and more preferably 5 to 20%.

【0013】更に、本願発明の低損失磁心は、その保磁
力が0.2〜10Oeの範囲が好ましい。前述したよう
に従来の磁心材料としては保磁力は小さいほうが好まし
かったが、本願発明では、特に従来の慣用的な定義では
磁心材料の範疇ではなかった保磁力1Oe以上でも、前
記角形比の範囲にすることによって十分低損失が得られ
ている。なお、直流保磁力が10Oe以上になると、ヒ
ステリシス損が極めて大きくなるため、全損失が大きく
なる。よって、好ましくは0.3〜8Oe、さらには
0.5〜8Oeの範囲が好ましい。
Further, the low loss magnetic core of the present invention preferably has a coercive force in the range of 0.2 to 10 Oe. As described above, it is preferable that the coercive force of the conventional magnetic core material is small. However, in the present invention, even if the coercive force of 1 Oe or more, which is not in the category of the magnetic core material according to the conventional conventional definition, the squareness ratio By setting the range, a sufficiently low loss is obtained. When the DC coercive force is 10 Oe or more, the hysteresis loss becomes extremely large, and the total loss becomes large. Therefore, the range of 0.3 to 8 Oe is preferable, and the range of 0.5 to 8 Oe is more preferable.

【0014】また、本願発明のFe基アモルファス合金
薄帯には、α−Feを主成分とする結晶を面積比で5〜
50%析出させることが好ましい。α−Fe結晶の析出
はFe基アモルファス合金の磁歪を低減する効果をもた
らし、ハンドリングに対する磁気特性の敏感性を改善す
る。さらに磁歪と磁路長で決まる共鳴もα−Fe結晶の
存在によって小さくなるため使用周波数の制限がなくな
り、MHzレベルの高周波領域においても良好な磁気特
性が得られる。さらに、α−Fe結晶が磁壁の移動を妨
げるため、ヒステリシス損は大きくなっても、特に高周
波鉄損での寄与が大きい渦電流損を大幅に低減させるこ
とができる。よって、好ましくは、8〜40%、さらに
は10〜30%の範囲が好ましい。
Further, in the Fe-based amorphous alloy ribbon of the present invention, a crystal containing α-Fe as a main component has an area ratio of 5 to 5.
It is preferable to deposit 50%. The precipitation of α-Fe crystals brings about the effect of reducing the magnetostriction of the Fe-based amorphous alloy, and improves the sensitivity of magnetic characteristics to handling. Further, since the resonance determined by the magnetostriction and the magnetic path length is reduced by the existence of the α-Fe crystal, there is no limitation on the usable frequency, and good magnetic characteristics can be obtained even in the high frequency region of MHz level. Further, since the α-Fe crystal hinders the movement of the domain wall, even if the hysteresis loss becomes large, the eddy current loss which makes a large contribution particularly to the high frequency iron loss can be greatly reduced. Therefore, it is preferably in the range of 8 to 40%, more preferably 10 to 30%.

【0015】更に、前記α−Feを主成分とする結晶の
平均結晶粒径は5〜100nmの範囲が好ましい。結晶
粒径が5nm以下では磁壁のピンニングが起こりにく
く、渦電流損の低減が図り難い。一方、100nm以上
では過剰のピンニング効果により、ヒステリシス損が大
きくなりすぎる。よって、磁壁移動を妨げ最適なヒステ
リシス損を得るためには、平均結晶粒径8〜80nmが
好ましく、さらには10〜50nmの範囲とすることが
好ましい。
Further, the average crystal grain size of the crystals containing α-Fe as a main component is preferably in the range of 5 to 100 nm. If the crystal grain size is 5 nm or less, domain wall pinning is unlikely to occur and it is difficult to reduce eddy current loss. On the other hand, when the thickness is 100 nm or more, the hysteresis loss becomes too large due to the excessive pinning effect. Therefore, in order to prevent the domain wall movement and obtain the optimum hysteresis loss, the average crystal grain size is preferably 8 to 80 nm, and more preferably 10 to 50 nm.

【0016】ここで、このα−Fe結晶の析出量ならび
に平均結晶粒径は、熱処理条件すなわち、熱処理温度な
らびに熱処理時間によって制御することができる。α−
Fe結晶の析出は、少なくとも結晶化温度(10℃/分
の昇温速度で熱分析した値)以下での歪取り熱処理で実
現できるが,10分以下の短時間の場合、結晶化温度以
上でも可能である。
Here, the amount of the α-Fe crystals precipitated and the average crystal grain size can be controlled by the heat treatment conditions, that is, the heat treatment temperature and the heat treatment time. α-
Precipitation of Fe crystals can be realized by strain relief heat treatment at least at a crystallization temperature (value obtained by thermal analysis at a temperature rising rate of 10 ° C./min), but in a short time of 10 minutes or less, even at a crystallization temperature or higher. It is possible.

【0017】なお、結晶の析出状態ならびに平均結晶粒
径は透過電子顕微鏡で観察した。結晶相の割合は、単位
面積あたりのα−Fe結晶の析出量で、また平均結晶粒
径はα−Fe結晶の最長径を求めたものである。本発明
のFe基アモルファス合金は、一般式 (Fe1-a a 100-c (Si1-b b c M:V,Cr,Mn,Ti,Cu,Nb,Mo,Ta,
Wから選ばれる少なくとも1種以上 0≦a≦0.1 0.2≦b≦1 12≦c≦28 (at.%) で表される。ここで、M元素は溶湯射出時の粘性を低減
するため板厚の極薄化に有効な元素であるが、その量が
0.1より大きいと十分な飽和磁化が得られない。よっ
て、好ましくは0.01〜0.08、さらには0.02
〜0.06の範囲が好ましい。なお、M元素としては特
に低損失を得る場合、すなわちα−Feを容易に析出さ
せる場合にはV,Cr,Mn,Ti,Cuが好ましい。
また最適熱処理温度の拡大にはNb,Mo,Ta,Wが
好ましい。
The crystal precipitation state and the average crystal grain size were observed with a transmission electron microscope. The ratio of the crystal phase is the amount of α-Fe crystals deposited per unit area, and the average crystal grain size is the longest diameter of the α-Fe crystals. Fe-based amorphous alloy of the present invention have the general formula (Fe 1-a M a) 100-c (Si 1-b B b) c M: V, Cr, Mn, Ti, Cu, Nb, Mo, Ta,
At least one selected from W is represented by 0 ≦ a ≦ 0.1 0.2 ≦ b ≦ 1 12 ≦ c ≦ 28 (at.%). Here, the M element is an element effective for making the plate thickness extremely thin because it reduces the viscosity at the time of injecting the molten metal, but if its amount is larger than 0.1, sufficient saturation magnetization cannot be obtained. Therefore, it is preferably 0.01 to 0.08, and more preferably 0.02.
The range of 0.06 is preferable. In addition, as the M element, V, Cr, Mn, Ti, and Cu are preferable when a low loss is obtained, that is, when α-Fe is easily precipitated.
Further, Nb, Mo, Ta and W are preferable for expanding the optimum heat treatment temperature.

【0018】SiおよびBはアモルファス化に必要な元
素であるが、bが0.2未満のときにはアモルファス化
が困難となる。また、Siの含有量は結晶化温度に寄与
するため、熱処理の容易性を考慮するとbは0.3〜
0.9が好ましく、さらには0.4〜0.8の範囲が好
ましい。さらに、このSi量によりα−Fe結晶に固溶
する量が決まり、0.5以上では規則相が見られる場合
がある。
Si and B are elements necessary for amorphization, but when b is less than 0.2, amorphization becomes difficult. Moreover, since the Si content contributes to the crystallization temperature, b is 0.3 to 0.3 when the heat treatment is taken into consideration.
0.9 is preferable and the range of 0.4-0.8 is more preferable. Further, the amount of Si determines the amount of solid solution in the α-Fe crystal, and an ordered phase may be observed at 0.5 or more.

【0019】SiとBのトータル量は12at%未満で
はアモルファス化が困難であり、一方28at%より大
きいと良好な磁気特性が得難い。なお、Fe−Si−B
3元系として考えると、cの値として12〜26at.
%が好ましく、さらにα−Fe結晶の析出には、共晶組
成よりもFeリッチ側、すなわち12〜22at%の範
囲が好ましい。
If the total amount of Si and B is less than 12 at%, it is difficult to amorphize, while if it is more than 28 at%, it is difficult to obtain good magnetic characteristics. In addition, Fe-Si-B
Considering as a ternary system, the value of c is 12 to 26 at.
%, And for the precipitation of α-Fe crystals, the Fe-rich side of the eutectic composition, that is, the range of 12 to 22 at% is preferable.

【0020】上記アモルファス合金は大気中で通常の単
ロール法で得られるが、特にピンホールが少なく、表面
の平滑性を高める場合には、減圧下、あるいはHe雰囲
気中で作製することが好ましい。また、板厚は3〜12
μmの範囲が高周波対応には有効であり、特に上記ピン
ホールレス、表面平滑性、磁心作製時の占積率を考慮す
ると4〜12μmの範囲が好ましい。本願発明の低損失
磁心は、例えば以下の方法により得られる。
The above amorphous alloy can be obtained by a usual single roll method in the air, but it is preferably produced under reduced pressure or in a He atmosphere in order to improve the smoothness of the surface because there are few pinholes. The plate thickness is 3 to 12
The range of 4 μm is effective for high frequencies, and in particular, the range of 4 to 12 μm is preferable in view of the above pinholelessness, surface smoothness, and space factor at the time of manufacturing the magnetic core. The low loss magnetic core of the present invention is obtained, for example, by the following method.

【0021】すなわち、合金溶湯をノズルより高速移動
する冷却体の上に噴出し、超急冷することによって、ア
モルファス合金薄帯を製造する際に、ノズルから噴出さ
れる合金溶湯が高速移動する冷却体に接触する雰囲気
を、60torr未満の不活性雰囲気または0.1torr 以下の減
圧下とする。
That is, when the molten alloy is jetted from the nozzle onto the cooling body moving at a high speed and is rapidly cooled, the molten alloy jetted from the nozzle moves at a high speed when the amorphous alloy ribbon is manufactured. The atmosphere in contact with is to be an inert atmosphere of less than 60 torr or a reduced pressure of 0.1 torr or less.

【0022】具体的には、母合金を入れた石英ノズルま
わりを0.1torr 以下に真空排気する、またはその後不活
性ガスを60torr以下まで置換し、Fe基ロール、Ni基ロー
ルまたはCu基ロールを用いることにより、ピンホールの
少ない良好な表面平滑性をもつ極薄アモルファス合金を
作製することができる。なお、ここで不活性ガスは、H
e,Arが好ましい。
More specifically, the surroundings of the quartz nozzle containing the mother alloy are evacuated to 0.1 torr or less, or the inert gas is replaced to 60 torr or less, and a Fe-based roll, a Ni-based roll or a Cu-based roll is used. This makes it possible to produce an ultrathin amorphous alloy having good surface smoothness with few pinholes. Here, the inert gas is H
e and Ar are preferred.

【0023】また、ノズル先端のスリット形状における
長辺は、得られる薄帯の幅を決めるものであり、2mm 以
上の適当な値を設定できる。また、短辺は薄帯の板厚を
決める重要な値であり、0.2mm 以下が好ましく、さらに
0.15mm以下が好ましい。ロール周速は20m/sec 以上であ
ればよく、25m/s 以上が好ましい。なお、上限は70m/s
であり、これ以上では得られる薄帯が切れることがしば
しばある。射出圧は、極薄薄帯を作製するには、0.05kg
/cm 2 以下であればよく、好ましくは0.03kg/cm 2 であ
り、さらに好ましくは0.02kg/cm 2 である。
The long side in the slit shape at the tip of the nozzle determines the width of the obtained ribbon, and can be set to an appropriate value of 2 mm or more. In addition, the short side is an important value that determines the thickness of the ribbon, 0.2 mm or less is preferable, and
It is preferably 0.15 mm or less. The roll peripheral speed may be 20 m / sec or more, preferably 25 m / s or more. The upper limit is 70 m / s
, And the ribbon obtained is often cut off. Injection pressure is 0.05kg to make ultra-thin ribbon
/ cm 2 It may be as follows, preferably 0.03 kg / cm 2 And more preferably 0.02 kg / cm 2 Is.

【0024】本発明の低損失磁心は、上述した製造方法
によって得られるアモルファス合金を巻回したり、ある
いは1層または複数層積層することによって、所望の形
状に成形した後、結晶化温度以下で歪取り熱処理を行う
ことをよって得られる。これらの熱処理における雰囲気
は特に問わず、窒素、Arなどの不活性雰囲気中、大気
中などのいずれでも良い。
The low-loss magnetic core of the present invention is formed into a desired shape by winding the amorphous alloy obtained by the above-mentioned manufacturing method or laminating one or more layers, and then strained at a temperature not higher than the crystallization temperature. It is obtained by performing a heat treatment. The atmosphere for these heat treatments is not particularly limited, and may be an inert atmosphere such as nitrogen or Ar, or the air.

【0025】[0025]

【実施例】以下、本発明を実施例によって詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0026】実施例1 (Fe1-x x 83(Si0.3 0.7 17[ここで、x
は0,0.02,0.04,0.06]なる組成のアモルファス合金を真
空中で単ロール法により作製し、板厚7.0μmのアモ
ルファス合金薄帯を得た。得られた薄帯を外径15mm、内
径10mm、高さ5mm に成形した後に、結晶化温度以下で、
時間と温度を変化させて、1MHz,0.1Tにおける
高周波鉄損、直流角形比(Br/Bs)、直流保磁力等
の磁気特性を評価した。高周波鉄損、およびBr/B1
は磁気測定測定システム(岩崎通信機SY8617)
で、直流磁気特性はDCBHフラックスメータを用いて
測定した。結果を図1に示すが、本発明の範囲の磁気特
性の場合に高周波での低損失が得られていることがわか
る。
Example 1 (Fe 1-x V x ) 83 (Si 0.3 B 0.7 ) 17 [where x is
[0.0.02,0.04,0.06] was produced by a single roll method in vacuum to obtain an amorphous alloy ribbon having a plate thickness of 7.0 μm. After molding the obtained ribbon to an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm, at a temperature below the crystallization temperature,
Magnetic characteristics such as high frequency iron loss at 1 MHz and 0.1 T, direct current squareness ratio (Br / Bs), and direct current coercive force were evaluated by changing time and temperature. High frequency iron loss, and Br / B1
Is a magnetic measurement system (Iwasaki Tsushinki SY8617)
Then, the DC magnetic characteristics were measured using a DCBH flux meter. The results are shown in FIG. 1, and it can be seen that a low loss at high frequency is obtained in the case of the magnetic characteristics within the range of the present invention.

【0027】実施例2〜4:比較例1〜3 (Fe0.96Mn0.0482(Si0.3 0.7 18なる組成
のアモルファス合金を真空中で単ロール法により作製
し、板厚7.0μmのアモルファス合金薄帯を得た。得
られた薄帯を外径12mm、内径8mm 、高さ5mm に成形した
後に、表1に示す各熱処理温度で、時間を30分一定とし
て熱処理し、表1に示す粒径のα−Fe結晶を同じく表
1に示す割合で析出させ、各種磁気特性のα−Fe結晶
への依存性ならびに熱処理温度への依存性を調べた。高
周波鉄損、直流角形比(Br/Bs)、直流保磁力は実
施例1と同じ条件で測定し、透磁率の周波数特性は、L
CRメータを用いて、励磁界2mOeの条件で測定し
た。
Examples 2 to 4: Comparative Examples 1 to 3 Amorphous alloys having a composition of (Fe 0.96 Mn 0.04 ) 82 (Si 0.3 B 0.7 ) 18 were produced by a single roll method in a vacuum, and had a plate thickness of 7.0 μm. An amorphous alloy ribbon was obtained. The obtained ribbon was formed into an outer diameter of 12 mm, an inner diameter of 8 mm and a height of 5 mm, and then heat-treated at each heat treatment temperature shown in Table 1 for a fixed time of 30 minutes to obtain α-Fe crystals having a grain size shown in Table 1. Were also precipitated in the proportions shown in Table 1, and the dependence of various magnetic properties on the α-Fe crystal and the heat treatment temperature was investigated. The high frequency iron loss, DC squareness ratio (Br / Bs), and DC coercive force were measured under the same conditions as in Example 1, and the frequency characteristic of permeability was L
The measurement was performed using a CR meter under the condition of an excitation magnetic field of 2 mOe.

【0028】各種磁気特性の評価結果を表1と図2に示
す。表1から本発明のα−Feを主成分とする結晶が面
積比で5〜50%含まれ、またα−Fe結晶の平均粒径
が5〜100nmの範囲である磁心は高周波領域におい
て所望の磁気特性を満たしていることがわかる。また、
図2から前記本願発明の面積率と粒径を満たすα−Fe
結晶を有する本願発明の磁心では磁歪に基づく共鳴が小
さくなっていることがわかる。
The evaluation results of various magnetic properties are shown in Table 1 and FIG. From Table 1, the magnetic core of the present invention containing α-Fe as a main component in an area ratio of 5 to 50%, and the average particle size of the α-Fe crystal in the range of 5 to 100 nm is desirable in a high frequency region. It can be seen that the magnetic characteristics are satisfied. Also,
From FIG. 2, α-Fe satisfying the area ratio and particle size of the present invention is obtained.
It can be seen that the magnetic core of the present invention having crystals has reduced resonance due to magnetostriction.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例5〜20:比較例4〜5 表2に示した合金組成を真空中で単ロール法により作製
し、表2に示す板厚のアモルファス合金薄帯を得た。得
られた薄帯を外径15mm、内径10mm、高さ5mm に成形し
て、それぞれの結晶化温度以下で30分歪取り熱処理を
行った。この後、実施例1と同様に磁気特性を評価し
た。結果を表2に示すが、本発明の磁心は高周波損失が
極めて小さい事がわかる。また、直流での初磁化曲線か
ら異方性磁界Hsを求めたところ、本発明の磁心では大
きな値が得られている。この磁場までのBHリニアリテ
ィは良く、優れた恒透磁率性をもつことがわかる。
Examples 5 to 20: Comparative Examples 4 to 5 The alloy compositions shown in Table 2 were produced in vacuum by a single roll method to obtain amorphous alloy ribbons having the plate thickness shown in Table 2. The obtained ribbon was formed into an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm, and was subjected to strain relief heat treatment for 30 minutes at each crystallization temperature or lower. After that, the magnetic characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2, and it can be seen that the magnetic core of the present invention has extremely small high frequency loss. Further, when the anisotropic magnetic field Hs was obtained from the initial magnetization curve at direct current, a large value was obtained in the magnetic core of the present invention. It can be seen that the BH linearity up to this magnetic field is good and that it has excellent constant magnetic permeability.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、磁
心の高周波領域での低損失化ならびに高保磁力化を図
り、これによって電源の高周波化に対応すると共に使用
励磁範囲内での恒透磁率性を有する磁心を提供すること
ができ、各種電子機器に対する高効率化、小形軽量化、
また磁心に対する小形化、高性能化の要求に十分対応で
きるため極めて有用である。
As described above, according to the present invention, the loss and the coercive force of the magnetic core in the high frequency region can be reduced, which can correspond to the high frequency of the power source and the constant permeability within the used excitation range. It is possible to provide a magnetic core with magnetic susceptibility, improve efficiency for various electronic devices, reduce size and weight,
Moreover, it is extremely useful because it can sufficiently meet the demands for miniaturization and high performance of the magnetic core.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に示したFe基アモルファス
合金に対して、種々の熱処理を行ったときの1MHz,
0.1Tにおける直流角形比(Br/Bs),直流保磁
力(Hc)と鉄損の関係を示す図である。
FIG. 1 is a graph of 1 MHz when various heat treatments are performed on the Fe-based amorphous alloy shown in Example 1 of the present invention.
It is a figure which shows the direct current squareness ratio (Br / Bs) in 0.1T, the direct current coercive force (Hc), and the relationship of iron loss.

【図2】本発明の実施例2〜4ならびに比較例1〜3に
示したFe基アモルファス合金における透磁率の周波数
特性を各熱処理温度毎に示す図である。
FIG. 2 is a diagram showing frequency characteristics of magnetic permeability in the Fe-based amorphous alloys shown in Examples 2 to 4 and Comparative Examples 1 to 3 of the present invention for each heat treatment temperature.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直流角形比(Br/Bs)が50%以
下、直流保磁力が0.2〜10Oe、1MHzの角形比
(Br/B1)が5〜30%の範囲にあるFe基アモル
ファス合金薄帯からなることを特徴とする低損失磁心。
1. A Fe-based amorphous alloy having a DC squareness ratio (Br / Bs) of 50% or less, a DC coercive force of 0.2 to 10 Oe, and a squareness ratio (Br / B1) of 1 MHz in the range of 5 to 30%. A low-loss magnetic core characterized by being made of a thin strip.
【請求項2】 請求項1に記載の低損失磁心において、
前記Fe基アモルファス合金薄帯のアモルファス相中に
α−Feを主成分とする結晶が面積比で5〜50%含ま
れることを特徴とする低損失磁心。
2. The low loss magnetic core according to claim 1,
A low-loss magnetic core, wherein the amorphous phase of the Fe-based amorphous alloy ribbon contains 5 to 50% by area ratio of crystals containing α-Fe as a main component.
【請求項3】 請求項2に記載の低損失磁心において、
前記α−Feを主成分とする結晶の平均粒径は5〜10
0nmの範囲であることを特徴とする低損失磁心。
3. The low-loss magnetic core according to claim 2,
The average particle size of the crystals containing α-Fe as the main component is 5 to 10
A low loss magnetic core characterized by being in the range of 0 nm.
JP29624392A 1992-11-06 1992-11-06 Low loss core Expired - Lifetime JP3638291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29624392A JP3638291B2 (en) 1992-11-06 1992-11-06 Low loss core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29624392A JP3638291B2 (en) 1992-11-06 1992-11-06 Low loss core

Publications (2)

Publication Number Publication Date
JPH06151143A true JPH06151143A (en) 1994-05-31
JP3638291B2 JP3638291B2 (en) 2005-04-13

Family

ID=17831044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29624392A Expired - Lifetime JP3638291B2 (en) 1992-11-06 1992-11-06 Low loss core

Country Status (1)

Country Link
JP (1) JP3638291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541909B2 (en) 2002-02-08 2009-06-02 Metglas, Inc. Filter circuit having an Fe-based core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541909B2 (en) 2002-02-08 2009-06-02 Metglas, Inc. Filter circuit having an Fe-based core
CN102208902A (en) * 2002-02-08 2011-10-05 梅特格拉斯公司 Filter circuit having an Fe-based core

Also Published As

Publication number Publication date
JP3638291B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JPH1171659A (en) Amorphous magnetic material and magnetic core using the same
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
US5804282A (en) Magnetic core
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPH05222493A (en) Fe-based high permeability amorphous alloy
JP3638291B2 (en) Low loss core
JP2704157B2 (en) Magnetic parts
JP2693059B2 (en) Trance
EP0473782B1 (en) Magnetic core
JP2790277B2 (en) Manufacturing method of ultra-thin amorphous alloy
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
KR100220874B1 (en) Ultra-thin Fe-Al-based soft magnetic alloy and its manufacturing method
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JP3378261B2 (en) Laminated core and switching power supply using the same
JP2561573B2 (en) Amorphous ribbon saturable core
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2791173B2 (en) Magnetic core
JP2815926B2 (en) Magnetic core
JP3121641B2 (en) Switching power supply
KR0148230B1 (en) Switching power
JPH093608A (en) Iron-base soft-magnetic alloy and iron-base soft-magnetic alloy foil
JPH01180944A (en) Amorphous magnetic alloy for choke coil and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

EXPY Cancellation because of completion of term